Share:
Share this content in WeChat
X
Review
Present research situation of diffusion kurtosis imaging and intravoxel incoherent motion of the brain
DANG Yu-xue  WANG Xiao-ming 

DOI:10.3969/j.issn.1674-8034.2015.02.013.


[Abstract] Magnetic resonance imaging (MRI) is widely applied in assessing the changes of function and anatomical structure of the brain. Diffusion kurtosis imaging (DKI) is a new and promising diffusion imaging technique, which expands from diffusion tensor imaging (DTI) towards quantification of non-Gaussian water diffusion. DKI has been demonstrated to be highly sensitve and directionally specific in probing the microstructure of biological tissues. Intravoxel incoherent motion (IVIM) is a new non-invasive MRI perfusion technique, which defines the ability to separate blood perfusion from true diffusion effects via a proper choice of the number and distribution of diffusion weightings, or b-values. This article will review and discuss the basic principles and the latest progresses of DKI and IVIM in brain imaging.
[Keywords] Brain;MRI;DKI;IVIM

DANG Yu-xue Department of Radiology, Shengjing Hospital, China Medical University, Shenyang 110004, China

WANG Xiao-ming* Department of Radiology, Shengjing Hospital, China Medical University, Shenyang 110004, China

*Correspondence to: Wang XM, E-mail: wangxm024@163.com

Conflicts of interest   None.

Received  2014-12-08
Accepted  2015-01-07
DOI: 10.3969/j.issn.1674-8034.2015.02.013
DOI:10.3969/j.issn.1674-8034.2015.02.013.

[1]
单艺,卢洁,李坤成.扩散峰度成像在缺血性脑卒中的研究进展.中国医学影像技术, 2013, 29(12): 2046-2048.
[2]
Le Bihan D, Breton E, Lallemand D, et al. MR imaging of introvoxel incoherent motions: application to diffusion and perfusion in neurologic disorder. Radiology, 1986, 161(2): 401-407.
[3]
Jensen JH, Helpern JA, Ramani A, et al. Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med, 2005, 53(6): 1432-1440.
[4]
Jensen JH, Helpern JA. MRI quantification of non-Gaussian water diffusion by kutosis analysis. NMR Biomed, 2010, 23(7): 698-710.
[5]
Wu EX, Cheung MM. MR diffusion kurtosis imaging for neural tissue characterization. NMR Biomed, 2010, 23(7): 836-848.
[6]
周纯武,张仁知.乳腺影像学的现状与使命.磁共振成像, 2014, 5(4): 241-245.
[7]
Ichiron Y, Winn A, Yoshiro H, et al. Diffusion coefficients in abdominal organs and hepaticlesions: evaluation with intravoxel incoherent motion echo-planar MR imaging. Radiology, 1999, 210(3): 617-623.
[8]
Le Bihan D, Breton E, Lallemand D, et al. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology, 1988, 168(2): 497-505.
[9]
Le Bihan D. Intravoxel incoherent motion perfusion MR imaging: a wake-up call. Radiology, 2008, 249(3): 748-752.
[10]
Raab P, Hattingen E, Franz K, et al. Cerebral gliomas: diffusional kurtosis imaging analysis of microstructural differences. Radiology, 2010, 254(3): 876-881.
[11]
Van Cauter S, Veraart J, Sijbers J, et al. Gliomas: diffusion.Kurtosis MR imaging in grading. Radiology, 2012, 263(2): 492-501.
[12]
Bisdas S, Koh TS, Roder C, et al. Intravoxel incoherent motion diffusion-weighted MR imaging of gliomas: feasibility of the method and initial results. Neuroradiology, 2013, 55(10): 1189-1196.
[13]
Hu YC, Yan LF, Wu L, et al. Intravoxel incoherent motion diffusion-weighted MR Imaging of gliomas: efficacy in preoperative grading. Sci Rep, 2014, 4(12): 7208.
[14]
Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med, 1971, 285(21): 1182-1186.
[15]
李玉超,王光斌,刘强,等.体素内不相干运动扩散加权成像在良性脑膜瘤中的初步研究.医学影像学杂志, 2014, 24(3): 461-464.
[16]
丁玖乐,邢伟,陈杰,等.肾透明细胞癌多b值DWI得单指数函数与双指数函数分析比较.磁共振成像, 2013, 4(4): 266-270.
[17]
王蕾,李斌,谢晟,等. 3.0 T磁共振脑转移瘤IVIM与MR灌注加权成像的相关性研究.医学影像学杂志, 2014, 24(3): 337-341.
[18]
Federau C, O’ Brien K, Meuli R, et al. Measuring Brain Perfusion With Intravoxel Incoherent Motion (IVIM): Initial Clinical Experience. J Magn Reson Imaging, 2014, 39(3): 624-632.
[19]
Suh CH, Kim HS, Lee SS, et al. Atypical Imaging Features of Primary Central Nervous System Lymphoma That Mimics Glioblastoma: Utility of Intravoxel Incoherent Motion MR Imaging. Radiology, 2014, 272(2): 504-513.
[20]
Koeller KK, Smirniotopoulos JG, Jones RV. Primary central nervous system lymphoma: radiologic-pathologiccorrelation. Radiographics, 1997, 17(6): 1497-1526.
[21]
Maeda M, Kawamura Y, Tamagawa Y, et al. Intravoxel incoherent motion (IVIM) MRI in intracranial, extraaxial tumors and cysts. J Comput Assist tomogr, 1992, 16(4): 514-518.
[22]
Farrell JA, Zhang J, Jones MV, et al. q-space and conventional diffusion imaging of axon and myelin damage in the rat spinal cord after axotomy. Magn Reson Med, 2010, 63(5): 1323-1335.
[23]
Jiang Q, Qu C, Chopp M, et al. MRI evaluation of axonal reorganization after bone marrow stromal cell treatment of traumatic brain injury. NMR Biomed, 2011, 24(9): 1119-1128.
[24]
Zhuo J, Xu S, Proctor JL, et al. Diffusion kurtosis as an in vivo imaging marker for reactiven astrogliosis in traumatic brain injury. Neuroimage, 2012, 59(1): 467-477.
[25]
Jensen JH, Falangola MF, Hu C, et al. Preliminary observations of increased diffusional kurtosis in human brain following recent cerebral infarction. NMR Biomed, 2011, 24(5): 452-457.
[26]
Cheung JS, Wang E, Lo EH, et al. Stratification of heterogeneous diffusion MRI ischemic lesion with kurtosis imaging-Evaluation of mean diffusion and kurtosis MRI mismatch in an animal model of transient focal ischemia. Stroke, 2012, 43(8): 2252-2254.
[27]
Hansen B, Lund TE, Sangill R, et al. Experimentally and computationally fast method for estimation of a mean kurtosis. Magn Reson Med, 2013, 69(6): 1754-1760.
[28]
Sun PZ, Wang Y, Mandeville E, et al. Validation of fast diffusion kurtosis MRI for imaging acute ischemia in a rodent model of stroke. NMR Biomed, 2014, 11(27): 1413-1418.
[29]
Neil JJ, Bosch CS, Ackerman JJ. An Evaluation of the Sensitivity of the Intravoxel Incoherent Motion (IVIM) Method of Blood Flow Measurement to Changes in Cerebral Blood Flow. Magn Reson Med, 1994, 32(1): 60-65.
[30]
Federau C, Sumer S, Becce F, et al. Intravoxel incoherent motion perfusion imaging in acute stroke: initial clinical experience. Neuroradiology, 2014, 56(8): 629-635.
[31]
Federau C, Maeder P, O’ Brien K, et al. Quantitative measurement of brain perfusion with intravoxel incoherent motion MR imaging. Radiology, 2012, 265(3): 874-881.
[32]
Helpern JA, Adisetiyo V, Falangola MF, et al. Preliminary Evidence of Altered Gray and White Matter Microstructural Development in the Frontal Lobe of Adolescents With Attention-Deficit Hyperactivity Disorder: A Diffusional Kurtosis Imaging Study. J Magn Reson Imaging, 2011, 33(1): 17-23.
[33]
Kamagata K, Tomiyama H, Hatano T, et al. A preliminary diffusional kurtosis imaging study of Parkinson disease: comparison with conventional diffusion tensor imaging. Functional Neuroradiology, 2014, 56(3): 251-258.
[34]
Lee CY, Tabesh A, Spampinato MV, et al. Diffusional kurtosis imaging reveals a distinctive pattern of microstrural alternations in idiopathic generalized epilepsy. Acta Neurol Scand, 2014, 130(3): 148-155.
[35]
Blockx I, De Groof G, Verhoye M, et al. Microstructural changes observed with DKI in a transgenic Huntington rat model: evidencefor abnormal neurodevelopme. Neuroimage, 2012, 59(2): 957-967.
[36]
Torre JC. Impaired cerebromicrovascular perfusion. Summary of evidence in support of its causality in Alzheimer’s disease. Ann N Y Acad Sci, 2000, 924(1): 136-152.
[37]
董栋,王新怡.磁共振体素内不相干运动在轻度认知功能障碍诊断中的意义.山东大学学报(医学版), 2014, 52(8): 68-71.

PREV Design and comparison of pulse sequence for detection of γ-aminobutyric acid using double quantum filter at 7 T MR spectroscopy
NEXT Pathophysiology and neuroimaging development of brain alterations in chronic mountain sickness
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn