分享:
分享到微信朋友圈
X
技术研究
肾脏磁共振梯度多回波-R2*成像可行性研究
黄海波 黄桂雄 陈毓秀 李大创 孙熙勇 管俊 覃明

黄海波,黄桂雄,陈毓秀,等.肾脏磁共振梯度多回波-R2*成像可行性研究.磁共振成像, 2016, 7(1): 62-67. DOI:10.12015/issn.1674-8034.2016.01.012.


[摘要] 目的 探讨磁共振肾脏梯度多回波R2*成像可行性。材料与方法 应用3.0 T MR系统梯度多回波序列,分别扫描专用水模(含氯化锰盐酸混合液小瓶15只)、原位正常肾51例(A组)和移植正常肾22例(B组)志愿者,次月重复扫描专用水模、原位正常肾组,原始DICOM数据导入CMRtools软件测算获得水模各小瓶及肾皮髓质R2*值。结果 水模R2*与其浓度直线相关(r=0.999,P=0.000),通过直线回归分析,得到R2*与PhC拟合直线斜率为0.008,截距为-0.050。实际与预测水模浓度组内相关系数(ICC)为0.999,重复扫描水模R2*ICC为1,重复扫描水模R2*差值与总体0比较无统计学意义(P>0.05 )。原位和移植肾组间性别与年龄无统计学意义(P>0.05);原位肾双侧R2*无统计学差异(P>0.05);原位肾皮髓质重复测量R2*ICC分别为0.847和0.915,差值与总体0无统计学意义(P>0.05)。移植与原位正常肾R2*无统计学差异(P>0.05),肾髓质R2*显著高于皮质,差异有统计学意义(P <0.05)。结论 磁共振梯度多回波R2*成像评价肾氧合状态具有可行性,可为更多肾脏R2*成像推广应用提供依据。
[Abstract] Objective: To explore the feasibility of multiple-echo GRE-R2* to renals at 3.0 T MRI.Materials and Methods: A MR phantom which includes fifteen vials containing 0.2—3.2 mmol/L manganese chloride in hydrochloric acid solution, 51 healthy vonlunteers (Group A) with kidneys in-situ and 22 normal renals (Group B) transplanted were scanned by 3.0 T MRI, repeated protocols to the phantom and group A with kidneys in-situ one month later. Both phantom and in-vivo renals R2* were quantified by a well-trained physician using a CMR tools after MRI.Results: Phantom R2* was linearly correlated with its concentration in vials (r=0.999, P=0.000). Through the regressions procedure,a slope of 0.008 and an intercept of -0.050 were found. No statistic differences were found for R2* value between the first and second scanning on phantom (P>0.05), The real and predicted concentration of phantom, R2* repeated scanning on phantom have a highly reliability respectively (ICCconcentration=1, ICCR2*=0.999). No statistic differences were found for gender and age between group A and B(P>0.05). No statistic differences were found for the cortical and medullary R2* between left and right renal (P>0.05). No statistic differences were found for kidneys R2* in group A between the first and second scanning (P>0.05), It showed a well reliability respectively (ICCcortex= 0.847, ICCmedullation= 0.915). No statistic differences were found for renal R2* between group A and B (P>0.05). However, renal R2* was dramatically higher in medullation than in cortex and there was statistic difference (P<0.05).Conclusions: With CMRtools, multiple-echo GRE protocol is feasible for evaluating oxygenation in kidneys at 3.0 T MRI, it could provide a reliable evidence for clinic application to renals.
[关键词] 肾脏;磁共振成像;诊断技术和方法
[Keywords] Kidney;Magnetic resonance imaging;Diagnostic techniques and procedures

黄海波 解放军第303医院影像科,南宁,530021

黄桂雄* 解放军第303医院影像科,南宁,530021

陈毓秀 武警陕西总队医院MR室,西安,710054

李大创 解放军第303医院影像科,南宁,530021

孙熙勇 解放军第303医院移植科,南宁,530021

管俊 解放军第303医院影像科,南宁,530021

覃明 解放军第303医院影像科,南宁,530021

通讯作者:黄桂雄,E-mail: 303hgx@163.com


基金项目: 广西科学研究与技术开发计划项目 编号:桂科攻1298003-8-6
收稿日期:2015-09-28
接受日期:2015-11-09
中图分类号:R445.2; R692 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2016.01.012
黄海波,黄桂雄,陈毓秀,等.肾脏磁共振梯度多回波-R2*成像可行性研究.磁共振成像, 2016, 7(1): 62-67. DOI:10.12015/issn.1674-8034.2016.01.012.

       肾实质氧合状态在肾疾病发生、发展中具有重要作用,Pedersen等[1]和Neugarten等[2]运用微电极的方法证实R2*与肾内氧分压具有良好一致性即R2*增高代表脱氧血红蛋白或脱氧/含氧血红蛋白比例增加,是直接测量肾脏氧分压的方法,但因创伤较大不适用于活体肾。而血氧水平依赖磁共振功能成像(blood oxygenation level-dependent magnetic resonance functional imaging,BOLD-fMRI)是利用内源性脱氧血红蛋白引起局部微观磁场不均匀、改变质子自旋去相位而导致表观自旋-自旋弛豫率(R2*=1000/T2*)变化的一种无创性氧代谢评价的MR技术[3],1996年Prasad等[4]首先将其应用于肾脏以来,BOLD fMRI信号强度与肾组织氧合关系通过氧敏感光纤探针直接测量组织氧分压已得到证实[2],目前不断进展的缺血性肾损伤、肿瘤、糖尿病、肾移植等研究[5,6,7,8,9]认为BOLD-MRI评价氧代谢具有重要作用。然而BOLD-MRI因需专用序列与特殊软件仅限于少数科研机构才能实施,笔者拟通过调整梯度多回波序列扫描水模与人活体肾脏,应用软件CMRtools测算R2*,探索弛豫率成像评价肾氧合状态可行性。

1 材料与方法

1.1 资料

       专用的标准水模(澳大利亚Ferriscan公司提供)一个,内含有浓度(0.2~3.2) mmol/L氯化锰盐酸溶液小瓶15只。

       选取我院2012年3月至2014年5月申请肾扫描原位正常肾51例(A组,男35例、女16例,年龄18~55岁,平均34.9±10.9岁)和移植正常肾22例(B组,男16例、女6例,年龄16~57岁,平均35.9±11.4岁)为志愿者入组研究。分组标准:禁水12 h,排除已知可改变肾氧合状态药物(襟利尿剂、乙酰唑胺、碘对比剂、一氧化氮合成酶抑制剂等)近期使用及原继发性血色病外,原位肾尚满足无相关临床症状,血肌酐、尿素氮及超声无阳性指征;髂窝移植正常肾满足术后2周至6个月,余标准同原位肾。研究实验获我院伦理委员会批准,志愿者知情并签署同意书。

1.2 设备与方法

       Philips Achieva 3.0 T TX MR扫描仪,扫描前水模静置磁体室2 h以上。水模扫描应用SENSE HEAD 8 coils,肾扫描使用SENSE XL TORSO 16 coils配合呼吸门控,扫描前严格匀场和(或)参考扫描,梯度多回波_R2*成像参数设置:TR 200 ms,FA= 20°,层数= 1,水模序列为TE (ms)= 1.2/2.1/3.1/4.0/5.0/5.9/6.9/8.6/9.7/10.6/11.6,肾序列为TE(ms)= 9.2/13.2/17.2/21.2/25.2/29.2/33.2/37.2/41.2/45.2/49.2/53.2,肾R2*成像(呼气末屏气)扫描冠状及横断位,扫描前常规横断与冠状位T1WI、T2WI成像并以此参考确定肾门区,详细序列设置见表1,完成扫描保存原始数据。

表1  肾脏扫描序列参数设置(冠状面+横轴面)
Tab. 1  Protocol parameters for renal coronal&transverse scanning

1.3 数据处理

       水模、肾扫描DICOM数据由受过良好培训医师使用CMRtools软件处理获得R2*值。水模ROI位于小瓶内,肾脏测量选择冠状位皮髓质对比良好梯度回波像,取5~10个ROI (10~20 mm2)且避开伪影,取三次测量平均值,软件自动计算T2*或R2*值(R2*=1000/T2*)。

1.4 统计学

       计量资料以均数和标准差( ± s)及范围表示,应用SPSS 16.0分析水模R2*与其浓度(PhC)相关性(Pearson/Regression/P-P),水模实际与预测浓度一致性(Reliab ility-ICC),水模小瓶和原位肾两次扫描R2*间差异(Paired-Samples t-test)及一致性(Reliability-ICC),原位与移植正常肾组间性别(χ2 test)、年龄(Independent-Samples t-test)差异,原位正常肾双侧R2*、两组肾R2*差异性(Independent-Samples t-test),P<0.05为有统计学意义。

2 结果

2.1 水模及原位右肾皮髓质R2*测量结果

       水模小瓶Mncl2浓度为1.41±0.95 (0.20~3.20) mmol/L,两次扫描测量R2*表2,水模R2*与其浓度呈直线相关(r=0.999 ,P=0.000),拟合直线斜率为0.008,截距为-0.05,建议回归方程PhC=0.008 R2*-0.05,R2=0.998 (F=4899.247,P=0.000),预测浓度为1.41±0.95 (0.21~3.15) mmol/L,与实际浓度高度一致(ICC= 0.999),重复扫描R2*高度一致(ICC= 1),差值均数与总体0比较无统计学意义(P>0.05),如图1图2

图1  为水模首次和重复扫描CMRtools测量图。首次(A)与1个月后(B) R2* (1000/T2*)分别为146.4 Hz与144.7 Hz,波动小于4%,说明重复性高
图2  为水模小瓶R2*与PhC间散点图。实线为两者间拟合直线,虚线为95% CI
图3,4  为原位肾首次与重复扫描、移植肾CMRtools处理图与R2* (Hz)值。原位肾首次扫描(图3A~D)左右皮髓质分别为17.43、27.78、17.66、26.23;重复扫描右肾结果(图3E, F)分别为18.88、27.59;移植肾皮髓质(图4A,B)分别为17.75、26.90。原位肾双侧、重复扫描、移植肾与原位肾间比较均无明显差异,肾重复扫描波动小于7%,由此可见,扫描序列具有很好重复性
Fig. 1  Model R2* (1000/T2*) of the first and repeated measured by CMRtools were 146.8 Hz (A) and 158.4 Hz (B) respectively, it follows that model R2* fluctuation was below 2% and has a dramatically highly reliability.
Fig.2  Scatter plots of R2* against PhC with the linear fit (solid line) and the 95% CI (dashed line).
Fig. 3, 4  Measured by CMRtools, the cortical and medullary R2* (Hz) on left and right kidney in-situ were 17.43 (Fig.3A), 27.78 (Fig.3B), 17.66 (Fig.3C), 26.23 (Fig.3D) for the first quantitative respectively, the repeated after one month were 18.88 (Fig.3E), 27.59 (Fig.3F) respectively. while the transplanted were 17.75 (Fig.4A), 26.90 (Fig.4B) respectively. No statistic differences were found for R2* not only between both side kidneys in-situ, the repeated scanning, but the transplanted and in-situ renals as well. It follows that renal R2* fluctuation was below 7% and therefore with CMRtools, the protocol has a high reliability.
表2  水模及原位右肾皮髓质R2*重复测量表(Hz)
Tab. 2  R2* values repeated of phantom and right renal cortex & medullation (Hz)

2.2 原位肾和移植肾组R2*测量结果

       原位肾和移植肾组间性别与年龄无统计学意义(χ2性别= 0.123,t年龄= 0.342,P性别/年龄= 0.726/0.734);原位左肾皮髓质R2*分别为17.70±0.66(16.26~19.26) Hz、29.88±2.42 (25.77~38.59) Hz,原位右肾两次扫描R2*表2,双侧比较无统计学差异(t皮质/髓质=-0.539/-0.786 ,P皮质/髓质=0.591/0.434),髓质R2*明显高于皮质,皮髓质差值(11.82± 3.21) Hz与总体0差异有统计学意义(t= 26.275 ,P=0.000);右肾两次扫描R2*差值均数与总体0无统计学意义(P >0.05)并具有高度一致性(ICC皮质/髓质=0.847/0.915;移植肾皮髓质R2*分别为17.85±0.99(16.08~19.43) Hz、29.75±3.35 (25.77~41.19) Hz,与原位右肾无统计学差异(t皮质/髓质=-0.972/-0.370,P皮质/髓质=0.334/0.712)(图3图4)。

3 讨论

       肾脏血流量约占心输出量1/4,约90%供应分布于皮质,仅约10%供应髓质[10],皮质氧分压约50 mm Hg (1 mm Hg= 0.133 kPa),而髓质仅为10~20 mm Hg,肾髓质低氧合、高负荷特点使BOLD MRI评价肾氧合状态成为理想手段并已经实验研究肯定[11,12]。梯度多回波_R2*与BOLD_R2*成像具有相同原理,为多回波稳态自由进动(SSFP)采集信号,反映脱氧血红蛋白、含铁血黄素、Mn元素等顺磁性物质周围局部磁场不均匀性增加、质子加速失相而产生自旋-自旋弛豫(T2*)或弛豫率(R2*)变化的MRI序列[3]。CMRtools是一种开源软件,可通过网络下载或少量付费获得,主要应用于原发血色病、地中海贫血、镰状细胞病等铁沉积MR定量检测,软件实用与有效性已在肝脏、心肌等铁沉积临床与动物实验中证实且在一定范围内有替代活检趋势[13,14,15]

       研究按顺磁性物质特点设置标准水模与活体肾脏扫描两种梯度多回波序列(回波数=12):水模Mncl2浓度较高应用TEmin/max=1.2 ms/11.7 ms,回波间隙0.9 ms,而肾脏脱氧血红蛋白含量相对很小使用TEmin/max= 9.2 ms/53.2 ms,回波间隙为4.0 ms,扫描R2*(1000/T2*)数据全部应用CMRtools测算。实验结果显示:水模与肾扫描T2*原始图像基本满足定量评价,拟合曲线R2均大于0.99(图1图3图4),证明数据结果具有很高可信度。水模R2*与其小瓶内Mncl2浓度(PhC)直线相关(r= 0.999),这与龙莉玲等[16]的研究高度一致(图2)。直线回归方程斜率与截距分别为0.008和-0.050,决定系数R2=0.998,方程预测与实际Mncl2浓度(ICC=0.999)、重复扫描R2* (ICC=1.0)均具有高度一致性。双侧原位肾皮质-皮质、髓质-髓质间无显著性差异,这是重复扫描仅评价右肾重复性和移植肾只与右肾比较的基础与依据,肾重复扫描皮髓质R2*具有良好一致性(ICC皮质/髓质=0.847/0.915),同时原位与正常移植肾R2*亦未见明显差异,但肾髓质R2*明显高于皮质,这与多数BOLD-R2*研究报道[17,18,19,20]基本一致且高于1.5 T MR报道定量数据[21,22],文献[23]认为,髓质PaO2<40 mm Hg,其氧含量轻微变动即会引起脱氧血红蛋白浓度或脱氧/氧合血红蛋白比例很大变化,而皮质(PaO2>50 mm Hg)血红蛋白处于解离曲线上段,氧含量轻微变化不会以髓质相似程度影响脱氧血红蛋白浓度,本研究实验足于反映肾皮髓质脱氧血红蛋白的分布特点。说明通过CMRtools数据处理,梯度多回波-R2*成像可满足原位肾、髂窝移植肾临床应用要求,具备肾脏氧含量评价科学性、可行性与创新性,笔者推荐可在未装备高级扫描序列与专业软件的高场强磁共振上推广应用。

       笔者分析原始图像及软件发现,正常肾图像质量良好、皮髓质分界(Cortico-medullary differentiation,CMD)随回波延长逐渐对比清晰,第八个回波37.2 ms时可获得良好CMD以定位肾皮髓质区放置ROI,这正好与正常髓质横向弛豫T2*值接近。部分原位左肾、髂窝移植肾出现的轻微磁敏感伪影在一定程度上影响整体肾脏评价,原因可能为与右肾相比,左肾、移植肾更毗邻肠道,而肠道气体与肾脏磁敏感性差异增大所致,通过轴位成像以及减少肠道气体可减轻或抑制该伪影。此外,笔者还发现CMRtools只能依赖灰阶对比而无法提供伪彩图辅助定位皮髓质,同时软件不能拆分不同层面多回波图像导致序列每次屏气仅采集一层,多层扫描则需多次定位、重复序列执行,这必然延长扫描时间、降低严重患者依从性,此外单层扫描可能会导致双侧评估一致性降低,因为通过一侧肾门的定位可能会在对侧前后偏离、重叠部分皮质导致部分容积效应,这有可能引起左右肾测量误差加大。

       综上所述,笔者首次以CMRtools处理梯度多回波扫描R2*数据,并首次以标准水模监测磁场均匀性,评价活体肾不同时间扫描的重复可信度,实验具有创新性、科学性和实用性,结果与BOLD R2*成像基本一致。研究不足之处在于:未能实现不同型号或厂商的3.0 T与3.0 T及3.0 T与1.5 T或其他场强磁共振系统对比研究,对弥漫性、局灶性肾脏病变表现及碘对比剂影响等还有等于进一步探索;此外,原位肾及移植肾难于在活体任意获得组织学金标准,在一定程度上部分影响方法学的可靠性,还需要未来进一步动物实验研究。

[1]
Pedersen M, Dissing TH, Morkenborg J, et al. Validation of quantitative BOLD MRI measurements in kidney: application to unilateral ureteral obstruction. Kidney Int, 2005, 67(6): 2305-2312.
[2]
Neugarten J. Renal BOLD-MRI and assessment for renal hypoxia. Kidney Int, 2012, 81(7): 613-614.
[3]
Yang ZH, Feng F, Wang XY. A guide to technique of magnetic resonance imaging. Beijing: People’s Military Medical Press, 2014: 11.
杨正汉, 冯逢, 王霄英, DOI: . 磁共振成像技术指南. 北京: 人民军医出版社, 2014: 11.
[4]
Prasad PV, Edelman RR, Epstein FH. Noninvasive evaluation of intrarenal oxygenation with BOLD MRI. Circulation, 1996, 94(12): 3271-3275.
[5]
Gloviczki ML, Saad A, Textor SC. Blood oxygen level-dependent (BOLD) MRI analysis in atherosclerotic renalartery stenosis. Curr Opin Nephrol Hypertens, 2013, 22(5): 519-524.
[6]
Zhang XD, Mi R, Wang J, et al. Feasibility of non-invasively quantitative measurements of intrarenal oxygen extraction fraction (OEF) in rabbit with unilateral renal artery stenosis using MRI. Radiol Pract, 2015, 30(5): 519-524.
张晓东, 米悦, 王晶, 等. 基于MRI技术定量测量单侧肾动脉狭窄动物模型肾脏氧摄取分数的初步研究. 放射学实践, 2015, 30(5): 519-524.
[7]
Zhang YY, Xu RT, Liu Y, et al. BOLD MRI in the evaluation of oxygenation level in renal cell carcinoma and adjacent renal tissue. Chin J Med Imaging Technol, 2012, 28(4): 756-759.
张莹莹, 徐荣天, 刘屹, 等. BOLD MRI分析肾癌及癌旁肾组织氧合状况. 中国医学影像技术, 2012, 28(4): 756-759.
[8]
Jiang ZX, Wang Y, Ding JL, et al. Assessment of renal injury in diabetic nephropathy using blood oxygenation level-depentent MRI. Chin J Magn Reson Imaging, 2015, 6 (7): 524-528.
蒋振兴, 王毓, 丁玖乐, 等. 血氧水平依赖MRI评估糖尿病肾病肾功能损伤的研究. 磁共振成像, 2015, 6(7): 524-528.
[9]
Djamali A, Sadowski EA, Samaniego-Picota M, et al. Noninvasive assessment of early kidney allograft dysfunction by blood oxygen level-dependent magnetic resonance imaging. Transplantation, 2006, 82(5): 621-628.
[10]
Chou SY, Porush JG, Faubert PF. Renal medullary circulation: hormonal control. Kidney Int, 1990, 37(1): 1-13.
[11]
Prasad PV. Evaluation of intra-renal oxygenation by BOLD MRI. Nephron Clin Pract, 2006, 103(2): C58-C65.
[12]
Farman N, Corthesy-Theulaz I, Bonvalet JP, et al. Localization of alpha-isoforms of Na+-K+-ATP ase in rat kidney by in situ hybridization. Am J Physiol, 1991, 260(3Pt 1): C468-C474.
[13]
Wu XD, Jing YF, Pei FY, et al. Value of magnetic resonance imaging T2* tests in detecting heart and liver iron overload in patients with β-thalassemia major. J South Med Univ, 2013, 33(2): 249-252.
吴学东, 井远方, 裴夫瑜, 等. 磁共振成像(T2*)检测重型地中海贫血患者心脏、肝脏铁负荷及其临床意义. 南方医科大学学报, 2013, 33(2): 249-252.
[14]
Huang L, Han R, Li ZW, et al. Quantitative assessment of iron load in myocardial overload rabbit model: preliminary study of MRI T2* map. Chin J Radiol, 2014, 48(3): 236-240.
黄璐, 韩瑞, 李志伟, 等. MRI有效驰豫时间图对兔心肌铁超负荷模型铁负荷定量的初步研究.中华放射学杂志, 2014, 48(3): 236-240.
[15]
Huang HB, Zhou YL, Li ZZ, et al. Feasibility of multiple-echo GRE with parameters optimized protocol at 3.0 T MRI. Chin J Magn Reson Imaging, 2015, 6(7): 529-534.
黄海波, 周亚丽, 李致忠, 等. 前瞻性3.0 T MRI梯度多回波序列参数优化可行性研究. 磁共振成像, 2015, 6(7): 529-534.
[16]
Long LL, Peng P, Huang ZK, et al. Liver iron quantification by 3.0 T MRI: calibration on a rabbit model. Chin J Magn Reson Imaging, 2012, 3(6): 451-455.
龙莉玲, 彭鹏, 黄仲奎, 等. 铁超负荷兔模型3.0 T MRI定量肝铁沉积可行性研究. 磁共振成像, 2012, 3(6): 451-455.
[17]
Wang DL, Zhou J, Li HQ, et al. Assessment of BOLD MRI to renal oxygenation. Zhejiang Clin Med J, 2014, 16(10): 1565-1568.
王大丽, 周健, 李清海. 肾脏缺氧的血氧水平依赖性磁共振成像评估. 浙江临床医学, 2014, 16(10): 1565-1568.
[18]
Shi HL, Zheng ZF, Ma H, et al. Blood oxygen level dependent MRI of normal kidney and its correlation with physiological indexes. Tianjin Med J, 2014, 42(6): 619-621.
石会兰, 郑振峰, 马慧, 等. 正常肾脏血氧依赖磁共振成像特点及与生理指标相关性研究. 天津医药, 2014, 42(6): 619-621.
[19]
Liu JH, Liu AL, Ning DX, et al. Blood oxygen level dependent MRI in kidney of healthy volunteers:comparison between 1.5 T and 3.0 T MRI. Biom Engin Clin Med, 2011, 15(3): 251-253.
刘静红, 刘爱连, 宁殿秀, 等. 正常志愿者肾脏血氧水平依赖MRI-1.5 T与3.0 T MRI对比.生物医学工程与临床, 2011, 15(3): 251-253.
[20]
Tumkur S, Vu A, Li L, et al. Evaluation of intrarenal oxygenation at 3.0 T using 3-dimensional multiple gradient-recalled echo sequence. Invest Radiol, 2006, 41(2): 81-184.
[21]
Xu XQ, Li X, Lin XZ, et al. Clinical application of blood oxygenation level-dependent MR imaging of kidney: a preliminary Study. J Diagn Concepts Pract, 2012, 11(2): 136-140.
徐学勤, 李晓, 林晓珠, 等. 肾脏血氧水平依赖MRI的初步应用. 诊断学理论与实践, 2012, 11(2):136-140.
[22]
Xin LP, Xie JX, Liu JY, et al. A preliminary study of blood oxygen-level dependent MRI in patients with chronic kidney disease. Magn Reson Imaging, 2012, 30(3): 330-335.
[23]
Wu G, Yu YQ, Qing YF. Principle and research progress of BOLD functional magnetic resonance imaging of kidney. Int Med Radiol, 2010, 33(4): 336-339.
吴刚, 余永强, 钱银锋. 肾脏BOLD功能磁共振成像基本原理与研究进展. 国际医学放射学杂志, 2010, 33(4): 336-339.

上一篇 扩散加权MRI活体评价外源野生型P53逆转SW480/5-FU人类结肠癌效果
下一篇 伴发原始三叉动脉及动脉瘤的阿尔茨海默病一例
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2