Share:
Share this content in WeChat
X
Overseas Papers
Principle and application of hyperpolarized magnetic resonance spectroscopy
QI Hai-yun  ZHANG Xiao-lu  XU Ya-fang  WEN Jian-guo  XU Yu-ming  CHENG Jing-liang  Chen Albert P.  Bertelsen Lotte Bonde  Ringgaard Steffen  Laustsen Christoffer  Stødkilde-Jørgensen Hans 

QI Hai-yun , ZHANG Xiao-lu and XU Ya-fang contributed equally to this article DOI:10.3969/j.issn.1674-8034.2015.12.001.


[Abstract] The polarization of nuclear spins can be enhanced above the thermal equilibrium polarization with dynamic nuclear polarization (DNP) to achieve signal-noise ratio improvement of greater than 10,000-fold in magnetic resonance, this technique is denoted "hyperpolarization"(HP). Dissolution DNP is allowed the enhanced sample to be transferred from the polarizer and injected in vivo, providing realtime measurement of perfusion, metabolite transport, and metabolism, which break the constraint of traditional magnetic resonance in detecting cellular metabolism in real time in vivo. The definition and introduction to the DNP technique, hyperpolarized bio-probes and applications, and analysis and interpretation of results from magnetic resonance images/spectroscope in pre-clinical and clinical areas were reviewed.
[Keywords] Hyperpolarization;Dynamic nuclear polarization;Bio-probes;Bio-reactor;Magnetic resonance spectroscopy;Magnetic resonance imaging

QI Hai-yun MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark

ZHANG Xiao-lu MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark

XU Ya-fang MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark

WEN Jian-guo The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 China

XU Yu-ming The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 China

CHENG Jing-liang The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 China

Chen Albert P. GE Healthcare, Toronto Canada

Bertelsen Lotte Bonde MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark

Ringgaard Steffen MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark

Laustsen Christoffer MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark

Stødkilde-Jørgensen Hans* MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark

*Correspondence to: Hans Stødkilde-Jørgensen, E-mail: hsj@mr.au.dk

Conflicts of interest   None.

Received  2015-09-07
Accepted  2015-11-02
DOI: 10.3969/j.issn.1674-8034.2015.12.001
QI Hai-yun , ZHANG Xiao-lu and XU Ya-fang contributed equally to this article DOI:10.3969/j.issn.1674-8034.2015.12.001.

[1]
程敬亮,杨涛.磁共振成像在脑胶质瘤中的应用及进展.磁共振成像, 2014, 5(S1): 62-67.
[2]
姜亮,刘文,肖朝勇,等.探讨1H-MRS定量分析在脑实质区胶质瘤分级中的诊断价值.磁共振成像, 2015, 6(1): 15-20.
[3]
Overhauser AW. Polarization of nuclei in metals. Phys Rev, 1953, 92(2): 411-415.
[4]
Ardenkjaer-Larsen JH, Fridlund B, Gram A, et al. Increase in signal-to-noise ratio of>10000 times in liquid-state NMR. Proc Natl Acad Sci USA, 2003, 100(18): 10158-10163.
[5]
Hurd RE, Yen YF, Chen A, et al. Hyperpolarized 13C metabolic imaging using dissolution dynamic nuclear polarization. J Magn Reson Imag, 2012, 36(6): 1314-1328.
[6]
Gallagher FA, Kettunen MI, Brindle KM. Biomedical applications of hyperpolarized 13C magnetic resonance imaging. Prog Nucl Magn Reson Spectrosc2009, 55(4): 285-295.
[7]
Comment A, Merritt ME. Hyperpolarized magnetic resonance as a sensitive detector of metabolic function. Biochemistry, 2014, 53(47): 7333-7357.
[8]
Meier S, Jensen PR, Karlsson M, et al. Hyperpolarized NMR probes for biological assays. Sensors (Basel), 2014, 14(1): 1576-1597.
[9]
Keshari KR, Wilson DM. Chemistry and biochemistry of 13C hyperpolarized magnetic resonance using dynamic nuclear polarization. Chem Soc Rev, 2014, 43(5): 1627-1659.
[10]
Kurhanewicz J, Vigneron DB. Advances in MR spectroscopy of the prostate. Magn Reson Imaging Clin N Am, 2008, 16(4): 697-710.
[11]
Nelson SJ, Graves E, Pirzkall A, et al. In vivo molecular imaging for planning radiation therapy of gliomas: an application of 1H MRSI. J MagnReson Imaging, 2002, 16(4): 464-476.
[12]
Sardanelli F, Fausto A, Podo F. MR spectroscopy of the breast. Magnetic Resonance Imaging Clinics of North America, 1994, 2(4): 691-703.
[13]
Nelson SJ, Kurhanewicz J, Vigneron DB, et al. Metabolic imaging of patients with prostate cancer using hyperpolarized [1-13C]pyruvate. SciTransl Med. 2013, 5(198): 108.
[14]
Laustsen C, Hansen ES, Kjaergaard U, et al. Acute porcine renal metabolic effect of endogastric soft drink administration assessed with hyperpolarized [1-(13)C]pyruvate. Magn Reson Med, 2015, 74(2): 558-563.
[15]
Ardenkjaer-Larsen JH, Leach AM, Clarke N, et al. Dynamic nuclear polarization polarizer for sterile use intent. NMR Biomed, 2011, 24(8): 927-932.
[16]
Golman K, Zandt RI, Lerche M, et al. Metabolic imaging by hyperpolarized 13C magnetic resonance imaging for in vivo tumor diagnosis. Cancer Res, 2006, 66(22): 10855-10860.
[17]
Park I, Larson PE, Zierhut ML, et al. Hyperpolarized 13C magnetic resonance metabolic imaging: application to brain tumors. Neuro-oncology, 2010, 12(2): 133-144.
[18]
Albers MJ, Robert B, Chen AP. Hyperpolarized 13C lactate, pyruvate, and alanine: noninvasive biomarkers for prostate cancer detection and grading. Cancer Res, 2008, 68(20): 8607-8615.
[19]
Zierhut ML, Yen YF, Chen AP, et al. Kinetic modeling of hyperpolarized 13C1-pyruvate metabolism in normal rats and TRAMP mice. J MagnReson, 2010, 202(1): 85-92.
[20]
Day SE, Kettunen MI, Krishna MC, et al. Detecting response of rat C6 glioma tumors to radiotherapy using hyperpolarized [1-13C]pyruvate and 13C magnetic resonance spectroscopic imaging. MagnReson Med, 2011, 65(2): 557-563.
[21]
Kanamaru H, Oyama N, Akino H, et al. Evaluation of prostate cancer using FDG-PET. Hinyokika Kiyo, 2000, 46(11): 851-853.
[22]
Ward CS, Venkatesh HS, Chaumeil MM, et al. Noninvasive detection of target modulation following phosphatidylinositol 3-kinase inhibition using hyperpolarized 13C magnetic resonance spectroscopy. Cancer Res, 2010, 70(4): 1296-1305.
[23]
Keshari KR, Sriram R, Koelsch BL, et al. Hyperpolarized 13C-pyruvate magnetic resonance reveals rapid lactate export in metastatic renal cell carcinomas. Cancer Res, 2013, 73(2): 529-538.
[24]
Keshari KR, Sriram R, Van Criekinge M, et al. Metabolic reprogramming and validation of hyperpolarized 13C lactate as a prostate cancer biomarker using ahuman prostate tissue slice culture bioreactor. Prostate, 2013, 73(11): 1171-1181.
[25]
Gallagher FA, Kettunen MI, Hu DE, et al. Production of hyperpolarized [1,4-13C2]malate from [1,4-13C2]fumarate is a marker of cell necrosis and treatment response in tumors. Proc Natl AcadSci U S A, 2009, 106(47): 19801-19806.
[26]
Witney TH, Kettunen MI, Hu DE, et al. Detecting treatment response in a model of human breast adenocarcinoma using hyperpolarised [1-13C]pyruvate and [1,4-13C2]fumarate. Br J Cancer, 2010, 103(9): 1400-1406.
[27]
Bohndiek SE, Kettunen MI, Hu DE, et al. Detecting tumor response to a vascular disrupting agent using hyperpolarized 13C magnetic resonance spectroscopy. Mol Cancer Ther, 2010, 9(12): 3278-3288.
[28]
Gallagher FA, Kettunen MI, Day SE, et al. Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled biocarbonate. Nature, 2008, 453(7197): 940-943.
[29]
Karlsson M, Jensen PR, in't Zandt R, et al. Imaging of branched chain amino acid metabolism in tumors with hyperpolarized 13C ketoisocaproate. Int J Cancer, 2010, 127(3): 729-736.
[30]
Gallagher FA, Kettunen MI, Day SE, et al. 13C MR spectroscopy measurements of glutaminase activity in human hepatocellular carcinoma cells using hyperpolarized 13C-labeled glutamine. Magn Reson Med, 2008, 60(2): 253-257.
[31]
Hansell P, Welch WJ, Blantz RC, et al. Determinants of kidney oxygen consumption and their relationship to tissue oxygen tension in diabetes and hypertension. ClinExpPharmacol Physiol, 2013, 40(2): 123-137.
[32]
Laustsen C, Østergaard JA, Lauritzen MH, et al. Assessment of early diabetic renal changes with hyperpolarized [1-13C]pyruvate. Diabetes Metab Res Rev, 2013, 29(2): 125-129.
[33]
Christoffer L, Lycke S, Palm F, et al. High altitude may alter oxygen availability and renal metabolism in diabetics as measured by hyperpolarized [1-13C]pyruvate magnetic resonance imaging. Kidney Int, 2014, 86(1): 67-74.
[34]
Hochman ME, Watt JP, Reid R, et al. The prevalence and incidence of end-stage renal disease in Native American adults on the Navajo reservation. Kidney Int, 2007, 71(9): 931-937.
[35]
Laustsen C, Lipsø K, Ostergaard JA, et al. Insufficient insulin administration to diabetic rats increases substrate utilization and maintains lactate production in the kidney. Physiol Rep, 2014, 2(12): 12233.
[36]
Lee P, Leong W, Tan T, et al. In vivo hyperpolarized carbon-13 magnetic resonance spectroscopy reveals increased pyruvate carboxylase flux in an insulin-resistant mouse model. Hepatology, 2013, 57(2): 515-524.
[37]
Malloy CR, Merritt ME, Sherry AD. Could 13C MRI assist clinical decision-making for patients with heart disease?. NMR Biomed, 2011, 24(8): 973-979.
[38]
Dodd MS, Atherton HJ, Carr CA, et al. Impaired in vivo mitochondrial Krebs cycle activity after myocardial infarction assessed using hyperpolarized magnetic resonance spectroscopy. CircCardiovasc Imaging, 2014, 7(6): 895-904.
[39]
Rider OJ, Tyler DJ. Clinical implications of cardiac hyperpolarized magnetic resonance imaging. J Cardiovasc Magn Reson, 2013, 15(20): 93.
[40]
Hurd RE, Yen YF, Mayer D, et al. Metabolic imaging in the anesthetized rat brain using hyperpolarized (1-13C) pyruvate and (1-13C) ethyl pyruvate.Magn Reson Med, 2010, 63(5): 1137-1143.
[41]
Day SE, Kettunen MI, Gallagher FA, et al. Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy. Nat Med, 2007, 13(11): 1382-1387.
[42]
Dafni H, Larson PE, Hu S, et al. Hyperpolarized 13C spectroscopic imaging informs on hypoxiainducible factor-1 and myc activity downstream of platelet-derived growth factor receptor. Cancer Res, 2010, 70(19): 7400-7410.

PREV Progress of brain functional magnetic resonance imaging in pain
NEXT Altered gray matter volume in primary trigeminal neuralgia: a voxel based morphometry MRI study
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn