Share:
Share this content in WeChat
X
RSNA Progress
Progresses in magnetic resonance imaging of hepatocellular carcinoma
JIANG Han-yu  LIU Xi-jiao  SONG Bin 

DOI:10.3969/j.issn.1674-8034.2015.02.003.


[Abstract] Objective: To review the recent advances of magnetic resonance imaging (MRI) techniques in the diagnosis, prognosis,treatment decision making and early assessment of therapeutic response of hepatocellular carcinomas (HCC).Materials and Methods: The newest related published literatures about the MR imaging of HCC were collected and analyzed.Results: With recent development and application of the functional MRI and liver-specific MR contrast agents in HCC, MRI is not only able to diagnose HCC in the early stage, but also reveal the tumor pathogenesis, biological behaviors and abnormal gene expressions at cellular level, thus providing significant information for the prognosis evaluation, treatment decision making and response assessment of HCCs.Conclusions: MR imaging plays a vital and effective role in the diagnosis, evaluation, surveillance and follow-up of HCC.
[Keywords] Hepatocellular carcinoma;Magnetic resonance imaging

JIANG Han-yu 2010 grade eight year system graduate, West China School of Medicine, Sichuan University, Chengdu 610041, China

LIU Xi-jiao Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China

SONG Bin* Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China

*Correspondence to: Song B,E-mail: cjr.songbin@vip.163.com

Conflicts of interest   None.

Received  2015-01-16
Accepted  2015-01-27
DOI: 10.3969/j.issn.1674-8034.2015.02.003
DOI:10.3969/j.issn.1674-8034.2015.02.003.

[1]
World Health Organization. Liver cancer,estimated incidence,mortality and prevalence worldwide in 2012. http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx.
[2]
中华人民共和国卫生部.原发性肝癌诊疗规范(2011年版).临床肿瘤学杂志, 2011, 16(10): 929-946.
[3]
Bruix J, Sherman M. Management of hepatocellular carcinoma: an update. Hepatology, 2011, 53(3): 1020-1022.
[4]
Omata M, Lesmana LA, Tateishi R, et al. Asian Pacific Association for the Study of the Liver consensus recommendations on hepatocellular carcinoma. Hepatol Int, 2010, 4(2): 439-474.
[5]
Bruix J, Sherman M, Llovet JM, et al. Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. European Association for the Study of the Liver. J Hepatol, 2001, 35(3): 421-430.
[6]
Coleman WB.Mechanisms of human hepatocarcinogenesis. Curr Mol Med, 2003, 3(6): 573-588.
[7]
Shah TU, Semelka RC, Pamuklar E, et al. The risk of hepatocellular carcinoma in cirrhotic patients with small liver nodules on MRI. Am J Gastroeneterol, 2006, 101(3): 533-540.
[8]
李云芳,李宏军,张岩岩.肝硬化不典型增生结节的多模态MRI研究.磁共振成像, 2014, 5(1): 45-53.
[9]
Chandarana H, Robinson E, Hajdu CH, et al. Microvascular invasion in hepatocellular carcinoma: is it predictable with pretransplant MRI. AJR Am J Roentgenol, 2011, 196(5): 1083-1089.
[10]
Kornberg A, Freesmeyer M, Bärthel E, et al. 18F-FDG-uptake of hepatocellular carcinoma on PET predicts microvascular tumor invasion in liver transplant patients. Am J Transplant, 2009, 9(3): 592-600.
[11]
Kojiro M. Best Practice & Research. Clinical Gastroenterology, 2005, 19(1): 39.
[12]
Ishigami K, Yoshimitsu K, Nishihara Y, et al. Hepatocellular carcinoma with a pseudocapsule on gadolinium-enhanced MR images:correlation with histopathologic findings. Radiology, 2009, 250(2): 435-443.
[13]
Kadoya M, Matsui O, Takashima T, et al. Hepatocellular carcinoma: correlation of MR imaging and histopathologic findings. Radiology, 1992, 183(3): 819-825.
[14]
Kojiro M. 'Nodule-in-nodule' appearance in hepatocellular carcinoma: its significance as a morphologic marker of dedifferentiation. Intervirology, 2004, 47(3-5): 179-183.
[15]
Surachate S, Jeong KL, Steven SR, et al. MRI detection of intratumoral fat in hepatocellular carcinoma: potential biomarker for a more favorable prognosis. AJR, 2012, 199(5): 1018-1025.
[16]
Choi BI, Lee JM. Advancement in HCC imaging:diagnosis, staging and treatment efficacy assessments: imaging diagnosis and staging of hepatocellular carcinoma. Journal of hepato-biliary-pancreatic sciences, 2010, 17(4): 369-373.
[17]
Lee JM, Choi BI. Hepatocellular nodules in liver cirrhosis:MR evaluation. Abdom Imaging, 2011, 36(3): 282-289.
[18]
Park MS, Kim S, Patel J, et al. Hepatocellular carcinoma: detection with diffusion-weighted versus contrast-enhanced magnetic resonance imaging in pretransplant patients. Hepatology, 2012, 56(1): 140-148.
[19]
Jarnagin WR, Schwartz LH, Gultekin DH, et al. Regional chemotherapy for unresectable primary liver cancer:results of a phase II clinical trial and assessment of DCE-MRI as a biomarker of survival. Ann Oncol, 2009, 20(9): 1589-1595.
[20]
Braren R, Altomonte J, Settles M, et al. Validation of preclinical multiparametric imaging for prediction of necrosis in hepatocellular carcinoma after embolization. J Hepatol, 2011, 55(5): 1034-1040.
[21]
O' Connor JP, Jackson A, Parker GJ, et al. DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents. Br J Cancer, 2007, 96(2): 189-195.
[22]
Koh TS, Thng CH, Hartono S, et al. A comparative study of dynamic contrast-enhanced MRI parameters as biomarkers for anti-angiogenic drug therapy. NMR Biomed, 2011, 24(9): 1169-1180.
[23]
Kelly RJ, Rajan A, Force J, et al. Evaluation of KRAS mutations, angiogenic biomarkers, and DCE-MRI in patients with advanced non-small-cell lung cancer receiving sorafenib. Clin Cancer Res, 2011, 17(5): 1190-1199.
[24]
Hahn OM, Yang C, Medved M, et al. Dynamic contrast-enhanced magnetic resonance imaging pharmacodynamic biomarker study of sorafenib in metastatic renal carcinoma. J Clin Oncol, 2008, 26(28): 4572-4578.
[25]
Mita MM, Spear MA, Yee LK, et al. Phase 1 first-in-human trial of the vascular disrupting agent plinabulin (NPI-2358) in patients with solid tumors or lymphomas. Clin Cancer Res, 2010, 16(23): 5892-5899.
[26]
Ricart AD, Ashton EA, Cooney MM, et al. A phase I study of MN-029 (denibulin), a novel vascular-disrupting agent, in patients with advanced solid tumors. Cancer Chemother Pharmacol, 2011, 68(4): 959-970.
[27]
Baar J, Silverman P, Lyons J, et al. A vasculature-targeting regimen of preoperative docetaxel with or without bevacizumab for locally advanced breast cancer: impact on angiogenic biomarkers. Clin Cancer Res, 2009, 15(10): 3583-3590.
[28]
Seale MK, Catalano OA, Saini S, et al. Continuing medical education:hepatobiliary-specific mr contrast agents: role in imaging the liver and biliary tree. Radiographics, 2009, 29(6): 1725-1748.
[29]
Nasu K, Kuroki Y, Tsukamoto T, et al. Diffusion-weighted imaging of surgically resected hepatocellular carcinoma:imaging characteristics and relationship among signal intensity, apparent diffusion coefficient, and histopathologic grade. AJR Am J Roentgenol, 2009, 193(2): 438-444.
[30]
Frericks BB, Loddenkemper C, Huppertz A, et al. Qualitative and quantitative evaluation of hepatocellular carcinoma and cirrhotic liver enhancement using Gd-EOB-DTPA. AJR, 2009, 193(4): 1053-1060.
[31]
Kogita S, Imai Y, Okada M, et al. Gd-EOB-DTPA-enhanced magnetic resonance images of hepatocellular carcinoma: correlation with histological grading and portal blood flow. Eur Radiol, 2010, 20(10): 2405-2413.
[32]
Sano K, Ichikawa T, Motosugi U, et al. Imaging study of early hepatocellular carcinoma: usefulness of gadoxetic-acid-enhanced MR imaging. Radiology, 2011, 261(3): 834-844.
[33]
Lee JM, Zech CJ, Bolondi L, et al. Consensus report of the 4th international forum for gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid magnetic resonance imaging. Korean J Radiol, 2011, 12(4): 403-415.
[34]
Tanaka M, Nakashima O, Wada Y, et al. Pathomorphological study of Kupffer cells in hepatocellular carcinoma and hyperplastic nodular lesions in the liver. Hepatology, 1996, 24(4): 807-812.
[35]
Park HS, Lee JM, Kim SH, et al. Differentiation of well-differentiated hepatocellular carcinomas from other hepatocellular nodules in cirrhotic liver: value of SPIO-enhanced MR imaging at 3.0 Tesla. J Magn Reson Imaging, 2009, 29(2): 328-335.
[36]
Tanimoto A, Kuribayashi S. Application of superparamagnetic iron oxide to imaging of hepatocellular carcinoma. Eur J Radiol, 2006, 58(2): 200-216.
[37]
Yoo HJ, Lee JM, Lee JY, et al. Additional value of SPIO-enhanced MR imaging for the noninvasive imaging diagnosis of hepatocellular carcinoma in cirrhotic liver. Invest Radiol, 2009, 44(12): 800-807.
[38]
Yoon MA, Kim SH, Park HS, et al. Value of dual contrast liver MRI at 3.0 T in differentiating well-differentiated hepatocellular carcinomas from dysplastic nodules: preliminary results of multivariate analysis. Invest Radiol, 2009, 44(10): 641-649.
[39]
Taouli B, Ehman RL, Reeder SB. Advanced MRI methods for assessment of chronic liver disease. AJR Am J Roentgenol, 2009, 193(1): 14-27.
[40]
Kamel IR, Liapi E, Reyes DK, et al. Unresectable hepatocellular carcinoma:serial early vascular and cellular changes after transarterial chemoembolization as detected with MR imaging. Radiology, 2009, 250(2): 466-473.
[41]
Naganawa S, Kawai H, Fukatsu H, et al. Diffusion-weighted imaging of the liver:technical challenges and prospects for the future. Magn Reson Med Sci, 2005, 4(4): 175-186.
[42]
Piana G, Trinquart L, Meskine N, et al. New MR imaging criteria with a diffusion-weighted sequence for the diagnosis of hepatocellular carcinoma in chronic liver diseases. J Hepatol, 2011, 55(1): 126-132.
[43]
Vandecaveye V, De Keyzer F, Verslype C, et al. Diffusionweighted MRI provides additional value to conventional dynamic contrast-enhanced MRI for detection of hepatocellular carcinoma. Eur Radiol, 2009, 19(10): 2456-2466.
[44]
Taouli B, Sandberg A, Stemmer A, et al. Diffusion-weighted imaging of the liver: comparison of navigator triggered and breathhold acquisitions. J Magn Reson Imaging, 2009, 30(3): 561-568.
[45]
Bruegel M, Holzapfel K, Gaa J, et al. Characterization of focal liver lesions by ADC measurements using a respiratory triggered diffusion-weighted single-shot echo-planar MR imaging technique. Eur Radiol, 2008, 18(3): 477-485.
[46]
Miller FH, Hammond N, Siddiqi AJ. Utility of diffusionweighted MRI in distinguishing benign and malignant hepatic lesions. J Magn Reson Imaging, 2010, 32(1): 138-147.
[47]
刘伟,杨军,邵康伟,等.扩散加权成像b值大小对肝脏良恶性病变的鉴别诊断价值.磁共振成像, 2011, 2(4): 283-289.
[48]
Yu JS, Chung JJ, Kim JH, et al. Detection of small intrahepatic metastases of hepatocellular carcinomas using diffusion-weighted imaging:comparison with conventional dynamic MRI. Magn Reson Imaging, 2011, 29(7): 985-992.
[49]
Bonekamp S, Jolepalem P, Lazo M, et al. Hepatocellular carcinoma: response to TACE assessed with semiautomated volumetric and functional analysis of diffusion-weighted and contrast-enhanced MR imaging data. Radiology, 2011, 260(3):752-761.
[50]
Babsky AM, Ju S, George B, et al. Predicting response to benzamide riboside chemotherapy in hepatocellular carcinoma using apparent diffusion coefficient of water. Anticancer Res, 2011, 31(6):2045-2051.
[51]
Lee MH, Kim SH, Park MJ, et al. Gadoxetic acid-enhanced hepatobiliary phase MRI and highb-value diffusion-weighted imaging to distinguish well-differentiated hepatocellular carcinomas from benign nodules in patients with chronic liver disease. AJR Am J Roentgenol, 2011, 197(5): 868-875.
[52]
Nakanishi M, Chuma M, Hige S, et al. Relationship between diffusion-weighted magnetic resonance imaging and histological tumor grading of hepatocellular carcinoma. Ann Surg Oncol, 2012, 19(4): 1302-1309.
[53]
Nishie A, Tajima T, Asayama Y, et al. Diagnostic performance of apparent diffusion coefficient for predicting histological grade of hepatocellular carcinoma. Eur J Radiol, 2011, 80(2): 29-33.
[54]
Kamel IR, Bluemke DA, Ramsey D, et al. Role of diffusionweighted imaging in estimating tumor necrosis after chemoembolization of hepatocellular carcinoma. AJR Am J Roentgenol, 2003, 181(3): 708-710.
[55]
Dudeck O, Zeile M, Wybranski C, et al. Early prediction of anticancer effects with diffusion-weighted MR imaging in patients with colorectal liver metastases following selective internal radiotherapy. Eur Radiol, 2010, 20(11): 2699-2706.
[56]
Koh DM, Collins DJ, Orton MR. Intravoxel Incoherent Motion in Body Diffusion-Weighted MRI: Reality and Challenges. AJR, 2011, 196(6): 1351-1361.
[57]
Onur MR, Çiçekçi M, Kayalı A, et al. The role of ADC measurement in differential diagnosis of focal hepatic lesions. Eur J Radiol, 2012, 81(3): 171-176.
[58]
Woo S, Lee JM, Yoon JH, et al. Intravoxel incoherent motion diffusion-weighted MR imaging of hepatocellular carcinoma:correlation with enhancement degree and histologic grade. Radiology, 2014, 270(3): 758-767.
[59]
Hwang J, Kim YK, Lee WJ, et al. Unenhanced magnetic resonance portography using repetitive arterial or vein labeling method at 3.0-T. J Comput Assist Tomogr, 2013, 37(6):856-861.
[60]
Katada Y, Shukuya T, Kawashima M, et al. A comparative study between arterial spin labeling and CT perfusion methods on hepatic portal venous flow. Jpn J Radiol, 2012, 30(10):863-869.
[61]
Rouviere O, Yin M, Dresner MA, et al. MR elastography of the liver: preliminary results. Radiology, 2006, 240(2):440-448.
[62]
Huwart L, van Beers BE. MR elastography.Gastroenterol Clin Biol, 2008, 32(Suppl 1): 68-72.
[63]
Venkatesh SK, Yin M, Glockner JF, et al. MR elastography of liver tumours: preliminary results. AJR Am J Roentgenol, 2008, 190(6): 1534-1540.
[64]
Doblas S, Garteiser P, Haddad N, et al. Magnetic resonance elastography measurements of viscosity: a novel biomarker for human hepatic tumor malignancy?. Proc Intl Soc Mag Reson Med, 2011, 19(3): 389.
[65]
Sijens PE. Parametric exploration of the liver by magnetic resonance methods. Eur Radiol, 2009, 19(11): 2594-2607.
[66]
Reeder SB, Cruite I, Hamilton G, et al. Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy. J Magn Reson Imaging, 2011, 34(4): 729-749.
[67]
Soper R, Himmerlreich U, Painter D, et al. Pathology of hepatocellular carcinoma and its precursors using proton magnetic resonance spectroscopy and a statistical classification strategy. Pathology, 2002, 34(5): 417-422.
[68]
Barash H, Gross E, Edrei Y, et al. Functional magnetic resonance imaging monitoring of pathological changes in rodent livers during hyperoxia and hypercapnia. Hepatology, 2008, 48(4):1232-1241.
[69]
Barash H, Gross E, Matot I, et al. Functional MR imaging during hypercapnia and hyperoxia:noninvasive tool for monitoring changes in liver perfusion and hemodynamics in a rat model. Radiology, 2007, 243(3):727-735.
[70]
Park HJ, Kim YK, Min JH, et al. Feasibility of blood oxygenation level-dependent MRI at 3 T in the characterization of hepatic tumors. Abdom Imaging, 2014, 39(1): 142-152.
[71]
Robinson SP, Rijken PF, Howe FA, et al. Tumor vascular architecture and function evaluated by non-Invasive susceptibility MRI methods and immunohistochemistry. J Magn Reson Imaging, 2003, 17(4): 445-454.
[72]
Choi JW, Kim H, Kim HC, et al. Blood oxygen level-dependent MRI for evaluation of early response of liver tumors to chemoembolization:an animal study. Anticancer Res, 2013, 33(5): 1887-1892.

PREV Progress and clinical application of cardiovascular magnetic resonance
NEXT A DTI study of brain white matter integrity in heroin addicts under short-time abstinence
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn