分享:
分享到微信朋友圈
X
综述
磁共振成像技术在肝脏铁过载的应用进展
刘华平 李文政 李海兰 张友明

刘华平,李文政,李海兰,等.磁共振成像技术在肝脏铁过载的应用进展.磁共振成像, 2017, 8(6): 475-480. DOI:10.12015/issn.1674-8034.2017.06.016.


[摘要] 原发性血色素沉着症、慢性肝病及血液病等均可导致铁过载,严重铁过载会导致肝脏、心脏、胰腺、甲状腺和中枢神经系统等器官功能障碍,甚至可致死亡。铁过载较先累及肝脏,磁共振成像(magnetic resonance imaging,MRI)能准确无创评估肝脏铁过载严重程度,且肝脏铁含量与人体总铁量具有高度相关,因此肝脏MRI铁定量技术对临床意义重大。本文主要对MRI技术在肝脏铁过载的应用进展作一综述。
[Abstract] Iron overload can be caused by hereditary hemochromatosis, hematological diseases, chronic liver disease and so on. Severe iron overload can result in liver, heart, pancreas, thyroid organs, the central nervous system, and other organ dysfunction, or even can cause death. Iron overload can result in liver damage firstly, and the liver iron concentration bring into correspondence with the body iron content. MRI can accurately noninvasive assess and monitor the liver iron concentration, provide guidance for clinical treatment. This article mainly introduces MRI-based methods for quantification of liver iron, including remaining challenges, unsolved problems and potential application prospect.
[关键词] 肝脏;铁过载;磁共振成像
[Keywords] Liver;Iron overload;Magnetic resonance imaging

刘华平 中南大学湘雅医院放射科,长沙 410008

李文政* 中南大学湘雅医院放射科,长沙 410008

李海兰 中南大学湘雅医院放射科,长沙 410008

张友明 中南大学湘雅医院放射科,长沙 410008

通讯作者:李文政,E-mail:liwenzhenghuazi@163.com


基金项目: 中南大学湘雅医院临床科研基金项目 编号:2014L05
收稿日期:2017-02-24
接受日期:2017-04-07
中图分类号:R445.2; R575.5 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2017.06.016
刘华平,李文政,李海兰,等.磁共振成像技术在肝脏铁过载的应用进展.磁共振成像, 2017, 8(6): 475-480. DOI:10.12015/issn.1674-8034.2017.06.016.

       遗传血色沉着病、重型地中海贫血、再生障碍性贫血等血液系统疾病均可致铁过载,严重者可致肝脏等器官功能障碍,甚至衰竭,因此,肝脏铁含量的有效评估有助于指导临床对引起全身铁过载疾病的治疗及作相应疗效评估。磁共振成像(magnetic resonance imaging,MRI)已经从简单参数成像迈向功能成像的时代,定量MRI在肝脏铁含量(liver iron content,LIC)评估得到越来越多学者的认可,MRI对LIC的评估经历了一个不断发展的过程,从最初利用肝脏与椎旁肌肉T2信号比值(signal intensity ratio,SIR)、正反相位信号差异,到以自旋回波为基础的R2/T2、以梯度回波为基础的R2*/T2*,及后来颅脑应用较成熟的磁敏感成像(susceptibility weighted imaging,SWI)或重T2*加权血管成像(enhanced T2 star weighted angiography,ESWAN),此外还有将来可能应用于腹部的定量磁化率成像(quantitative susceptibility mapping,QSM)。

1 铁代谢

       正常人每天造血需要的铁(20~ 25 mg)大部分由衰老破坏的红细胞(内源性铁)提供,保持体内铁平衡需要每天从食物摄取外源性铁1~ 1.5 mg。体内铁分两部分:一是储存铁,主要是铁蛋白和含铁血黄素;二是功能铁,如血红蛋白铁、肌红蛋白铁、转铁蛋白、乳铁蛋白、酶和辅因子结合的铁。外源性铁分为非血红素铁(多为Fe3+)和血红素铁,两者吸收机制不同,二价金属离子转移蛋白(divalent metal transport 1,DMT1)参与前者的转运,膜铁转运蛋白(ferroportin 1)负责将铁转运到血浆,其具体代谢过程见图1

       致肝铁过载的疾病可分两类:一是肝细胞内铁沉积,如原发性血色素性沉着症所致;二是网状内皮细胞内铁沉积,可由血液病、肾功能衰竭等疾病治疗中反复大量输血所致[1]。肝细胞内铁可被kupffer细胞吞噬并以含铁血黄素沉积在内皮系统,也可在肝细胞内以非转铁蛋白结合的血浆铁(nontransferrin-bound plasma iron,NTBI)形式出现,NTBI的主要靶器官是肝脏、心脏及中枢神经系统等,其中肝脏铁过载严重时会致肝硬化、甚至肝癌。研究认为部分肝癌的演变可能与铁过载导致细胞增殖、DNA损害有关,氧化应激反应也起一定的诱导作用,尤其在伴有P53基因突变的患者[2,3,4]

图1  A为铁代谢正常路径,B为肠粘膜细胞局部微观铁代谢路径
Fig. 1  A: The normal path of iron metabolism, B: Local iron metabolism pathway of intestinal mucosa cells at the micro level.

2 磁共振成像在肝铁过载的应用

2.1 T2信号强度比

       在T2信号强度比值(SIR)中,早期研究经常选择一些没有铁沉积的组织作为参考值,如脂肪、椎旁肌肉或者体外的脂肪等[5,6,7,8],其中最典型的运用要属Gandon等[8]于2004年发表在Lancet的研究,采用多回波梯度回波序列,研究中试验组患者(n=139)同时用肝穿刺及T2SIR (1.5 T MRI,gradient recalled echo)分别评定LIC并分析两者相关性,统计校正MRI评定模式,然后在验证组(n=35)中验证此模式,最后证实当肝脏/椎旁肌肉(L/M)小于0.88时,MRI提示肝脏铁过载的敏感性为89%、特异性为80%,且在此阈值下,可以发现临床60 umol/g <LIC<375 umol/g (正常<36 umol/g)的患者,两者在此范围内具有高度相关,并在验证组中得到类似相关性。但该方法无法准确定量,只能间接评估,且当肝脏铁过载严重(LIC> 375 umol/g)时,信号丢失较严重,SIR与LIC相关性减低,此外,由于背景肝(肝硬化或脂肪肝等)信号差异、不同MR扫描仪之间的差异性等均会对评估结果造成影响,因此,该方法逐渐被淘汰。

2.2 正反相位图像信号强度差异

       Virtanen等[9]首次通过MRI正反相位信号差异来评估肝脏LIC,在该项研究中,作者依据正反相位图像肝脏信号强度差异将肝铁沉积分为4级,以正反相位相对信号强度(relative signal intensity,rSI,公式1)计算LIC(公式2),结果显示这种通过影像科医生对正反相位信号强度差异进行的简单分级具有较高准确性,且在LIC<151 umol/g时,不同阅片者间的阳性预测值及阴性预测值达100%。

       该方法最大的优点是简单快捷,且无需特殊后处理,影像科医生能早期快速评估患者铁过载情况,但缺点是兴趣层面选择及兴趣区勾画易受主观影响、背景肝脂肪沉积造成正反相位信号差值增大等均可造成最终评估偏差。

2.3 R2/T2

       R2为弛豫率,T2为时间常量,两者均为自旋回波序列获得参数,且互为倒数。早期多项研究都指出LIC和R2呈线性关系[10,11,12,13],但由于这些研究样本量不足,研究结果可能掩盖两者间的复杂非线性关系。Pierre等[14]在2005年发表的研究结果表明患者LIC (n=105)与R2存在复杂的非线性关系,并证实当LIC在一定阈值时,R2有高度准确性及特异性,且该研究的MRI评估方法得到美国FDA审批,成为一种商用技术FerriScan[15]。之后,St Pierre等[16]的研究采用FerriScan评估233例患者肝脏铁过载的情况,并将其与肝穿刺活检铁定量结果对比,证实FerriScan技术可作为一种无创安全评估方法,并提供准确的肝铁过载信息。Yassin等[17]通过采用FerriScan评估一位静脉铁中毒患者口服铁螯合剂疗效发现,FerriScan可以很好地评估肝铁过载程度,并指导临床治疗。总之,对R2/T2而言,回波时间(echo time,TE)的最优设置应使首个回波时间尽量短(少于5 ms),末个回波时间尽量长且确保不会导致运动或呼吸等伪影(一般15~ 30 ms),最佳回波数量未统一,应在不超过最大采集时间范围内尽可能增加回波数量。此外,R2的准确性会随着肝脏LIC的升高而降低,严重铁过载时无法准确评估;另一方面,单次激发自旋回波(single-shot spin echo,SSE)较长的扫描时间会增加呼吸运动伪影,这也是R2的主要缺点(FerriScan扫描一次大约10~ 20 min)[15]。但是,FerriScan (R2)相对SIR及正反相位信号强度差异,能对LIC进行相对准确的定量评估,Peng等[18]在兔子模型中证实R2相对于SIR具有更好的相关性,但FerriScan (R2)作为一项商用技术,扫描时间长、花费高阻碍了其广泛推广应用。

2.4 R2*/T2*

       在多回波梯度回波序列中,T2*是时间常量,R2*是弛豫率,两者关系为R2*=R2+R2’ ,R2’ =1/T2’ ,T2*与T2的关系可表示为公式(3)。由于历史原因,MRI检测的肝铁浓度由R2和R2*表示,而心脏铁浓度由T2和T2*表示[14, 19,20,21]。依赖于GRE序列的R2*/T2*[22]是一种快速肝脏铁定量技术,并在此基础上开发了水脂分离技术,一次扫描即可生成水像、脂像、水/脂相位图、R2*图,如西门子公司的IDEAL-IQ、GE公司的多回波m DIXON技术等[23,24],其扫描时间较R2/T2明显缩短,后处理简单高效,费用明显降低。

       T2*早期在英国首先被用于临床评价地中海贫血患者心肌铁过载情况,有助于临床评估铁螯合治疗效果,这对临床有效缓解疾病进展起了重要作用[25]。如果不考虑数据拟合运算及扫描参数的差异性,对相对正常或轻度铁沉积的患者,R2*评价LIC的准确性及稳定性都比较高,但是随着铁沉积的加重,信号丢失越来越严重,甚至在TE为1~ 2 ms时信号已完全丢失,由于R2*综合了R2和R2’的影响,R2*信号衰减要快于R2[26]。为了通过R2*更准确评估LIC,在采集方法方面,首个TE同样要求时间尽可能短,因为这决定了R2*的最大值(或者T2*的最小值),即LIC最大值。另外,通过回波补偿[27]、在频率编码方向减小矩阵来缩短回波间隔,采取最优像素大小和层厚获取最佳信噪比(signal noise ratio,SNR)及减少主磁场漂移造成的伪影[26]。在后处理方面,适当的降噪模式(如莱斯分布、高斯分布等模式)、更高级的拟合运算(如非线性加权最小二乘法、极大似然反卷积等),均能提高R2*评估的稳定性及准确性[28,29]

       在同样场强不同的机型条件下,R2*和肝脏活检、FerriScan LIC有很好的线性相关及可重复性[30,31,32]。研究表明R2*相对于R2具有更高的敏感性,R2曲线在高LIC时趋向于饱和,而R2*仍呈线性关系[20, 33,34]。SIR和R2在早期临床上运用较多,相比之下,R2*更能快速及准确地评估LIC[15]。另有研究通过比较R2、R2*与肝穿刺3种方法在评估肝脏铁过载螯合治疗效果中发现,前两种MRI方法与肝穿刺的监测效果具有可比性,前两者准确性甚至要高于肝穿刺,且在随访间隔为12 w和24 w时,R2*准确性及稳定性最高,但在随访间期为48 w时,这种优势不明显[35];另一篇去铁治疗的研究[36]也指出MRI定量检测(T2*)较血清铁蛋白(serum ferritin,SF)能更好地反映铁过载程度差异,因为规律去铁治疗半年后SF有显著变化,而LIC变化不大,因此需要更长时间去铁治疗才能观察到脏器铁过载的改善。此外,有研究者对肝硬化患者在标准T2*多回波序列中加用脂肪抑制序列,发现加用脂肪抑制的T2*值更低,更能真实地反映铁过载的情况[37]。总之,相对于上述各种MRI方法,R2*/T2*具有准确性高、费用低、扫描时间短、后处理简单高效等多种优势,且由于T2*对铁非常敏感,T2*相对于T2对轻度铁过载患者具有更高的敏感性,准确性更高[20,21]。但是不同的扫描参数及不同的拟合运算法则,可以得到不同的R2*- LIC校准曲线,因此需要统一规范化扫描参数、后处理模式及铁过载严重程度MRI分级标准。

2.5 SWI、ESWAN及QSM

       SWI一次扫描获得幅度图及相位图,通过一定技术处理并将两者相乘得到完整的图像,这样的图像既能够表现组织的对比度信息,又能够反映出不同组织之间磁化率的差异。ESWAN是以SWI为基础开发的磁敏感衍生序列,是一种多回波采集的重度T2*加权的三维梯度回波序列,相较于SWI,提高了图像信噪比,最终可以获得4个定量参数,即幅度值、相位值、T2*、R2*。QSM是近年来在SWI或ESWAN基础上发展的一种新技术,是利用预处理后的局部场图相位信息,并通过进一步反演计算得出每一个体素内的内在磁化率,从而准确地反映组织内铁含量,其最大特点是图像对比完全源自图像相位而非磁敏感信号的幅度,并且反映的是不同物质所产生的磁敏感效应[38,39,40,41]

       SWI、ESWAN及QSM均是与磁敏感相关依次发展衍生的磁共振技术,它们在颅脑的运用比较成熟,但在肝脏的应用研究非常少。SWI在肝硬化中含铁小结(siderotic nodule,SN)的探测,相对于T2*具有更高的敏感性[42,43]。另外,SWI还能运用于肝脏肿块出血的探及和肝硬化的分级[44,45]。而在肝脏铁定量方面的研究仅见国内少量研究报道并认为SWI相位值可能能对LIC进行评估[46,47],但没有得到临床研究证实。蔡春仙等[48]利用磁敏感加权成像定量测定正常肝脾铁含量,探讨正常人群肝脾铁含量的分布特点,发现正常人肝脾铁含量均随着年龄的增加而增加,但肝铁含量增加程度低于脾,T2*值及R2*值均可以作为测量肝脾铁含量的敏感指标。国外Yuan等[49]发现2D ESWAN对肝脏SN的探测相对于T2*具有更高的准确性。QSM多数研究[50,51,52]发现阿尔兹海默病、帕金森病、多发性硬化等疾病均与灰质核团铁沉积有关。2012年Langkammer等的研究证实QSM测定的脑灰质铁含量和经尸体解剖化学测定值有高度相关(r=0.84),证实QSM在颅脑铁定量的可行性。2015年Sun等[53]通过对比分析QSM与标本铁染色(r=0.86)、R2*r=0.87)对颅脑铁含量测定,发现QSM与后两者均具有高度相关性。2016年Langkammer等[54]更进一步证实QSM对特发性帕金森病患者灰质核团铁沉积敏感性比R2*更高,且更能详细全面真实地反映患者情况。基于此,有学者尝试将QSM应用于肝脏,但面临背景噪声滤除、呼吸运动、脂肪信号影响及严重铁过载导致信号丢失等一系列技术挑战,有关研究尤为少见,仅2015年Sharma等[55]将QSM运用于肝脏铁过载的定量分析,发现通过QSM得出的肝脏磁化率与Ferriscan-LIC (R2)及R2*具有高度相关,初步证实了QSM在肝脏铁过载运用的可行性,但其应用价值还有待更多临床研究证实。总而言之,上述各MRI技术优缺点可概括如表1所示。

表1  肝脏铁定量的MRI技术优缺点
Tab. 1  The advantages and disadvantages of MRI for quantification of hepatic iron overload

3 小结

       综上所述,SIR和R2是早期临床上评估LIC可行的MRI技术,其中Ferriscan-LIC (R2)是国际公认的相对金标准,但R2商用软件费用较高,且成像时间长其伪影较难控制;R2*/T2*扫描时间短,后处理简单,对轻度铁过载测量敏感性及准确性相对R2更高,是目前多国铁过载治疗的专家指南推荐的检查手段,但缺乏标准化扫描参数及后处理模式、铁过载分度MRI诊断标准,新技术QSM直接测量肝脏磁化率,具有相对R2*更为精准的定量值,虽然技术有难点,但具有广阔的应用前景,将来可能代替R2*在肝脏铁过载定量分析中的运用。

[1]
Yu DX, Li CF, Research development of hepatic iron overload and the non-invasive assessment by MRI. Int J Med Radiol, 2009, 32(2): 150-152.
于德新, 李传福. 肝铁过载及MRI无创评估研究进展. 国际医学放射学杂志, 2009, 32(2): 150-152.
[2]
Cariou S, Hubert N, Leroyer P, et al. Iron may induce both DNA synthesis and repair in rat hepatocytes stimulated by EGF/pyruvate. J Hepatology, 1997, 26(3): 650-658.
[3]
Kowdley KV. Iron, hemochromatosis, and hepatocellular carcinoma. Gastroenterology, 2004, 127(5Suppl 1): S79-S86.
[4]
Marrogi AJ, Khan MA, van Gijssel HE, et al. Oxidative stress and p53 mutations in the carcinogenesis of iron overload-associated hepatocellular carcinoma. J Natl Cancer Inst, 2001, 93(21): 1652-1655.
[5]
Gandon Y, Guyader D, Heautot JF, et al. Hemochromatosis: diagnosis and quantification of liver iron with gradient-echo MR imaging. Radiology, 1994, 193(2): 533-538.
[6]
Ernst O, Sergent G, Bonvarlet P, et al. Hepatic iron overload: diagnosis and quantification with MR imaging. AJR Am J Roentgenol, 1997, 168(5): 1205-1208.
[7]
Bonkovsky HL, Rubin RB, Cable EE, et al. Hepatic iron concentration: noninvasive estimation by means of MR imaging techniques. Radiology, 1999, 212(1): 227-234.
[8]
Gandon Y, Olivié D, Guyader D, et al. Non-invasive assessment of hepatic iron stores by MRI. Lancet, 2004, 363(9406): 357-362.
[9]
Virtanen JM, Pudas TK, Ratilainen JA, et al. Iron overload: accuracy of in-phase and out-of-phase MRI as a quick method to evaluate liver iron load in haematological malignancies and chronic liver disease. Br J Radiol, 2012, 85(1014): 162-167.
[10]
Israel J, Unger E, Buetow K, et al. Correlation between liver iron content and magnetic resonance imaging in rats. Magn Reson Med, 1989, 7(6): 629-634.
[11]
Kaltwasser JP, Gottschalk R, Schalk KP, et al. Non-invasive quantitation of liver iron-overload by magnetic resonance imaging. Br J Haematol, 1990, 74(3): 360-363.
[12]
Dixon RM, Styles P, Al-Refaie FN, et al. Assessment of hepatic iron overload in thalassemic patients by magnetic resonance spectroscopy. Hepatology, 1994, 19(4): 904-910.
[13]
Wang ZJ, Haselgrove JC, Martin MB, et al. Evaluation of iron overload by single voxel MRS measurement of liver T2. J Magn Reson Imaging, 2002, 15(4): 395-400.
[14]
Pierre TGS, Clark PR, Chua-Anusorn W, et al. Noninvasive measurement and imaging of liver iron concentrations using proton magnetic resonance. Blood, 2005, 105(2): 855-861.
[15]
Hernando D, Levin YS, Sirlin CB, et al. Quantification of liver iron with MRI: State of the art and remaining challenges. J Magn Reson Imaging, 2014, 40(5): 1003-1021.
[16]
St Pierre TG, El-Beshlawy A, Elalfy M, et al. Multicenter validation of spin-density projection-assisted R2-MRI for the noninvasive measurement of liver iron concentration. Magn Reson Med, 2014, 71(6): 2215-2223.
[17]
Yassin M, Soliman AT, De Sanctis V, et al. A young adult with unintended acute intravenous iron intoxication treated with oral chelation: the use of liver ferriscan for diagnosing and monitoring tissue iron load. Mediterr J Hematol Infect Dis, 2017, 9(1): e2017008.
[18]
Peng P, Huang Z, Long L, et al. Liver iron quantification by 3 tesla MRI: Calibration on a rabbit model. J Magn Reson Imaging, 2013, 38(6): 1585-1590.
[19]
Wood JC. Guidelines for quantifying iron overload. Hematology/the education program of the American society of hematology. American Society of Hematology. Education Program, 2014, 2014(1): 210-215.
[20]
Wood JC, Enriquez C, Ghugre N, et al. MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients. Blood, 2005, 106(4): 1460-1465.
[21]
Anderson LJ, Holden S, Davis B, et al. Cardiovascular T2-star(T2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J, 2001, 22(23): 2171-2179.
[22]
Ibrahim E, Khalifa AM, Eldaly AK. The influence of the analysis technique on estimating liver iron overload using magnetic resonance imaging T2* quantification. 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, 2014: 4639-4642.
[23]
Guo RM, Tang WJ, Zhu YQ, et al. Diagnostic value of MRI IDEAL-IQ sequence to hepatic steatosis and hepatic iron-overloaded. J Sun Yat•Sen University (Medical Sciences), 2015, 36(5): 689-692.
郭若汨, 唐文杰, 朱叶青, 等. 磁共振IDEAL-IQ序列对肝脏脂肪变性和铁过载的诊断价值. 中山大学学报(医学科学版), 2015, 36(5): 689-692.
[24]
Qi S, Zhao DW, Zhao J, et al. The preliminary study of role of multi-echo GRE dixon in the diagnosis of primary hepatocarcinoma. Chin J Magn Reson Imaging, 2015, 6(8): 626-630.
齐石, 赵大伟, 赵晶, 等. 相位校正多回波GRE Dixon序列在原发性肝癌诊断价值的初步探讨. 磁共振成像, 2015, 6(8): 626-630.
[25]
Anderson LJ. Assessment of iron overload with T2* magnetic resonance imaging. Progress in Cardiovascular Diseases, 2011, 54(3): 287-294.
[26]
Yokoo T, Browning JD. Fat and iron quantification in the liver: past, present, and future. Top Magn Reson Med, 2014, 23(2): 73-94.
[27]
Ryden H, Skorpil M. Quantification of severe liver iron overload using MRI offset echoes. Acta Radiologica Open, 2015, 4(5): 1-4.
[28]
Yokoo T, Yuan Q, Dimitrov I. Systematic investigation of various strategies for T2* mapping for liver iron quantification in the presence of noise. ISMRM 21st Annual Meeting & Exhibition, 20-26 April 2013, Salt Lake City, Utah, USA.
[29]
Yokoo T, Yuan Q, Senegas J, et al. Quantitative R2* MRI of the liver with rician noise models for evaluation of hepatic iron overload: simulation, phantom, and early clinical experience. J Magn Reson Imaging, 2015, 42(6): 1544-1559.
[30]
Kirk P, He T, Anderson LJ, et al. International reproducibility of single breathhold T2* MR for cardiac and liver iron assessment among five thalassemia centers. J Magn Reson Imaging, 2010, 32(2): 315-319.
[31]
Tanner MA, He T, Westwood MA, et al. Multi-center validation of the transferability of the magnetic resonance T2* technique for the quantification of tissue iron. Haematologica, 2006, 91(10): 1388-1391.
[32]
Chan WC, Tejani Z, Budhani F, et al. R2* as a surrogate measure of ferriscan iron quantification in thalassemia. J Magn Reson Imaging, 2014, 39(4): 1007-1011.
[33]
Girard OM, Ramirez R, Mccarty S, et al. Toward absolute quantification of iron oxide nanoparticles as well as cell internalized fraction using multiparametric MRI. Contrast Media Mol Imaging, 2012, 7(4): 411-417.
[34]
Ghugre NR, Coates TD, Nelson MD, et al. Mechanisms of tissueiron relaxivity: nuclear magnetic resonance studies of human liver biopsy specimens. Magn Reson Med, 2005, 54(5): 1185-1193.
[35]
Wood JC, Zhang P, Rienhoff H, et al. Liver MRI is more precise than liver biopsy for assessing total body iron balance: a comparison of MRI relaxometry with simulated liver biopsy results. Magn Reson Med, 2015, 33(6): 761-767.
[36]
Zhang Q, Hou B, Wang L, et al. MRI monitoring in diagnosis and follow-up of iron overload. Chin J Hematol, 2015, 36(4): 302-306.
张倩, 侯波, 王璐, 等. 磁共振成像技术在铁过载诊断及随访中的应用. 中华血液学杂志, 2015, 36(4): 302-306.
[37]
Sanches-Rocha L, Serpa B, Figueiredo E, et al. Comparison between multi-echo T2* with and without fat saturation pulse for quantification of liver iron overload. Magn Reson Med, 2013, 31(10): 1704-1708.
[38]
Liu T, Khalidov I, de Rochefort L, et al. A novel background field removal method for MRI using projection onto dipole fields (PDF). NMR Biomed, 2011, 24(9): 1129-1136.
[39]
Schweser F, Deistung A, Lehr BW, et al. Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: an approach to in vivo brain iron metabolism?. Neuroimage, 2011, 54(4): 2789-2807.
[40]
Haacke EM, Liu S, Buch S, et al. Quantitative susceptibility mapping: current status and future directions. Magn Reson Med, 2015, 33(1): 1-25.
[41]
Wang M, Li CF. Quantitative susceptibility maping and its application in quantification of brain iron. Chin Imaging J Integrated Traditional and Western Medicine, 2016, 14(1): 105-108.
王敏, 李传富. 定量磁化率成像及其在脑铁定量中的研究进展.中国中西医结合影像学杂志, 2016, 14(1): 105-108.
[42]
Dai Y, Zeng M, Li R, et al. Improving detection of siderotic nodules in cirrhotic liver with a multi-breath-hold susceptibility-weighted imaging technique. J Magn Reson Imaging, 2011, 34(2): 318-325.
[43]
Liu S, Buch S, Chen Y, et al. Susceptibility-weighted imaging: current status and future directions. NMR in Biomedicine, 2017 DOI: (4). DOI: 10.1002/nbm.3552. DOI: .
[44]
Li RK, Zeng MS, Rao SX, et al. Using a 2D multibreath-hold susceptibility-weighted imaging to visualize intratumoral hemorrhage of hepatocellular carcinoma at 3.0 T MRI: correlation with pathology. J Magn Reson Imaging, 2012, 36(4): 900-906.
[45]
Balassy C, Feier D, Peck-Radosavljevic M, et al. Susceptibility-weighted MR imaging in the grading of liver fibrosis: a feasibility study. Radiology, 2014, 270(1): 149-158.
[46]
Tao R, Cui JG, Zhang JQ, et al. Assessment of liver iron overload using susceptibility-weighted imaging in patients with hepatic cirrhosis: correlation with level of serum ferritin. Chin J Med Imaging, 2012, 20(5): 328-330.
陶冉, 崔进国, 张久权, 等. 应用磁敏感加权成像评价肝硬化患者肝脏铁沉积及其与血清铁蛋白含量的相关性. 中国医学影像学杂志, 2012, 20(5): 328-330.
[47]
Yan D. The investigation in quantitative assessment of iron deposition in patients with chronic hepatits B using SWI. Nanning: Guangxi Medical University, 2014.
严达. 磁共振SWI相位值及T2*值定量测定慢性乙型肝炎合并肝铁沉积. 南宁: 广西医科大学, 2014.
[48]
Cai CX, Wei CH, Zhao SH, et al. Quantitative determination of iron content in normal liver and spleen using susceptibility weighted imaging. Chin J Med Imaging, 2013, 21(9): 656-658.
蔡春仙, 魏常辉, 赵世胜, 等. 磁敏感加权成像定量测定正常肝脾铁含量. 中国医学影像学杂志, 2013, 21(9): 656-658.
[49]
Yuan Z, Shen Z, Guo L, et al. Improving detection of siderotic nodules in patients with liver disease using 2D ESWAN technique. Acad Radiol, 2014, 21(8): 971-976.
[50]
Juhas M, Sun H, Brown MR, et al. Deep grey matter iron accumulation in alcohol use disorder. Neuroimage, 2017, 148: 115-122.
[51]
Wang Y, Spincemaille P, Liu Z, et al. Clinical quantitative susceptibility mapping (QSM): Biometal imaging and its emerging roles in patient care. J Magn Reson Imaging, 2017 DOI: . DOI: 10.1002/jmri.25693. [ DOI: ].
[52]
Eskreis-Winkler S, Zhang Y, Zhang J, et al. The clinical utility of QSM: disease diagnosis, medical management, and surgical planning. NMR Biomed, 2017, 30(4): DOI: 10.1002/nbm.3668. DOI: .
[53]
Sun H, Walsh AJ, Lebel RM, et al. Validation of quantitative susceptibility mapping with Perls' iron staining for subcortical gray matter. Neuroimage, 2015, 105: 486-492.
[54]
Langkammer C, Pirpamer L, Seiler S, et al. Quantitative susceptibility mapping in parkinson's disease. PLoS One, 2016, 11(9): e162460.
[55]
Sharma SD, Hernando D, Horng DE, et al. Quantitative susceptibility mapping in the abdomen as an imaging biomarker of hepatic iron overload. Magn Reson Med, 2015, 74(3): 673-683.

上一篇 多模态磁共振成像技术在胶质瘤细胞增殖诊断中的应用
下一篇 应用度中心度方法研究不同病程颞叶癫痫患者脑网络与执行功能的关系
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2