分享:
分享到微信朋友圈
X
临床研究
利用肿瘤全域表观扩散系数信号强度直方图鉴别Ⅱ级与Ⅲ级胶质瘤
刘杨颖秋 尚劲 田诗云 宋清伟 黄宁 郭妍 苗延巍

刘杨颖秋,尚劲,田诗云,等.利用肿瘤全域表观扩散系数信号强度直方图鉴别Ⅱ级与Ⅲ级胶质瘤.磁共振成像, 2017, 8(4): 276-282. DOI:10.12015/issn.1674-8034.2017.04.008.


[摘要] 目的 评估基于肿瘤全域的表观扩散系数(apparent diffusion coefficient,ADC)信号强度直方图对于鉴别世界卫生组织(World Health Organization,WHO)Ⅱ级与Ⅲ级胶质瘤的价值,并探求二者之间鉴别诊断的影像标志物。材料与方法 回顾性分析经手术及病理证实的13例Ⅱ级胶质瘤与20例Ⅲ级胶质瘤的术前磁共振成像(magnetic resonance imaging ,MRI)资料,在包含肿瘤实质或瘤周水肿的每一层ADC信号强度图上勾画感兴趣区(region of interest,ROI),得到3D ROI的ADC信号强度直方图信息及其所有参数,包括最小值、最大值、平均值、第10百分位数、第25百分位数、第50百分位数、第75百分位数、第90百分位数、值域、体素数、标准差、方差、平均差、偏度、峰度及一致性,进行组间比较,并利用受试者操作特性曲线(receiver operating characteristic,ROC)来确定直方图参数对于二者的诊断能力。结果 最小值(P=0.04)、第10百分位数(P=0.03 )、体素数(P=0.003)、标准差(P=0.022)、偏度(P=0.017)在Ⅱ级与Ⅲ级胶质瘤间差异具有统计学意义。利用ROC曲线分析结果,以体素数5.65×106为阈值鉴别Ⅱ级与Ⅲ级胶质瘤的曲线下面积(area under the curve,AUC)最大,诊断能力最佳(AUC=0.856),敏感性及特异性分别为81.5%、80.0%,而偏度、标准差的诊断能力次之(AUC=0.75、0.738)。结论 基于肿瘤全域感兴趣区的ADC信号强度直方图可以为Ⅱ级与Ⅲ级胶质瘤的鉴别诊断提供更多信息,体素数、偏度以及标准差具有良好的诊断价值。
[Abstract] Objective: To evaluate the differential diagnostic value of histogram analysis of ADC signal intensity based on entire region of grade Ⅱ and Ⅲ tumor, and then to investigate a potential imaging biomarker to differentiate them.Materials and Methods: Thirteen patients with grade Ⅱ glioma and 20 patients with grade Ⅲ glioma were enrolled in this retrospective study, and all tumors were pathologically confirmed. ROIs containing the entire tumor and peripheral edema were drawn in each slice of the ADC signal intensity maps. Obtained the 3D ROI ADC signal strength histogram information and all its parameters. Histogram related parameters including min intensity, max intensity, mean value, the 10th, 25th, 50th, 75th and 90th percentiles, range, voxel number, standard deviation, variance, mean deviation, skewness, kurtosis and uniformity were recorded. The obtained parameters were compared between groups. Receiver operating characteristic (ROC) curve was constructed to assess the ability of parameters between grade Ⅱ and Ⅲ glioma.Results: Min Intensity (P=0.04), 10th percentiles (P=0.03), voxel number (P=0.003), standard deviation (P=0.022), skewness (P=0.017) showed significant difference between two groups. When optimal cut point of voxel number was 5.46×106 for diagnosis of grade Ⅱ and Ⅲ, the area under the ROC curve was maximum, which was 0.856, the sensitivity and specificity was 81.5%, 80.0%. When optimal cut point of skewness was-1.414, the area under the ROC curve was 0.750, the sensitivity and specificity was 100.0%, 60.0%. When optimal cut point of standard deviation was 14.602, the area under the ROC curve was 0.738, the sensitivity and specificity was 100.0%, 55.0%.Conclusion: Histogram analysis of ADC signal intensity based on entire tumor could provide more information in differentiation of grade Ⅱ and Ⅲ glioma. Voxel number, standard deviation and skewness showed superior diagnostic value.
[关键词] 神经胶质瘤;磁共振成像;直方图分析;表观扩散系数;肿瘤分级
[Keywords] Glioma;Magnetic resonance imaging;Histogram analysis;Apparent diffusion coefficient;Neoplasm grading

刘杨颖秋 大连医科大学附属第一医院放射科,大连 116000

尚劲 大连医科大学附属第一医院放射科,大连 116000

田诗云 大连医科大学附属第一医院放射科,大连 116000

宋清伟 大连医科大学附属第一医院放射科,大连 116000

黄宁 通用电气药业,沈阳 110000

郭妍 通用电气药业,沈阳 110000

苗延巍* 大连医科大学附属第一医院放射科,大连 116000

通讯作者:苗延巍,E-mail:ywmiao716@163.com


基金项目: 国家自然科学基金项目 编号:81671646
收稿日期:2016-12-24
接受日期:2017-02-21
中图分类号:R445.2; R739.41 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2017.04.008
刘杨颖秋,尚劲,田诗云,等.利用肿瘤全域表观扩散系数信号强度直方图鉴别Ⅱ级与Ⅲ级胶质瘤.磁共振成像, 2017, 8(4): 276-282. DOI:10.12015/issn.1674-8034.2017.04.008.

       胶质瘤占原发性脑恶性肿瘤的80%,与其他类型脑肿瘤相比,胶质瘤对于生存时间的威胁更大[1]。胶质瘤在宏观或微观水平上体现异质性[2],即肿瘤细胞具有不同的分子生物学特性,表现为同一肿瘤在不同部位分化程度不全相同[3]。磁共振成像(magnetic resonance imaging ,MRI)是术前诊断、制定治疗计划、疗效评估及随访中的重要检查方法,尤其是扩散加权成像(diffusion weighted imaging,DWI)的广泛应用,可以无创地为胶质瘤的诊断分级提供一些信息[4]

       肿瘤表观弥散系数(apparent diffusion coefficients,ADC)可用于反映肿瘤异质性的程度[5]、侵袭性程度[6]以及治疗效果。但以往的ADC研究中存在一个共同的局限性[7,8,9,10,11],即感兴趣区(region of interest,ROI)取在一层或几层图像上的肿瘤实质部分,然后计算平均值的方法,但这样得到的ADC值只是肿瘤局部ADC值的简单平均,不能反映所取ROI区域肿瘤细胞的异质性,且局部肿瘤实质不能反映肿瘤整体的异质性[7],而是会低估胶质瘤的异质性[12]。基于肿瘤全域的ADC值可能会更加准确和可靠地反映肿瘤的异质性,而且也将会被最大程度地避免局部区域勾画ROI带来的抽样误差。

       直方图分析是一种新的基于像素分布的图像分析方法,它可以提供更多定量信息,直方图分析可以获得多个直方图参数,这些参数可以体现肿瘤的弥散特性,从多方面反映肿瘤的异质性[13]。直方图分析已在头颈部鳞癌、子宫内膜癌、直肠癌等肿瘤分级或评估预后的研究中展现它的优越性[14,15,16,17,18],也有学者将ADC值直方图分析用于胶质瘤分级的研究[8,9,10,11,19]。然而,大部分研究都只关注了低级别和高级别胶质瘤的鉴别诊断,只有少数学者关注了Ⅱ级与Ⅲ级胶质瘤ADC值直方图的鉴别诊断[20],但没有进行深入的探讨。

       本研究旨在研究基于肿瘤全域的ADC信号强度直方图对于鉴别世界卫生组织(World Health Organization,WHO)Ⅱ级与Ⅲ级胶质瘤的价值,并探求二者之间鉴别诊断的影像标志物。

1 材料与方法

1.1 病例选择

       笔者从本院医学影像信息系统(picture archiving and communication systems,PACS)上选择了2012年1月至2016年1月在医院进行MRI扫描的胶质瘤患者75例。入组标准:(1)术后组织学诊断依据WHO标准[21];(2)使用GE Signa HDxt 3.0 T进行扩散加权成像(diffusion weighted imaging,DWI)扫描。经以下排除标准,有42例患者被排除:(1)组织学诊断为Ⅰ级或Ⅳ级(n=27);(2)肿瘤内含有明确钙化成分:按照贝克尔标准,在CT图像上CT值高于90Hu即可认为是钙化[22](n=3);(3)DWI图像部分丢失或图像质量欠佳(n=4);(4) MRI扫描前已进行治疗(n=8)。

       最终,共33例患者入组,Ⅱ级胶质瘤患者13例(39.4%),包括星形细胞瘤(n=6),少突胶质细胞瘤(n=3),少突星形细胞瘤(n=4) ;Ⅲ级胶质瘤患者20例(60.6%),包括间变型星形细胞瘤(n=12),间变型少突胶质细胞瘤(n=4),间变型少突星形细胞瘤(n=4)。患者的临床资料见表1

表1  两组患者临床资料及病理诊断
Tab.1  Clinical data and tumor diagnosis of two patients

1.2 数据采集

       本研究采用美国GE Signa HDxt 3.0 T MRI扫描仪,患者仰卧位,采用8通道头线圈。扫描序列如下:自旋回波序列轴位T1WI (TR/TE=400 ms/9.0 ms,FOV 220 mm×220 mm,矩阵448×256,层厚6 mm)、快速自旋回波序列轴位T2WI (TR/TE=4000 ms/110 ms,FOV 220 mm×220 mm,矩阵448×256,层厚6 mm),平面回波DWI扫描(TR/TE=7000 ms/80 ms,b=0、1000 s/mm2;FOV 220 mm×220 mm;矩阵160×160;层厚6 mm),使用GE ADW 4.6工作站Functool 2软件利用DWI图像重建出ADC图。

1.3 图像处理

       将ADC图的DICOM格式数据拷贝至个人电脑,导入Omni-Kinetics软件得到ADC信号强度图进行后处理。参照同层面横轴位T2WI图像,在每层图像上沿肿瘤及瘤周水肿带的边缘手动描绘ROI,将所有层面的ROI累加为一个3D ROI,软件将自动计算出ADC信号强度直方图。直方图的x轴为ADC信号强度,软件默认分组单位(bin size)为70,y轴为x轴上ADC信号强度对应的出现频数。

       记录肿瘤全域的直方图参数,包括最小值、最大值、平均值、第10百分位数、第25百分位数、第50百分位数、第75百分位数、第90百分位数;值域,即最大值与最小值的差;体素数,肿瘤全域包含的体素数总和;标准差、方差、平均差,均用于度量数据变化或离散程度;偏度,是描述数据曲线分布对称性的参数;峰度,描述数据分布曲线陡缓程度的参数;一致性,描述肿瘤内ADC信号值分布均匀性参数。

1.4 统计学处理

       应用社会科学统计软件包SPSS 18.0版进行数据分析,计量资料符合正态分布者以"均数±标准差"表示,采用独立样本t检验;不符合正态分布者以"中位值±四分位间距"表示,采用Mann-Whitney U检验。利用受试者操作特性曲线(receiver operating characteristic,ROC)来确定各直方图参数对于鉴别诊断Ⅱ级与Ⅲ级胶质瘤的效能。所有统计学分析均以P<0.05为差异有统计学意义。

2 结果

       Ⅱ级和Ⅲ级胶质瘤的典型病例及直方图见图1图2图3图4图5图6,Ⅱ级和Ⅲ级胶质瘤ADC信号强度直方图参数和组间比较结果见表2

       Ⅲ级胶质瘤ADC信号值直方图的最小值(101.050±9.276)、平均值(192.644±5.034)、第10百分位数(163.947±36.797)、第25百分位数(181.241±24.319)、第50百分位数(193.597± 6.201)、第75百分位数(200.605±9.743)、第90百分位数(205.756±12.456)、偏度(-2.531±2.052)、峰度(8.531±8.884)、一致性(0.909±0.087)小于Ⅱ级胶质瘤(127.230±42.714,193.508±6.662 ,183.773±3.946,187.618±7.201 ,194.661± 5.210,201.846±9.318,208.213±12.500,-0.835±1.795 ,6.495±5.916,0.093±0.061),随着肿瘤级别的升高而减小。相反,Ⅲ级胶质瘤的最大值(231.769±6.661)、值域(124.400± 59.148)、体素数[(6.827±5.989)×106]、标准差(15.907±13.645)、方差(148.891±1.170)、平均差(64.665±11.350)大于Ⅱ级胶质瘤[230.769± 6.669,110.538±47.257,(5.533±4.233)×106,11.805±3.625 ,125.276±93.364 ,61.486± 6.663],随着肿瘤级别的升高而增大。其中最小值(P=0.04)、第10百分位数(P=0.03)、体素数(P=0.003)、标准差(P=0.022)、偏度(P=0.017)在Ⅱ级与Ⅲ级胶质瘤间差异具有统计学意义。

       使用ROC曲线分析最小值、第10百分位数、体素数、标准差、偏度鉴别诊断Ⅱ级和Ⅲ级胶质瘤的效能,见表3

       以体素数为5.653×106为阈值鉴别诊断Ⅱ级和Ⅲ级胶质瘤,诊断效能最佳,ROC曲线下面积(area under the curve,AUC)最大,为0.856,诊断敏感度为81.5%,特异性为80.0%;以偏度为-1.414为阈值鉴别诊断Ⅱ级和Ⅲ级胶质瘤,ROC曲线AUC次之,为0.750,诊断敏感度为100.0%,特异性为60.0%;以标准差为14.602为阈值鉴别诊断Ⅱ级和Ⅲ级胶质瘤,ROC曲线AUC为0.738,诊断敏感度为100.0%,特异性为55.0%%;最小值、第10百分位数鉴别诊断Ⅱ级和Ⅲ级胶质瘤,ROC曲线AUC分别为0.690和0.662。利用体素数、偏度、标准差鉴别诊断Ⅱ级与Ⅲ级胶质瘤效能的ROC曲线见图7

图1~3  男,50岁,左额叶间变性星形细胞瘤(WHO Ⅲ级)。图1 T2WI示肿瘤全域信号混杂;图2在ADC信号强度图上勾画肿瘤及瘤周水肿区作为感兴趣区并与T2WI图像进行拟合;图3此例WHO Ⅲ级胶质瘤患者ADC信号强度的直方图,示图像中心明显左偏,拟合曲线较宽而低,偏度为-4.02,峰度为10.567
图4~6  男,45岁,右额叶星形细胞瘤(WHO II级)。图4 T2WI示肿瘤呈稍高信号,信号较均匀;图5同样在ADC信号强度图上勾画肿瘤全域作为感兴趣区并与T2WI图像进行拟合;图6此例WHO Ⅱ级胶质瘤患者ADC信号强度的直方图,示图像中心轻度左偏,拟合曲线高而尖,偏度为-0.12,峰度为8.36
Fig. 1—3  Fifty-year-old man, a histologically verified grade Ⅲ anaplastic astrocytomas in the left frontal lobe. Fig.1 T2WI shows mix signal intensity in tumor whole volume; Fig.2 In ADC signal intensity maps, ROI is drawn including the entire tumor and peripheral edema, and fit on T2WI; Fig.3 The center of the histogram curve obvious deviation to left, the fit curve is wide and low, skewness=-4.02, kurtosis=10.567.
Fig.4-6  Fourty-five-year-old man, a histologically verified grade Ⅱ astrocytomas in the right frontal lobe. Fig.4 T2WI shows uniform slightly higher intensity; Fig.5 ROI is drawn including the entire tumor and peripheral edema on ADC signal intensity maps as the same, and fit on T2WI; Fig.6 The center of the histogram curve mild deviation to left, the fit curve is high and sharp, skewness=-0.12, kurtosis=8.36.
图7  ROC曲线示体素数、偏度、标准差对于鉴别Ⅱ、Ⅲ级胶质瘤的曲线下面积分别为0.856、0.750、0.738
Fig.7  The ROC curve of voxel number, skewness and standard deviation, and the AUC of them is 0.856, 0.750, 0.738.
表2  WHO Ⅱ级及Ⅲ级胶质瘤ADC信号强度直方图参数
Tab.2  Histogram parameters of ADC signal intensity between WHO grade Ⅱ and Ⅲ glioma
表3  ADC信号强度直方图参数鉴别诊断Ⅱ级与Ⅲ级胶质瘤的效能
Tab.3  Diagnostic ability of ADC signal intensity histogram parameters between WHO grade Ⅱ and Ⅲ

3 讨论

       参考Kang[23]的方法,本组病例测量的ROI系肿瘤全域,即包括肿瘤及瘤周水肿区,而且不避开坏死囊变区、出血灶以及肿瘤内血管结构。这是由于相对于低级别胶质瘤,高级别胶质瘤血供较丰富,更容易发生坏死、囊变、出血等,这也是高级别胶质瘤的特性表现之一[24]。虽然不同时期的出血ADC值差异较大[25],但基于肿瘤全域的直方图分析的主要目的是反映肿瘤内部的差异性和不均质性,坏死、囊变、出血都是高级别胶质瘤不均质性的组成部分。另外,由于胶质瘤是侵袭性肿瘤,高级别胶质瘤的瘤周水肿区也是肿瘤的侵袭范围,包含肿瘤细胞[26],且肿瘤与水肿区在ADC图上不易区分开。综合上述原因,笔者的测量区包括了肿瘤全域及瘤周水肿区。

       目前应用ADC值鉴别Ⅱ级与Ⅲ级胶质瘤的研究较少,江晶晶等[27]研究认为ADC值在Ⅱ级与Ⅲ级胶质瘤之间差异具有统计学意义,但无诊断效能的评价。Ryu等[20]利用ADC值直方图分析对不同级别胶质瘤进行的研究持不同意见,认为Ⅱ级与Ⅲ级胶质瘤的平均ADC值、第5百分位数、偏度、峰度差异均无统计学意义,这可能是由于在他们的研究中ROI避开了囊变、坏死及出血区,而这些正是高级别胶质瘤的特征之一,而笔者的研究证明了部分ADC信号强度直方图参数在Ⅱ级与Ⅲ级胶质瘤之间差异具有统计学意义,有助于二者的鉴别,而且体素数、偏度以及标准差具有较好的诊断效能,可能会是较好的鉴别诊断参数。

       从结果中得知,最小值、平均值、第10百分位数、第25百分位数、第50百分位数、第75百分位数、第90百分位数随着肿瘤级别的升高而减小,然而只有最小值、第10百分位数差异具有统计学意义,表明低值区的ADC值对于胶质瘤分级的诊断更有意义,这与其他一些学者的研究结果一致。Murakami等[9]的研究认为,最小ADC值对于鉴别高级别胶质瘤是有效的,Kang等[23]的研究也表明高b值DWI的ADC最小值、第5百分位数是鉴别低级别与高级别胶质瘤较好的指标。低值区的ADC值与肿瘤组织密集区有较好的相关性[28],可能与更高级别胶质瘤的细胞密集以及细胞外间隙减小有关。同时,本研究还发现,Ⅲ级胶质瘤的最大值大于Ⅱ级胶质瘤,笔者推测这可能是由于相较于Ⅱ级胶质瘤,Ⅲ级胶质瘤中的囊变、坏死区发生率增高,进而其ADC值的最大值也增高,但差异并不显著。

       值域是反映肿瘤全域ADC值变化范围的重要指标,Ⅱ级胶质瘤值域小于Ⅲ级胶质瘤,但在本研究中两组间比较差异无统计学意义,详细的原因尚不清楚,还需要影像与病理的对照研究予以说明。Ⅲ级胶质瘤的体素数显著高于Ⅱ级,提示Ⅲ级胶质瘤生长速度更快、侵袭性更强,与Cruz-Sanchez等[29]认为胶质瘤生长速度与恶性程度密切相关;肖俊强等[30]认为胶质瘤分级越高,细胞增殖速度越快一致。在本研究中,体素数对于鉴别Ⅱ级胶质瘤与Ⅲ级胶质瘤的诊断效能最佳,当阈值为5.653×106时,ROC曲线AUC为0.856,敏感度为81.5%,特异性为80.0%,有望作为二者鉴别诊断的一个良好的影像学指标。

       标准差、方差、平均差均是用于评价数据离散程度的参数[31,32,33]。相比于Ⅱ级胶质瘤,Ⅲ级胶质瘤的细胞密集性大,囊变、坏死及出血区也明显。Ⅲ级胶质瘤的数据离散程度大于Ⅱ级,二者的标准差比较差异有统计学意义,以阈值为14.602鉴别二者,其AUC为0.738,敏感度为100.0%,特异性为55.0%,诊断效能较好。偏度和峰度是描述直方图曲线分布的参数,是反映肿瘤异质性的较好指标[15,34,35]。和正常脑实质比,肿瘤区域的细胞更加密集,导致ADC值更低,直方图曲线中心向左偏移,为负值。同样,Ⅲ级胶质瘤的偏度显著小于Ⅱ级胶质瘤。以阈值为-1.414鉴别Ⅱ级胶质瘤与Ⅲ级胶质瘤的AUC为0.750,敏感度为100.0%,特异性为60.0%,诊断效能仅次于体素数。

       本研究也存在许多局限性。首先,本研究是回顾性研究,无法在外科手术切除前或切除中获得更多信息,在今后的研究中应该将图像、组织学及术中特征更多地收集并加以整理分析。第二,研究样本量相对较小,而且没有排除含有少突胶质成分的肿瘤,虽然结合CT图像排除了含有明确钙化的病例,但仍有可能会造成一些影响。第三,即使肿瘤全域可以最大程度减少抽样误差,但在ADC图的重建配准过程中也难免会产生偏差。最后,本文的术后组织学诊断依据2007年WHO标准,2016年WHO已经发布了新的中枢神经系统分类简述[36],首次针对大多数肿瘤在组织学分型基础上增加了分子学分型,在今后的研究中需要更多结合组织学和分子学特征来进行进一步研究。

       总之,基于肿瘤全域感兴趣区的ADC信号强度直方图可以为Ⅱ级与Ⅲ级胶质瘤的鉴别诊断提供更多信息,体素数、偏度及标准差是二者之间良好的影像鉴别诊断指标。

[1]
Schwartzbaum JA, Fisher JL, Aldape KD, et al. Epidemiology and molecular pathology of glioma. Nat Clin Pract Neurol, 2006, 2(9): 494-503.
[2]
Szczepankiewicz F, van Westen D, Englund E, et al. The link between diffusion MRI and tumor heterogeneity: mapping cell eccentricity and density by diffusional variance decomposition (DIVIDE). NeuroImage, 2016, 142: 522-532.
[3]
Li ZG.Study on the correlation between the value of apparent diffusion coefficient and MR spectroscopy and proliferation activity of brain gliomas. Guangzhou: Southern Medical University, 2012.
李治国.脑胶质瘤ADC值及多体素磁共振波谱与肿瘤细胞增殖活性的相关性研究.广州:南方医科大学, 2012.
[4]
Le BD. Apparent diffusion coefficient and beyond: what diffusion MR imaging can tell us about tissue structure. Radiology, 2013, 268(2): 318-322.
[5]
Dong XZ, Xing LG, Yu JM. Medical imaging analysis of tumor heterogeneity and their clinical application. Chinese Journal of Oncology, 2013, 35(2): 81-84.
董鑫哲,邢立刚,于金明.肿瘤异质性的医学影像学分析及临床应用.中华肿瘤杂志, 2013, 35(2): 81-84.
[6]
Sternberg EJ, Lipton ML, Burns J. Utility of diffusion tensor imaging in evaluation of the peritumoral region in patients with primary andmetastatic brain tumors. AJNR Am J Neuroradiol, 2014, 35(3): 439-444.
[7]
Catalaa I, Henry R, Dillon WP, et al. Perfusion, diffusion and spectroscopy values in newly diagnosed cerebral gliomas. NMR Biomed, 2006, 19(4): 463-475.
[8]
Murakami R, Hirai T, Kitajima M, et al. Magnetic resonance imaging of pilocytic astrocytomas: usefulness of the minimum apparent diffusion coefficient (ADC) value for differentiation from high-grade gliomas. Acta Radiol, 2008, 49(4): 462-467.
[9]
Murakami R, Hirai T, Sugahara T, et al. Grading astrocytic tumors by using apparent diffusion coefficient parameters: superiority of a one-versus two-parameter pilot method. Radiology, 2009, 251(3): 838-845.
[10]
Arvinda HR, Kesavadas C, Sarma PS, et al. Glioma grading: sensitivity, specificity, positive and negative predictive values of diffusion and perfusion imaging. J Neurooncol, 2009, 94(1): 87-96.
[11]
Lee EJ, Lee SK, Agid R, et al. Preoperative grading of presumptive low-grade astrocytomas on MR imaging: diagnostic value of minimum apparent diffusion coefficient. AJNR Am J Neuroradiol, 2008, 29(10): 1872-1877.
[12]
Cha S. Update on brain tumor imaging: from anatomy to physiology. AJNR Am J Neuroradiol, 2006, 27(3): 475-487.
[13]
Tozer DJ, Jäger HR, Danchaivijitr N, et al. Apparent diffusion coefficient histograms may predict low-grade glioma subtype. NMR Biomed, 2007, 20(1): 49-57.
[14]
Ahn SJ, Choi SH, Kim YJ, et al. Histogram analysis of apparent diffusion coefficient map of standard and high B-value diffusion MR imaging in head and neck squamous cell carcinoma: a correlation study with histological grade. Acad Radiol, 2012, 19(10): 1233-1240.
[15]
Suo ST, Chen XX, Fan Y, et al. Histogram analysis of apparent diffusion coefficient at 3.0 T in urinary bladder lesions: correlation with pathologic findings. Acad Radiol, 2014, 21(8): 1027-1034.
[16]
Ma X, Zhao X, Ouyang H, et al. Quantified ADC histogram analysis: a new method for differentiating mass-forming focal pancreatitis from pancreatic cancer. Acta Radiol, 2014, 55(7): 785-792.
[17]
Woo S, Cho JY, Kim SY, et al. Histogram analysis of apparent diffusion coefficient map of diffusion-weighted MRI in endometrial cancer: a preliminary correlation study with histological grade. Acta Radiol, 2014, 55(10): 1270-1277.
[18]
Cho SH, Kim GC, Jang YJ, et al. Locally advanced rectal cancer: post-chemoradiotherapy ADC histogram analysis for predicting a complete response. Acta Radiol, 2015, 56(9): 1042-1050.
[19]
Provenzale JM, Mukundan S, Barboriak DP. Diffusion-weighted and perfusion MR imaging for brain tumor characterization and assessment of treatment response. Radiology, 2006, 239(3): 632-649.
[20]
Ryu YJ, Choi SH, Park SJ, et al. Glioma: application of whole-tumor texture analysis of diffusion-weighted imaging for the evaluation of tumor heterogeneity. PLoS One, 2014, 9(9): 108335.
[21]
Louis D, Ohgaki H, Wiestler O, et al. The 2007 WHO classification of tumors of the central nervous system. Acta Neuro-pathol, 2007, 114(2): 97-109.
[22]
Zhou Y. Differential diagnosis of intracraninal calcification. J Pract Radiol, 1997, 8(13): 497-498.
周仪.颅内钙化的鉴别诊断.实用放射学杂志, 1997, 8(13): 497-498.
[23]
Kang Y, Choi SH, Kim YJ, et al. Gliomas: histogram analysis of apparent diffusion coefficient maps with standard-or high-b-value diffusion-weighted MR imaging-correlation with tumor grade. Radiology, 2011, 261(3): 882-890.
[24]
Alexander CG, Thomas JC, Rajesh CD, et al. Lymphomas and high-grade astrocytomas: comparison of water diffusibility and histologic characteristics. Radiology, 2002, 224(1): 177-183.
[25]
Lang ZJ, Miao YW, Wu RH, et al. Application of advanced MR imaging techniques in central nervous system tumors. Shanghai: Shanghai Science and Technology Publishing House, 2015: 15-16.
郎志谨,苗延巍,吴仁华,等. MRI新技术及在中枢神经系统肿瘤的应用.上海:上海科学技术出版社, 2015: 15-16.
[26]
Price SJ, Jena R, Burnet NG, et al. Improved delineation of glioma margins and regions of infiltration with the use of diffusion tensor imaging: an image-guided biopsy study. AJNR Am J Neuroradiol, 2006, 27(9): 1969-1974.
[27]
Jiang JJ. Correlation between molecular biology of brain tumors and functional magnetic resonance imaging. Wuhan: Huazhong University of Science and Technology, 2014.
江晶晶.脑肿瘤的分子生物学行为与功能磁共振成像的相关性研究.武汉:华中科技大学, 2014.
[28]
Lu SS, Kim SJ, Kim N, et al. Histogram analysis of apparent diffusion coefficient maps for differentiating primary CNS lymphomas from tumefactive demyelinating lesions. AJR Am J Roentgenol, 2015, 204(4): 827-834.
[29]
Cruz-Sanchez FF, Ferreres JC, Figols J, et al. Prognostic analysis of astrocytic gliomas correlating histological parameters with the proliferating cell nuclear antigen labelling index (PCNA-LI). Histol Histopathol, 1997, 12(1): 43-49.
[30]
Xiao JQ, Lu GM, Li SJ, et al. Study on diffusion and perfusion MR imaging for the reoperative evaluation of tumor grade in gliomas. J Med Imaging, 2009, 19(4): 376-380.
肖俊强,卢光明,李苏建,等.磁共振DWI和PWI在胶质瘤术前分级中的应用研究.医学影像学杂志, 2009, 19(4): 376-380.
[31]
Yan H. Medical Statistics. Beijing: People' s Medical Publishing House, 2010: 29-32.
颜虹.医学统计学.北京:人民卫生出版社, 2010: 29-32.
[32]
Zhou CC. Imaging study of magnetic resonance spectroscopy and texture analysis in glioma with IDHl mutation. Shanghai: Fudan University, 2013.
周成丞. IDH1突变胶质瘤磁共振波谱和纹理分析的影像学研究.上海:复旦大学, 2013.
[33]
Zhou SQ. Non-destructive inspection of pear fruit quality based on magnetic resonance imaging. Hangzhou: Zhejiang University, 2013.
周水琴.基于核磁共振成像的梨果品质无损检测方法研究.杭州:浙江大学, 2013.
[34]
Zhang YD, Wang Q, Wu CJ, et al. The histogram analysis of diffusion-weighted intravoxel incoherent motion (IVIM) imaging for differentiating the gleason grade of prostate cancer. Eur Radiol, 2015, 25(4): 994-1004.
[35]
Baek HJ, Kim HS, Kim N, et al. Percent change of perfusion skewness and kurtosis: a potential imaging biomarker for early treatment response in patients with newly diagnosed glioblastomas. Radiology, 2012, 264(3): 834-843.
[36]
Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Oganization classification of tumors of the central nervous system: a summary. Acta Neuropathol, 2016, 131(6): 803-820.

上一篇 复发缓解型多发性硬化患者看似正常脑白质区脑血流量分析
下一篇 ADC联合DWI鉴别诊断中枢神经细胞瘤与室管膜瘤的应用价值
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2