Share:
Share this content in WeChat
X
Review
Application of SPIO and 19F probes in magnetic resonance imaging to track in vivo immune cells
YANG Hai-jie  FENG Pei  WANG Mian  FENG Zhi-wei 

DOI:10.3969/j.issn.1674-8034.2015.03.015.


[Abstract] The increasing confinement of in vivo imaging technologies, combined with the development of emerging cell therapies, has led a revolution in the field of immune cell tracking in vivo. With the rapid improvement of SPIO- and 19F-based probes, range of magnetic resonance imaging (MRI) application is broadened. For example, MRI technologies have been introduced to image-guided immune cell delivery, and he visualization of immune cell homing and implantation, inflammation, and cell physiology. MRI-based cell tracking technologies have been widely used to follow the fate of immune cells in vivo, or evaluate the effect of cell therapy in vivo. This review focuses on the application of SPIO and 19F probes in magnetic resonance imaging to track in vivo immune cells.
[Keywords] Immune cells;Magnetic resonance imaging;Contrast media

YANG Hai-jie Xinxiang Medical University, Henan Province, Xinxiang 453003, China

FENG Pei Xinxiang Medical University, Henan Province, Xinxiang 453003, China

WANG Mian Xinxiang Medical University, Henan Province, Xinxiang 453003, China

FENG Zhi-wei* Xinxiang Medical University, Henan Province, Xinxiang 453003, China

*Correspondence to: Feng ZW, E-mail: xxyxy_fzw@163.com

Conflicts of interest   None.

Received  2014-08-06
Accepted  2014-09-26
DOI: 10.3969/j.issn.1674-8034.2015.03.015
DOI:10.3969/j.issn.1674-8034.2015.03.015.

[1]
Ahrens ET, Bulte JW. Tracking immune cells in vivo using magnetic resonance imaging. Nat Rev Immunol, 2013, 13(10): 755-763.
[2]
崔辰,赵世华. MRI示踪技术在心梗干细胞移植治疗中的应用现状.磁共振成像, 2014, 5(3): 222-226.
[3]
尹媛媛,王宏,穆学涛. MRI在乳腺癌新辅助化疗疗效评估中的应用研究.磁共振成像, 2013, 4(6): 477-480.
[4]
Bousso P, Moreau HD. Functional immunoimaging: the revolution continues. Nature Rev Immunol, 2012, 12(12): 858-864.
[5]
Srinivas M, Boehm-Sturm P, Aswendt MP, et al. In vivo 19F MRI for cell tracking. J Vis Exp, 2013, 25(81): e50802.
[6]
Gorelik M, Orukari I, Wang J, et al. Use of MR cell tracking to evaluate targeting of glial precursor cells to inflammatory tissue by exploiting the very late antigen-4 docking receptor. Radiology, 2012, 265(1): 175-185.
[7]
Thu MS, Bryant LH, Coppola T, et al. Self-assembling nanocomplexes by combining ferumoxytol, heparin and protamine for cell tracking by magnetic resonance imaging. Nature Med, 2012, 18(3): 463-467.
[8]
Ahrens ET, Feili-Hariri M, Xu H, et al. Receptor-mediated endocytosis of iron-oxide particles provides efficient labeling of dendritic cells for in vivo MR imaging. Magn Reson Med, 2003, 49(6): 1006-1013.
[9]
Walczak P, Ruiz-Cabello J, Kedziorek DA, et al. Magnetoelectroporation: improved labeling of neural stem cells and leukocytes for cellular magnetic resonance imaging using a single FDA-approved agent. Nanomedcine, 2006, 2(2): 89-94.
[10]
Rohani R, de Chickera SN, Willert C, et al. In vivo cellular MRI of dendritic cell migration using micrometer-sized iron oxide (MPIO) particles. Imaging Biol, 2011, 13(4): 679-694.
[11]
Shapiro EM, Medford-Davis LN, Fahmy TM, et al. Antibody-mediated cell labeling of peripheral T cells with micron-sized iron oxide particles (MPIOs) allows single cell detection by MRI. Contrast Media Mol Imaging, 2007, 2(2): 147-153.
[12]
Verdijk P, Scheenen TW, Lesterhuis WJ, et al. Sensitivity of magnetic resonance imaging of dendritic cells for in vivo tracking of cellular cancer vaccines. Int J Cancern, 2007, 120(5): 978-984.
[13]
Sosnovik DE, Nahrendorf M. Cells and iron oxide nanoparticles on the move: magnetic resonance imaging of monocyte homing and myocardial inflammation in patients with ST-elevation myocardial infarction. Circ Cardiovasc Imaging, 2012, 5(5): 551-554.
[14]
Kooi ME, Cappendijk VC, Cleutjens KB, et al. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation, 2003, 107(19): 2453-2458.
[15]
Riess JG. Oxygen carriers ( "blood substitutes" ): raison d’etre, chemistry, and some physiology. Chem Rev, 2001, 101(9): 2797-2920.
[16]
Janjic JM, Ahrens ET. Fluorine-containing nanoemulsions for MRI cell tracking. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2009, 1(5): 492-501.
[17]
Srinivas M, Turner MS, Janjic JM, et al. In vivo cytometry of antigen-specific T cells using 19F MRI. Magn Reson Med, 2009, 62(3): 747-753.
[18]
Helfer BM, Balducci A, Nelson AD, et al. Functional assessment of human dendritic cells labeled for in vivo F-19 magnetic resonance imaging cell tracking. Cytotherapy, 2010, 12(2): 238-250.
[19]
Kadayakkara DK, Beatty PL, Turner MS, et al. Inflammation driven by overexpression of the hypoglycosylated abnormal mucin 1 (MUC1) links inflammatory bowel disease and pancreatitis. Pancreas, 2010, 39(4): 510-515.
[20]
Hertlein T, Sturm V, Kircher S, et al. Visualization of abscess formation in a murine thigh infection model of Staphylococcus aureus by F-19 magnetic resonance imaging (MRI). PLoS One, 2001, 6(3): e18246.
[21]
Hitchens TK, Ye Q, Eytan DF, et al. 19F MRI detection of acute allograft rejection with in vivo perfluorocarbon labeling of immune cells. Magn Reson Med, 2011, 65(4): 1144-1153.
[22]
Weise G, Basse-Luesebrink TC, Wessig C, et al. In vivo imaging of inflammation in the peripheral nervous system by 19F MRI. Exp Neurol, 2011, 229(2): 494-501.
[23]
Ebner B, Behm P, Jacoby C, et al. Early assessment of pulmonary inflammation by 19F MRI in vivo. Circ Cardiovasc Imaging, 2010, 3(2): 202-210.
[24]
Flogel U, Su S, Kreideweiss I, et al. Noninvasive detection of graft rejection by in vivo 19F MRI in the early stage. Am J Transplant, 2011, 11(2): 235-244.
[25]
Bulte JW. In vivo MRI cell tracking: clinical studies. AJR Am J Roentqenol. 2009, 193(2): 314-325.
[26]
Richards JM, Shaw CA, Lang NN, et al. Clinical cell tracking of mononuclear cells using magnetic resonance imaging and superparamagnetic particles of iron oxide. Circ Cardiovasc Imaging, 2012, 5(4): 509-517.
[27]
Keupp J, Rahmer J, Grässlin I, et al. Simultaneous dual-nuclei imaging for motion corrected detection and quantification of 19F imaging agents. Magn Reson Med, 2011, 66(4): 1116-1122.

PREV Advances in imaging of tumefactive demyelinating lesions
NEXT A review of the application of multiple MRI techniques in mild traumatic brain injury
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn