Share:
Share this content in WeChat
X
RSNA Progress
Progress and clinical application of MR imaging on musculoskeletal system
YUAN Hui-shu  LIU Li-si 

DOI:10.3969/j.issn.1674-8034.2015.02.001.


[Abstract] In recent years, the advance development of MRI technology provides a variety of new noninvasive methods in vivo imaging for musculoskeletal system diseases, including cartilage component quantitative analysis, short T2 tissue structure and bone microstructure imaging, which provide the basis for early diagnosis and treatment monitoring. The progress and clinical application of different MRI technologies will gradually increase the level of musculoskeletal system diagnosis, provide a new way for the study of MRI musculoskeletal system.
[Keywords] Bone and joint diseases;Cartilage injury;Magnetic resonance imaging;Quantitative diagnosis

YUAN Hui-shu* Department of Radiology, Peking University Third Hospital, Beijing 100191, China

LIU Li-si Department of Radiology, Peking University Third Hospital, Beijing 100191, China

*Correspondence to: YUAN HS, E-mail: huishuy@sina.com

Conflicts of interest   None.

Received  2015-01-15
Accepted  2015-01-27
DOI: 10.3969/j.issn.1674-8034.2015.02.001
DOI:10.3969/j.issn.1674-8034.2015.02.001.

[1]
Crema MD, Hunter DJ, Burstein D, et al. Association of changes in delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) with changes in cartilage thickness in the medial tibiofemoral compartment of the knee: a 2 year follow-up study using 3.0 T MRI. Ann Rheum Dis, 2014, 73(11): 1935-1941.
[2]
Kijowski R, Blankenbaker DG, Munoz Del Rio A, et al. Evaluation of the articular cartilage of the knee joint: value of adding a T2 mapping sequence to a routine MR imaging protocol. Radiology, 2013, 267(2): 503-513.
[3]
Torriani M, Taneja AK, Hosseini A, et al. T2 relaxometry of the infrapatellar fat pad after arthroscopic surgery. Skeletal Radiol, 2014, 43(3): 315-321.
[4]
Bittersohl B, Miese FR, Hosalkar HS. et al. T2* mapping of acetabular and femoral hip joint cartilage at 3 T: a prospective controlled study. Invest Radiol2012, 47(7): 392-397.
[5]
Andreisek G, Weiger M. T2* mapping of articular cartilage: current of research and first clinical applications. Invest Radiol, 2014, 49(1): 57-62.
[6]
Ellermann J, Ziegler C, Nissi MJ, et al. Acetabular cartilage assessment in patients with femoroacetabular impingement by using T2* mapping with arthroscopic verification. Radiology, 2014, 271(2): 512-523.
[7]
Raya JG, Horng A, Dietrich O, et al. Articular cartilage: in vivo diffusion-tensor imaging. Radiology, 2012, 262(2): 550-559.
[8]
Raya JG, Melkus G, Adam-Neumair S, et al. Diffusion-tensor imaging of human articular cartilage specimens with early signs of cartilage damage. Radiology, 2013, 266(3): 831-841.
[9]
Kretzschmar M, Bieri O, Miska M, et al. Characterization of the collagen component of cartilage repair tissue of the talus with quantitative MRI: comparison of T2 relaxation time measurements with a diffusion-weighted double-echo steady-state sequence (dwDESS). Eur Radiol, 2014. DOI: 10.1007/s00330-014-3490-5.
[10]
Wang L, Regatte RR. T1rho MRI of human musculoskeletal system. J Magn Reson Imaging, 2014. DOI: 10.1002/jmri.24677.
[11]
Zhou Z, Jiang B, Zhou Z, et al. Intervertebral disk degeneration: T1rho MR imaging of human and animal models. Radiology, 2013, 268(2): 492-500.
[12]
Su F, Hilton JF, Nardo L, et al. Cartilage morphology and T1rho and T2 quantification in ACL-reconstructed knees: a 2-year follow-up. Osteoarthritis Cartilage, 2013, 21(8): 1058-1067.
[13]
Eric Y, Chang MD, Jiang Du, et al. UTE imaging in the musculoskeletal system. J Magn Reson Imaging, 2014. DOI: 10.1002/jmri.24713.
[14]
Pauli C, Bae WC, Lee M, et al. Ultrashort-echo time MR imaging of the patella with bicomponent analysis: correlation with histopathologic and polarized light microscopic findings. Radiology, 2012, 264(2): 484-493.
[15]
Bae WC, Statum S, Zhang Z, et al. Morphology of the cartilaginous endplates in human intervertebral disks with ultrashort echo time MR imaging. Radiology, 2013, 266(2): 564-574.
[16]
Shapiro L, Harish M, Hargreaves B, et al. Advances in musculoskeletal MRI: technical considerations. J Magn Reson Imaging, 2012, 36(4): 775-787.
[17]
Omoumi P, Bae WC, Du J, et al. Meniscal calcifications: morphologic and quantitative evaluation by using 2D inversion-recovery ultrashort echo time and 3D ultrashort echo time 3.0-T MR imaging techniques--feasibility study. Radiology, 2012, 264(1): 260-268.
[18]
Du J, Bydder GM. Qualitative and quantitative ultrashort-TE MRI of cortical bone. NMR Biomed, 2013, 26(5): 489-506.
[19]
Nardo L, Karampinos DC, Lansdown DA, et al. Quantitative assessment of fat infiltration in the rotator cuff muscles using water-fat MRI. J Magn Reson Imaging, 2014, 39(5): 1178-1185.
[20]
Fischer MA, Pfirrmann CW, Espinosa N, et al. Dixon-based MRI for assessment of muscle-fat content in phantoms, healthy volunteers and patients with achillodynia: comparison to visual assessment of calf muscle quality. Eur Radiol, 2014, 24(6): 1366-1375.
[21]
Muller-Lutz A, Schleich C, Sewerin P, et al. Comparison of Quantitative and Semiquantitative Dynamic Contrast-Enhanced MRI With Respect to Their Correlation to Delayed Gadolinium-Enhanced MRI of the Cartilage in Patients With Early Rheumatoid Arthritis. J Comput Assist Tomogr, 2014. DOI: 10.1097/RCT.0000000000000164.
[22]
Cimmino MA, Parodi M, Zampogna G, et al. Dynamic contrast-enhanced, extremity-dedicated MRI identifies synovitis changes in the follow-up of rheumatoid arthritis patients treated with rituximab. Clin Exp Rheumatol, 2014, 32(5): 647-652.
[23]
Wojciechowski W, Tabor Z, Urbanik A. Assessing synovitis based on dynamic gadolinium-enhanced MRI and EULAR-OMERACT scores of the wrist in patients with rheumatoid arthritis. Clin Exp Rheumatol, 2013, 31(6): 850-856.
[24]
Meier R, Thuermel K, Noel PB, et al. Synovitis in patients with early inflammatory arthritis monitored with quantitative analysis of dynamic contrast-enhanced optical imaging and MR imaging. Radiology, 2014, 270(1): 176-185.
[25]
Del Grande F, Subhawong T, Weber K, et al. Detection of soft-tissue sarcoma recurrence: added value of functional MR imaging techniques at 3.0 T. Radiology, 2014, 271(2): 499-511.
[26]
Chang G, Honig S, Liu Y, et al. 7 Tesla MRI of bone microarchitecture discriminates between women without and with fragility fractures who do not differ by bone mineral density. J Bone Miner Metab, 2014. DOI: 10.1007/s00774-014-0588-4.
[27]
Chang G, Deniz CM, Honig S, et al. MRI of the hip at 7T: feasibility of bone microarchitecture, high-resolution cartilage, and clinical imaging. J Magn Reson Imaging, 2014, 39(6): 1384-1393.
[28]
Chang G, Xia D, Sherman O, et al. High resolution morphologic imaging and T2 mapping of cartilage at 7 Tesla: comparison of cartilage repair patients and healthy controls. MAGMA, 2013, 26(6): 539-548.
[29]
Madelin G, Babb J, Xia D, et al. Articular cartilage: evaluation with fluid-suppressed 7.0-T sodium MR imaging in subjects with and subjects without osteoarthritis. Radiology, 2013, 268(2): 481-491.
[30]
Chang G, Madelin G, Sherman OH, et al. Improved assessment of cartilage repair tissue using fluid-suppressed 23Na inversion recovery MRI at 7 Tesla: preliminary results. Eur Radiol, 2012, 22(6): 1341-1349.
[31]
Jung JY, Yoon YC, Kim HR, et al. Knee derangements: comparison of isotropic 3D fast spin-echo, isotropic 3D balanced fast field-echo, and conventional 2D fast spin-echo MR imaging. Radiology, 2013, 268(3): 802-813.
[32]
Choo HJ, Lee SJ, Kim OH, et al. Comparison of three-dimensional isotropic T1-weighted fast spin-echo MR arthrography with two-dimensional MR arthrography of the shoulder. Radiology, 2012, 262(3): 921-931.
[33]
Swami VG, Cheng-Baron J, Hui C, et al. Reliability of 3D localisation of ACL attachments on MRI: comparison using multi-planar 2D versus high-resolution 3D base sequences. Knee Surg Sports Traumatol Arthrosc, 2014. DOI: 10.1007/s00167-014-2948-y.
[34]
Lee YH, Lim D, Kim E, et al. Feasibility of fat-saturated T2-weighted magnetic resonance imaging with slice encoding for metal artifact correction (SEMAC) at 3T. Magn Reson Imaging, 2014, 32(8): 1001-1005.
[35]
Choi SJ, Koch KM, Hargreaves BA, et al. Metal Artifact Reduction With MAVRIC SL at 3-T MRI in Patients With Hip Arthroplasty. AJR Am J Roentgenol, 2015, 204(1): 140-147.

PREV Prostate cancer: theoretical base of MR diffusion tensor imaging study
NEXT Progress and clinical application of cardiovascular magnetic resonance
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn