Share:
Share this content in WeChat
X
Editorial
The clinical applications and advance of MR perfusion
ZHAO Bin 

DOI:10.3969/j.issn.1674-8034.2014.05.S1.010.


[Abstract] Magnetic resonance perfusion weighted imaging (MR-PWI) is a functional imaging technique that reflects the microvascular distribution and blood flow perfusion in molecular level. It can provide semi-quantitative and quantitative measurements and reflects the hemodynamic information. With the high temporal and spatial resolution, no radioactive and simple operation, MR-PWI has been used in the assessment of a variety of diseases, including the central nervous system abnormalities, body and the skeletal muscle system diseases. It is available for use as a clinical diagnostic tool. As a noninvasive perfusion imaging method, arterial spin labeling (ASL) shows the unique value and advantage in the diagnosis, treatment and prognosis evaluation of cerebrovascular disease and brain tumors, while the application in body and skeletal muscle system diseases is still in the stage of exploration. With the continuous development of MR software and hardware technology, magnetic resonance perfusion imaging has a broad application prospect in the diagnosis, assessment and monitoring treatment.
[Keywords] MR perfusion imaging;Clinical application

ZHAO Bin * Shandong Medical Imaging Research Institute, Jinan 250021, China

*Correspondence to: Zhao B, E-mail: cjr.zhaobin@vip.163.com

Conflicts of interest   None.

Received  2014-08-20
Accepted  2014-09-25
DOI: 10.3969/j.issn.1674-8034.2014.05.S1.010
DOI:10.3969/j.issn.1674-8034.2014.05.S1.010.

[1]
Kidwell CS, Wintermark M, De Silva DA, et al. Multiparametric MRI and CT models of infarct core and favorable penumbral imaging patterns in acute ischemic stroke. Stroke, 2013, 44(1): 73-79.
[2]
Bokkers RP, Hernandez DA, Merino JG, et al. Whole-brain arterial spin labeling perfusion MRI in patients with acute stroke. Stroke, 2012, 43(5):1290-1294.
[3]
Huck S, Kerl HU, Al-Zghloul M, et al. Arterial spin labeling at 3.0 T in subacute ischemia: comparison to dynamic susceptibility perfusion. ClinNeuroradiol, 2012, 22(1):29-37.
[4]
王斐斐,程敬亮,赵艺蕾,等.动态磁敏感对比MR灌注成像对脑膜瘤分级的临床价值.磁共振成像,2011, 2(1):55-59.
[5]
Server A, Graff BA, Orheim TE, et al. Measurements of diagnostic examination performance and correlation analysis using microvascular leakage, cerebral blood volume, and blood flow derived from 3 T dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging in glial tumorgrading. Neuroradiology, 2011, 53(6):435-447.
[6]
Bobek-Billewicz B, Stasik-Pres G, Majchrzak H, et al. Differentiation between brain tumor recurrence and radiation injury using perfusion, diffusion-weighted imaging and MR spectroscopy.Folia Neuropathol, 2010, 48(2):81-92.
[7]
白雪菲,牛广明,韩晓东,等.PWI和DWI技术在鉴别脑胶质瘤复发与放射性脑损伤中的价值.磁共振成像,2014, 5(1):7-10.
[8]
肖华锋,衣岩,安维民,等.三维准连续动脉自旋标记灌注成像对WHO Ⅱ级胶质瘤分型临床应用价值初探.磁共振成像, 2014, 5(3): 161-165.
[9]
Cebeci H, Aydin O, Ozturk-Isik E,et al. Assesment of perfusion in glial tumors with arterial spin labeling; comparison with dynamic susceptibility contrast method. Eur J Radiol, 2014, 83(10):1914-1919.
[10]
Zimny A, Szewczyk P, Trypka E, et al. Multimodal imaging in diagnosis of Alzheimer’s disease and amnestic mild cognitive impairment: value of magnetic resonance spectroscopy, perfusion, and diffusion tensor imaging of the posterior cingulate region. J Alzheimers Dis, 2011, 27(3): 591-601.
[11]
Wierenga CE, Hays CC, Zlatar ZZ. Cerebral Blood Flow Measured by Arterial Spin Labeling MRI as a Preclinical Marker of Alzheimer’s Disease. J Alzheimers Dis, DOI:
[12]
苗延巍,蔡兆诚,张清,等.多发性硬化白质脱髓鞘斑块的磁敏感加权成像及动态磁敏感增强灌注成像研究.中华放射学杂志, 2011, 45(5): 426-431.
[13]
Server A1, Graff BA, Orheim TE, et al. Quantitative functional magnetic resonance imaging of brain activity using bolus-tracking arterial spin labeling. J Cereb Blood Flow Metab, 2010, 30(5):913-922.
[14]
Kluge A, Gerriets T, Stolz E, et al. Pulmonary perfusion in acute pulmonary embolism:agreement of MIU and SPECT for lobar, segmental and subsegmental perfusion defects. ActaRadiol, 2006, 47(9):933-940.
[15]
Weidner M, Zöllner FG, Hagelstein C, et al. High temporal versus high spatial resolution in MR quantitative pulmonary perfusion imaging of two-year old children after congenital diaphragmatic hernia repair. Eur Radiol, 2014, 24(10):2427-2434.
[16]
Kohlmann P, Strehlow J, Jobst B, et a1. Automatic lung segmentation method for MRI-based lung perfusion studies of patients with chronic obstructive pulmonary disease. Int J Comput Assist Radiol Surg, DOI:
[17]
Martirosian P, Boss A, Fenchel M, et al. Quantitative lung perfusion mapping at 0.2 T using FAIR True-FISP MRI. MagnReson Med, 2006, 55(5): 1065-1074.
[18]
Medeiros LR, Duarte CS, Rosa DD, et al. Accuracy of magnetic resonance in suspicious breast lesions:a systematic quantitative review and meta-analysis. Breast Cancer Res Treat, 2011, 126(2):273-285.
[19]
李瑞敏,顾雅佳,毛健,等.定量动态增强MRI鉴别乳腺良恶性病变的研究.中华放射学杂志, 2011, 45(2):164-169.
[20]
Sourbron S, Sommer WH, Reiser MF, et al. Combined quantification of liver perfusion and function with dynamic gadoxetic acid-enhanced MR imaging. Radiology, 2012, 263(3):874-83.
[21]
Tsui EY, Chan JH, Cheung YK, et al. Evaluation of therapeutic sectiveness of transarterial chemoembolization for hepatocellular carcinoma:correlation of dynamic susceptibility contrast enhanced echo planar imaging and hepatic angiography. Clin Imaging, 2000, 24(4):210-216.
[22]
Hsu C-Y, Shen Y-C, Yu C-W, et al. Dynamic contrast-enhanced magnetic resonance imaging biomarkers predict survival and response in hepatocellular carcinoma patients treated with sorafenib and metronomic tegafur/uracil. J Hepatol, 2011, 55(4):858-865.
[23]
Tajima Y, Kumki T, TsutSumi R, et al. Pancreatic carcinoma coexisting with chronic pancreatitis versus tumor-forming pancreatitis:diagnostic utility of the time-signal intensity curve from dynamic contrast-enhanced MR imaging. World J Gastroenterol, 2007, 13(6):858-865.
[24]
Bali MA, Metens T, Denolin V, et al. Tumoral and nontumoral pancreas: correlation between quantitative dynamic contrast-enhanced MR imaging and histopathologic parameters. Radiology, 2011, 261(2): 456-466.
[25]
Kim JH, Lee JM, Park JH, et al. Solid pancreatic lesions: characterization by using timing bolus dynamic contrast-enhanced MR imaging assessment--a preliminary study. Radiology, 2013, 266(1): 185-196.
[26]
Zöllner FG1, Zimmer F2, Klotz S, et al. Renal perfusion in acute kidney injury with DCE-MRI: deconvolution analysis versus twocom partment filtration model. Magn Reson Imaging, 2014, 32(6):781-785.
[27]
Martirosian P, Klose U, Mader I, et al. FAIR true-FISP perfusion imaging of the kidneys. MagnReson Med, 2004, 51(2):353-361.
[28]
Gao Y, Goodnough CL, Erokw BO, et al. Arterial spin labeling-fast imaging with steady-state free precession (ASL-FISP): arapid and quantitative perfusiontechnique for high-field MRI. NMR Biomed, 2014, 27(8): 996-1004.
[29]
Ernest HY, Ng MD, Carina CW, et al. Relationship between uterine blood flow and endometrial and subendometrial blood flows during stimulated and natural cycles. FertilSteril, 2006, 85(3): 721-727.
[30]
Rouviere O, Raudrant A, Ecochard R, et al. Characterization of time-enhancement curves of benign and malignant prostate tissue at dynamic MR imaging. EurRadiol, 2003, 13(5):931-942.
[31]
张海彬,胡道予,张娟,等. 3.0 T磁共振动脉自旋标记(ASL)技术诊断前列腺癌. 放射学实践, 2012, 27(6):645-651.
[32]
张晶,梁伟,李晓松,等.MR动态增强扫描时间-信号强度曲线在骨骼肌肉系统肿瘤定性诊断中的价值.中华放射学杂志,2009,43(6):575-578.
[33]
吴仁华,Vu Mai,陈小轲,等.附加射频的流敏交替反转回波序列无损伤地测定兔VX2肿瘤的血流灌注.中华放射学杂志, 2005, 39(3): 313-316.
[34]
张朝晖,孟悛非,高振华,等.动脉自旋标记灌注成像对软组织VX2肿瘤血管生成的评价.中华放射学杂志, 2010, 44(10):1084-1088.

PREV Progression of multi-modality MRI in epilepsy
NEXT Application and advance of MR imaging on musculoskeletal diseases
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn