Share:
Share this content in WeChat
X
Editorial
Research progress in molecular magnetic resonance imaging
TENG Gao-jun  CUI Ying 

DOI:10.3969/j.issn.1674-8034.2014.05.S1.007.


[Abstract] As a major method of molecular imaging, molecular magnetic resonance imaging (mMRI) has overwhelming advantages and broad application prospect. In recent years, major progresses were made in this field, especially on the development of novel molecular probes and imaging sequences. The successful application of activatable probes, fluorine 19 contrast agents, Chemical Exchange Saturation Transfer imaging and hyperpolarization techniques have broadened the application of mMRI. In addition, the mMRI has also been applied in the early diagnosis, metabolic imaging, cell tracking and gene analysis in various diseases. Although much strength is to be addressed before the clinical translation of the mMRI, the developing imaging techniques will guarantee the important role that mMRI will play in both the basic and clinical research.
[Keywords] Molecular magnetic resonance imaging;Imaging sequences;Molecular magnetic resonance probes;Clinical applications

TENG Gao-jun * Key Laboratory of Molecular and Functional Imaging, Medical School of Southeast University, Nanjing, Jiangsu 210009, China

CUI Ying Key Laboratory of Molecular and Functional Imaging, Medical School of Southeast University, Nanjing, Jiangsu 210009, China

*Correspondence to: Teng GJ, E-mail: gjteng@seu.edu.cn

Conflicts of interest   None.

Received  2014-09-01
Accepted  2014-09-25
DOI: 10.3969/j.issn.1674-8034.2014.05.S1.007
DOI:10.3969/j.issn.1674-8034.2014.05.S1.007.

[1]
Weissleder R. Molecular imaging: exploring the next frontier. Radiology, 1999, 212(3): 609-614.
[2]
Weissleder R, Pittet MJ. Imaging in the era of molecular oncology. Nature, 2008, 452(7187): 580-589.
[3]
Aime S, Cabella C, Colombatto S et al. Insights into the use of paramagnetic Gd(III) complexes in MR-molecular imaging investigations. J Magn Reson Imaging, 2002, 16(4): 394-406.
[4]
James ML, Gambhir SS. A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev, 2012, 92(2): 897-965.
[5]
Kircher MF, Willmann JK. Molecular body imaging: MR imaging, CT, and US. part I. principles. Radiology, 2012, 263(3): 633-643.
[6]
Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev, 2003, 17(5): 545-580.
[7]
薛华丹,金征宇.磁共振分子成像技术:锋芒初露的解读生命科学利器.磁共振成像, 2011, 2(5): 321-324.
[8]
Swanson SD, Kukowska-Latallo JF, Patri AK et al. Targeted gadolinium-loaded dendrimer nanoparticles for tumor-specific magnetic resonance contrast enhancement. Int J Nanomedicine, 2008, 3(2): 201-210.
[9]
Mulder WJ, Strijkers GJ, van Tilborg GA et al. Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed, 2006, 19(1): 142-164.
[10]
Ghaghada KB, Ravoori M, Sabapathy D et al. New dual mode gadolinium nanoparticle contrast agent for magnetic resonance imaging. PLoS ONE, 2009; 4(10): e7628.
[11]
Furong Ye, Eun-Kee Jeong, Denis Parker,等.靶向对比剂CLT1-(Gd-DTPA)在小鼠乳腺癌磁共振分子成像效果的研究.磁共振成像, 2011, 2(5): 325-330.
[12]
Morawski AM, Winter PM, Crowder KC et al. Targeted nanoparticles for quantitative imaging of sparse molecular epitopes with MRI. Magn Reson Med, 2004, 51(3): 480-486.
[13]
Straathof R, Strijkers GJ, Nicolay K. Target-specific paramagnetic and superparamagnetic micelles for molecular MR imaging. Methods Mol Biol, 2011, 771: 691-715.
[14]
Tanaka K, Narita A, Kitamura N et al. Preparation for highly sensitive MRI contrast agents using core/shell type nanoparticles consisting of multiple SPIO cores with thin silica coating. Langmuir, 2010, 26(14): 11759-11762.
[15]
Sosnovik DE, Nahrendorf M, Weissleder R. Molecular magnetic resonance imaging in cardiovascular medicine. Circulation, 2007, 115(15): 2076-2086.
[16]
Harisinghani MG, Barentsz J, Hahn PF et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med, 2003, 348(25): 2491-2499.
[17]
Wunderbaldinger P, Josephson L, Weissleder R. Crosslinked iron oxides (CLIO): a new platform for the development of targeted MR contrast agents. Acad Radiol, 2002, 9(Suppl 2): S304-306.
[18]
周明,刘治国,叶秋,等. MRI荧光双模态分子影像探针研究进展.磁共振成像, 2013, 4(1): 71-75.
[19]
Querol M, Bogdanov A,Jr. Environment-sensitive and enzyme-sensitive MR contrast agents. Handb Exp Pharmacol, 2008, (185Pt 2): 37-57.
[20]
Nahrendorf M, Sosnovik D, Chen JW et al. Activatable magnetic resonance imaging agent reports myeloperoxidase activity in healing infarcts and noninvasively detects the antiinflammatory effects of atorvastatin on ischemia-reperfusion injury. Circulation, 2008, 117(9): 1153-1160.
[21]
Ward KM, Aletras AH, Balaban RS. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson, 2000, 143(1): 79-87.
[22]
Woods M, Woessner DE, Sherry AD. Paramagnetic lanthanide complexes as PARACEST agents for medical imaging. Chem Soc Rev, 2006, 35(6): 500-511.
[23]
Castelli DD, Terreno E, Longo D, Aime S. Nanoparticle-based chemical exchange saturation transfer (CEST) agents. NMR Biomed , 2013, 26(7): 839-849.
[24]
Kadayakkara DK, Janjic JM, Pusateri LK et al. In vivo observation of intracellular oximetry in perfluorocarbon-labeled glioma cells and chemotherapeutic response in the CNS using fluorine-19 MRI. Magn Reson Med, 2010, 64(5): 1252-1259.
[25]
Mizukami S, Takikawa R, Sugihara F et al. Paramagnetic relaxation-based 19f MRI probe to detect protease activity. J Am Chem Soc, 2008, 130(3): 794-795.
[26]
Viale A, Aime S. Current concepts on hyperpolarized molecules in MRI. Curr Opin Chem Biol, 2010, 14(1): 90-96.
[27]
Golman K, Olsson LE, Axelsson O et al. Molecular imaging using hyperpolarized 13C. Br J Radiol, 2003, 76(S2): S118-127.
[28]
Albert MS, Cates GD, Driehuys B et al. Biological magnetic resonance imaging using laser-polarized 129Xe. Nature, 1994, 370(6486): 199-201.
[29]
de Lange EE, Mugler JP, 3rd, Brookeman JR et al. Lung air spaces: MR imaging evaluation with hyperpolarized 3He gas. Radiology, 1999, 210(3): 851-857.
[30]
Pannu HK, Wang KP, Borman TL, Bluemke DA. MR imaging of mediastinal lymph nodes: evaluation using a superparamagnetic contrast agent. J Magn Reson Imaging, 2000, 12(6): 899-904.
[31]
Josephson L, Kircher MF, Mahmood U et al. Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes. Bioconjug Chem, 2002, 13(3): 554-560.
[32]
Ellegala DB, Leong-Poi H, Carpenter JE et al. Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to alpha(v)beta3. Circulation, 2003, 108(3): 336-341.
[33]
Meier R, Henning TD, Boddington S et al. Breast cancers: MR imaging of folate-receptor expression with the folate-specific nanoparticle P1133. Radiology, 2010, 255(2): 527-535.
[34]
Wang ZJ, Boddington S, Wendland M et al. MR imaging of ovarian tumors using folate-receptor-targeted contrast agents. Pediatr Radiol, 2008, 38(5): 529-537.
[35]
Ruehm SG, Corot C, Vogt P et al. Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation, 2001, 103(3): 415-422.
[36]
Tang TY, Patterson AJ, Miller SR et al. Temporal dependence of in vivo USPIO-enhanced MRI signal changes in human carotid atheromatous plaques. Neuroradiology, 2009, 51(7): 457-465.
[37]
Ronald JA, Chen JW, Chen Y et al. Enzyme-sensitive magnetic resonance imaging targeting myeloperoxidase identifies active inflammation in experimental rabbit atherosclerotic plaques. Circulation, 2009, 120(7): 592-599.
[38]
Zhang Y, Fan S, Yao Y et al. In Vivo Near-Infrared Imaging of Fibrin Deposition in Thromboembolic Stroke in Mice. PLoS ONE, 2012, 7(1):e30262.
[39]
任静,杨勇,王芳,等.前列腺干细胞抗原特异性MR分子探针体外成像实验研究.磁共振成像, 2010, 1(2): 138-141.
[40]
Frank JA, Miller BR, Arbab AS et al. Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology, 2003, 228(2): 480-487.
[41]
Saudek F, Jirak D, Girman P et al. Magnetic resonance imaging of pancreatic islets transplanted into the liver in humans. Transplantation, 2010, 90(12): 1602-1606.
[42]
Verdijk P, Scheenen TW, Lesterhuis WJ et al. Sensitivity of magnetic resonance imaging of dendritic cells for in vivo tracking of cellular cancer vaccines. Int J Cancer, 2007, 120(5): 978-984.
[43]
Gilad AA, Winnard PT, Jr., van Zijl PC, Bulte JW. Developing MR reporter genes: promises and pitfalls. NMR Biomed , 2007, 20(3): 275-290.
[44]
first minute of reperfusion after brief ischemia: NMR detection of hyperpolarized 13CO2 and H13CO3. Magn Reson Med, 2008, 60(5): 1029-1036.
[45]
Golman K, Zandt RI, Lerche M et al. Metabolic imaging by hyperpolarized 13C magnetic resonance imaging for in vivo tumor diagnosis. Cancer Res, 2006, 66(22): 10855-10860.
[46]
Gallagher FA, Kettunen MI, Day SE et al. 13C MR spectroscopy measurements of glutaminase activity in human hepatocellular carcinoma cells using hyperpolarized 13C-labeled glutamine. Magn Reson Med, 2008, 60(2): 253-257.
[47]
Merritt ME, Harrison C, Storey C et al. Inhibition of carbohydrate oxidation during the first minute of reperfusion after brief ischemia: NMR detection of hyperpolarized 13CO2 and H13CO3. Magn Reson Med, 2008, 60(5): 1029-1036.

PREV The technical advances and clinical application of MR-guided focused ultrasound surgery
NEXT Magnetic resonance imaging contrast agents: an update on their clinical application
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn