分享:
分享到微信朋友圈
X
综述
IVIM及DKI在乳腺病变的临床研究进展
柯承露 李静

柯承露,李静. IVIM及DKI在乳腺病变的临床研究进展.磁共振成像, 2018, 9(2): 153-156. DOI:10.12015/issn.1674-8034.2018.02.015.


[摘要] 扩散加权成像(diffusion weighted imaging,DWI)获得的扩散信息存在一定程度的偏移,因此,为更精确描述体内扩散运动及组织微细结构,基于毛细血管微循环灌注的体素内不相干运动(intravoxel incoherent motion imaging,IVIM)模型以及基于非高斯分布的扩散峰度成像(diffusion kurtosis imaging,DKI)模型被相继提出,其相关临床应用也是目前研究的热点。本文主要介绍IVIM及DKI模型的理论基础及二者在乳腺病变中的临床研究进展。
[Abstract] Diffusion weighted imaging (DWI) is a technology to reflect the molecular diffusion movement through quantitative water molecular diffusion movement. However the diffusion information from DWI has a certain degree of deviation, in order to more accurately describe the body diffusion movements and microstructure organization, the intravoxel incoherent motion imaging(IVIM) based on the capillary microcirculation perfusion and the diffusion kurtosis imaging(DKI) based on the non-gaussian diffusion is put forward and the relevant clinical application research is the hotspot currently. This article mainly introduce the theoretical basis of IVIM and DKI and the research progresses in breast lesions.
[关键词] 体素内不相干运动;扩散峰度成像;乳腺疾病;磁共振成像;扩散加权成像
[Keywords] Intravoxel incoherent motion imaging;Diffusion kurtosis imaging;Breast diseases;Magnetic resonance imaging;Diffusion weighted imaging

柯承露 国家癌症中心/中国医学科学院北京协和医学院肿瘤医院影像诊断科,北京 100021

李静* 国家癌症中心/中国医学科学院北京协和医学院肿瘤医院影像诊断科,北京 100021

通讯作者:李静,E-mail:dr.lijing@163.com


收稿日期:2017-10-07
接受日期:2017-12-19
中图分类号:R445.2; R655.8 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2018.02.015
柯承露,李静. IVIM及DKI在乳腺病变的临床研究进展.磁共振成像, 2018, 9(2): 153-156. DOI:10.12015/issn.1674-8034.2018.02.015.

       扩散加权成像(diffusion weighted imaging,DWI)模型假设人体内水分子扩散运动为符合高斯分布的自由、随机的运动,通过单指数模型线性拟合信号强度的衰减,运用表观扩散系数(apparent diffusion coefficient,ADC)量化分析体内水分子扩散运动,反映组织内分子扩散运动,进而间接反映微观结构的变化,其中磁场的梯度强度、方向以及时间剖面线会影响扩散运动的敏感性,上述因素一般简化成参数b值(s/mm2)。既往多个研究认为b值越高,所获得的扩散运动信息越接近真实的体内微观结构及微环境变化[1,2,3]。但体内扩散运动复杂多样,除单纯水分子扩散运动外,毛细血管内血液微循环无规律方向灌注运动所致的"假扩散"也为较主要的部分,尤其b值(b<200 s/mm2)越低,此影响愈明显[4]。此外由于大部分活体组织内水分子扩散运动受限,并不完全符合高斯分布,且随着b值的升高(尤其b> 1000 s/mm2),非高斯扩散现象愈显著[5,6]。鉴于DWI所获得的扩散信息与真实的体内扩散运动存在一定程度的偏离,相继有学者提出了基于毛细血管微循环灌注的体素内不相干运动(intravoxel incoherent motion imaging,IVIM)模型[7,8]以及基于非高斯分布的DKI模型,以期探究更真实的体内组织扩散现象和组织微结构。

1 基本原理

1.1 IVIM的基本原理

       IVIM为双指数模型,通过多b值DWI上组织信号强度的变化,经过双指数拟合分别获得单纯水分子扩散系数(D值)、灌注相关扩散系数(D*)及灌注分数(f值)[7,8]

       其信号变化与b值关系:Sb/S0=(1-f) × exp (-bD)+f × exp (-bD*)

       目前研究普遍认为,低b值(0~ 200 s/mm2)时扩散信号包含了水分子扩散运动及毛细血管微循环灌注效应,且b值愈小灌注效应愈明显;b值较高(200~ 1000 s/mm2)时则基本反映单纯水分子扩散运动[9]

1.2 DKI的基本原理

       DKI为多参数模型,其信号改变与b值关系:ln (Sb)=ln (S0)-bDapp+b2Dapp2Kapp/6+0 (b3)

       峰度参数Kapp值是一个无量纲微观指标,用来量化真实水分子扩散位移偏离高斯分布的程度,其大小取决于感兴趣区域内组织结构的复杂程度,即成像体素内生物组织结构越复杂,水分子扩散偏离高斯分布程度越大,Kapp值越大;扩散系数Dapp值(×10-3 mm2/s)为经非高斯分布矫正过的ADC值,表示单位时间内水分子的扩散位移距离,反映组织水分子的整体扩散水平和扩散阻力[5,10]

       DKI可以获得多个方向上的参数值,如轴向峰度Kax(axial kurtosis)、轴向扩散系数Dax(axial diffusivity)等,目前临床应用研究中多采用平均值,即平均峰度参数(mean kurtosis,MK)和平均扩散系数(mean diffusivity,MD)。

2 IVIM及DKI在乳腺病变的临床应用

2.1 IVIM的临床应用

       目前,IVIM在乳腺病变的临床应用研究主要集中在良恶性病变鉴别、乳腺癌病理分型及预后预测,以及乳腺癌新辅助化疗疗效评估等方面。

       虽然目前有研究认为IVIM在鉴别诊断乳腺良恶性病变上仍存在争议,其临床价值并未比DWI的表现更突出[11,12],但仍有大量研究结果表明IVIM有助于乳腺良恶性病变的鉴别诊断[13,14,15,16,17,18,19,20,21,22,23,24,25]。国内外有学者研究发现IVIM鉴别诊断乳腺良恶性病变的价值高于DWI或动态增强扫描磁共振成像(dynamic contrast-enhanced magnetic resonance imaging,DCE-MRI),它是DWI及DCE-MRI的一个有力补充,IVIM联合DCE-MRI可以有效提高DCE-MRI在诊断乳腺病变良恶性的准确性[13,14,15,16,17,18]。Bokacheva等[19]则发现乳腺纤维腺体的f值显著高于良性肿瘤,而D*值则相反,从而认为IVIM有助于鉴别良性肿瘤与纤维腺体,同时D*值与f值的联合应用可以提高鉴别诊断良恶性病变的准确性。但有研究则认为反映细胞结构的D值和反映血管生成情况的D*值及f值均有助于鉴别良恶性乳腺病变,D值和f值的联合可获得最高敏感性[20]。关于乳腺癌病理分型、分子亚型及临床预后相关因素的研究,有结果表明Dslow在ER阳性与阴性组间存在差异,同时f值与肿瘤浸润性成分的大小相关,这一结果可能与肿瘤内的血管生成有关[21]。Liu等[22]研究则发现IVIM除了有助于鉴别乳腺肿物良恶性外,其灌注相关系数f与DCE-MRI显著相关,此结果可能与肿瘤内血管生成有关。Kim等[23]的研究则发现低D值与乳腺癌Ki-67受体高表达及luminal B亚型密切相关。此外,有研究结果认为D*值及f值与乳腺癌人类表皮生长因子受体-2 (human epidermal receptor-2,HER-2)表达密切相关[24]。而在Ostenson等[25]的研究中,IVIM量化值及标准化摄取值与临床预后都有一定的相关性,而一体化正电子发射断层显像/磁共振成像扫描能够同时获得两种量化值,从而构建一个判断和监测进展期乳腺癌治疗反应的框架。

       关于乳腺癌新辅助化疗疗效的预测研究,Che等[26]发现D值及f值在局部进展期乳腺癌的治疗前预测及早反应监测上的潜在价值,同时ΔD值在预测新辅助化疗后病理反应上表现最佳。

2.2 DKI的临床应用

       相比IVIM在乳腺病变的临床应用研究,目前乳腺DKI的相关临床研究较少。现有关于DKI对乳腺良恶性病变鉴别诊断价值的研究结果均显示乳腺恶性病变的MK值显著高于良性病变,良性病变的MD值则明显高于恶性病变,其中部分研究认为DKI诊断乳腺良恶性病变的效能优于传统的单指数DWI及DCE-MRI[27,28,29,30,31,32,33]。Nogueira等[27]的研究还发现浸润性导管癌与乳腺纤维腺瘤间ADC、MD、MK值存在显著差异,同时纤维腺瘤和纤维囊性病变仅在MK值上存在显著差异(0.48±0.09 vs 0.25±0.14,P=0.016)。

       除与DWI及DCE-MRI相比较,有研究对IVIM及氢质子磁共振频谱(proton MR spectroscopy,1H-MRS)及DKI鉴别诊断乳腺良恶性病变的价值进行了比较研究。李嫣等[28]的研究探讨了IVIM技术联合DKI对乳腺良恶性病变的鉴别诊断价值,结果显示良恶性病灶的D值、f值、MK值、ADC值和MD值的中位数差异有统计学意义,且各参数中以D值的诊断效能最大,联合诊断则以D值和MK值的诊断效能最高。林艳等[29]的研究结果认为DKI能够鉴别诊断乳腺良恶性病变,其中MK的诊断效能较高,DKI联合DWI和1H-MRS诊断的特异度提高,但敏感度下降。

       还有部分研究探索了DKI与乳腺癌分级及病理因素的相关性。Sun等[30]的研究结果指出在侵袭性乳腺癌患者中,扩散峰度K值与乳腺癌的病理分级及Ki-67蛋白的表达正相关,与扩散系数D值为负相关。但成芳等[31]的研究结果表明ADC值、MD值和MK值在不同级别浸润性乳腺癌之间差异没有统计学意义,仅发现ADC值和MD值对雌激素受体有统计学意义(P<0.05),而不同表达水平的孕激素受体、HER-2及Ki-67间差异均无统计学意义,研究认为该结果可能源于ADC值、MD值、MK值与肿瘤细胞结构有相关性,但目前尚无研究证明肿瘤细胞结构与组织学分级有关;至于MK值、MD值与Ki-67高低表达间无相关性,可能与研究采用20%作为Ki-67高低表达界值,不同于之前研究所采用的界值有关。

3 总结

       目前IVIM在乳腺病变的相关临床研究较多,相比于单指数模型DWI,IVIM能获得D值、D*值、f值,区分组织内水分子扩散及毛细血管微循环灌注情况,但Panek等[34]发现约一半乳腺癌及正常乳腺组织中未发现假性扩散及体素内各向异质性的效量误差,因此他们认为IVIM模型可能还只限于局部研究阶段而不能够用于全面范围内的肿瘤评估。

       DKI通过参数量化分析生物组织内水分子非高斯扩散活动,获得更精确的扩散信息,更真实地反映复杂的组织微观结构,从而能够在无对比剂情况下较好地评价病变,成为多参数成像的一个重要评估部分。对于DKI模型而言,信噪比低、伪影重、参数测量的可重复性问题是目前迫切需要解决的关键。

       目前,IVIM及DKI模型大多仍只处于研究阶段,现阶段仍需要大量临床数据来进一步评价IVIM及DKI模型,同时建立一个控制标准来提高成像质量及参数测量的可重复性,以期IVIM或DKI模型更广阔地应用于临床。

[1]
García Santos JM, Ordóñez C,Torres del Río S, et al. ADC measurements at low and high b values: insight into normal brain structure with clinical DWI. Magn Reson Imaging, 2008, 26(1): 35-44.
[2]
Yoshiura T, Mihara F, Tanaka A, et al. High b value diffusion-weighted imaging is more sensitive to white matter degeneration in Alzheimer's disease. Neuroimage, 2003, 20(1): 413-419.
[3]
Ichikawa T, Erturk SM, Motosugi U, et al. High-b value diffusion-weighted MRI for detecting pancreatic adenocarcinoma: preliminary results. AJR Am J Roentgenol, 2007, 188(2): 409-414.
[4]
Luciani A, Vignaud A, Cavet M, et al. Liver cirrhosis: intravoxel incoherent motion MR imaging-pilot study. Radiology, 2008, 249(3): 891-892.
[5]
Jensen JH, Helpern JA, Ramani A, et al. Diffusional kurtosis imaging: the quantification of non-Gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med, 2005, 53(6): 1432-1440.
[6]
Tamura T, UsuiS, Murakami S, et al. Biexponential signal attenuation analysis of diffusion-weighted imaging of breast. Magn Reson Med Sci, 2010, 9(4): 195-207.
[7]
Le Bihan D, Breton E, Lallemand D, et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology, 1986, 161(2): 401-407.
[8]
Le Bihan D, Breton E, Lallemand D, et al. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology, 1988, 163(2): 497-505.
[9]
Takahara T, Kwee TC. Low b-value diffusion-weighted imaging: emerging applications in the body. J Magn Reson Imaging, 2012, 35(6): 1266-1273.
[10]
Jensen JH, Helpern JA. MRI quantification of non-Gaussian water diffusion by kurtosis analysis. NMR Biomed, 2010, 23(7): 698-710.
[11]
Yuan J, Wong OL, Lo GG, et al. Statistical assessment of bi-exponential diffusion weighted signal characteristics induced by intravoxel incoherent motion in malignant breast tumors. Quant Imaging Med Surg, 2016, 6(4): 418-429.
[12]
Wang GY, Yang GZ, Dong HB, et al. The value of DWI based on intraVoxel incoherent motion in identifying benign and malignant breast lesions. J Clin Radiol, 2016, 35(3): 348-352.王高燕,杨光钊,董海波,等.基于体素内不相干运动DWI在乳腺良恶性病变鉴别中的价值.临床放射学杂志, 2016, 35(3): 348-352.
[13]
Dijkstra H, Dorrius MD, Wielema M, et al. Semi-automated quantitative intravoxel incoherent motion analysis and its implementation in breast diffusion-weighted imaging. J Magn Reson Imaging, 2016, 43(5): 1122-1131.
[14]
Iima M, Yano K, Kataoka M, et al. Quantitative non-gaussian diffusion and intravoxel incoherent motion magnetic resonance imaging: differentiation of malignant and benign breast lesions. Invest Radiol, 2015, 50(4): 205-211.
[15]
Wang Q, Guo Y, Zhang J, et al. Contribution of IVIM to conventional dynamic contrast-enhanced and diffusion-weighted MRI in differentiating benign from malignant breast masses. Breast Care (Basel), 2016, 11(4): 254-258.
[16]
Ma D, Lu F, Zou X, et al. Intravoxel incoherent motion diffusion-weighted imaging as an adjunct to dynamic contrast-enhanced MRI to improve accuracy of the differential diagnosis of benign and malignant breast lesions. Magn Reson Imaging, 2017, 36(2): 175-179.
[17]
Dijkstra H, Dorrius MD, Wielema M, et al. Quantitative DWI implemented after DCE-MRI yields increased specificity for BI-RADS 3 and 4 breast lesions. Chin J Magn Reson Imag, 2016, 44(6): 1642-1649.
[18]
Che SN, Cui XL, Li J, et al. The value of intravoxel incoherent motion model of diffusion weighted imaging in differentiating benign from malignant breast lesions. Chin J Magn Reson Imag, 2015, 6(7): 506-512.车树楠,崔晓琳,李静,等. MR扩散加权成像体素内不相干运动模型对于乳腺良恶性病变诊断价值的研究.磁共振成像, 2015, 6(7): 506-512.
[19]
Bokacheva L, Kaplan JB, Giri DD, et al. Intravoxel incoherent motion diffusion-weighted MRI at 3.0 T differentiates malignant breast lesions from benign lesions and breast parenchyma. J Magn Reson Imaging, 2014, 40(4): 813-823.
[20]
Liu C, Liang C, Liu Z, et al. Intravoxel incoherent motion (IVIM) in evaluation of breast lesions: comparison with conventional DWI. Eur J Radiol, 2013, 82(12): 782-789.
[21]
Lee YJ, Kim SH, Kang BJ, et al. Intravoxel incoherent motion (IVIM)-derived parameters in diffusion-weighted MRI: Associations with prognostic factors in invasive ductal carcinoma. J Magn Reson Imaging, 2017, 45(5): 1394-1406.
[22]
Liu C, Wang K, Chan Q, et al. Intravoxel incoherent motion MR imaging for breast lesions: comparison and correlation with pharmacokinetic evaluation from dynamic contrast-enhanced MR imaging. Eur Radiol, 2016, 26(11): 3888-3898.
[23]
Kim Y, Ko K, Kim D, et al. Intravoxel incoherent motion diffusion-weighted MR imaging of breast cancer: association with histopathological features and subtypes. Br J Radiol, 2016, 89(1063): 20160140.
[24]
Cho GY, Moy L, Kim SG, et al. Evaluation breast cancer using intravoxel incoherent motion (IVIM) histogram analysis: comparison with malignant status, histological subtype, and molecular prognostic factors. Eur Radiol, 2016, 26(8): 2547-2558.
[25]
Ostenson J, Pujara AC, Mikheev A, et al. Voxelwise analysis of simultaneously acquired and spatially correlated 18 F-fluorodeoxyglucose (FDG)-PET and intravoxel incoherent motion metrics in breast cancer. Magn Reson Med, 2016, 78(3): 1147-1156.
[26]
Che S, Zhao X, Ou Y, et al. Role of the intravoxel incoherent motion diffusion weighted imaging in the pre-treatment prediction and early response monitoring to neoadjuvant chemotherapy in locally advanced breast cancer. Medicine (Baltimore), 2016, 95(4): e2420.
[27]
Nogueira L, Brandão S, Matos E, et al. Application of the diffusion kurtosis model for the study of breast lesions. Eur Radiol, 2014, 24(6): 1197-1203.
[28]
Li Y, Ai T, Hu YQ, et al. The value of IVIM-DKI model in differentiating benign from malignant breast lesions. Radiology Practice, 2016, 31(12): 1191-1195.李嫣,艾涛,胡益祺,等.体素内不相干运动联合扩散峰度成像模型对乳腺良恶性病灶的鉴别诊断价值.放射学实践, 2016, 31(12): 1191-1195.
[29]
Lin Y, Huang Y, Lin WX, et al. Evaluation of diffusion kurtosis imaging and its combination with diffusion weighted imaging and proton MR spectroscopy in differentiation of breast lesions. Chin J Radiol, 2017, 51(5): 350-354.林艳,黄瑶,林伟洵,等.扩散峰度成像参数及其联合扩散加权成像与MR频谱参数鉴别乳腺良、恶性病变的价值.中华放射学杂志, 2017, 51(5): 350-354.
[30]
Sun K, Chen X, Chai W, et al. Breast cancer: diffusion kurtosis MR imaging-diagnostic accuracy and correlation with clinical-pathologic factors. Radiology, 2015, 277(1): 46-55.
[31]
Cheng F, Suo ST, Kang JW, et al. The study on the application value of DKI in the classification of invasive breast carcinoma and its correlation with prognostic factors. Chin J Magn Reson Imag, 2017, 8(3): 164-169.成芳,所世腾,康记文,等. MR扩散峰度成像在浸润性乳腺癌分级及与预后因素的相关性应用研究.磁共振成像, 2017, 8(3): 164- 169.
[32]
Wu D, Li G, Zhang J, et al. Characterization of breast tumors using diffusion kurtosis imaging (DKI). PLoS One, 2014, 11(9): e113240.
[33]
Christou A, Ghiatas A, Priovolos D, et al. Accuracy of diffusion kurtosis imaging in characterization of breast lesions. Br J Radiol, 2017, 90(1073): 20160873.
[34]
Panek R, Borri M, Orton M, et al. Evaluation of diffusion models in breast cancer. Med Phys, 2015, 42(8): 4833-4839.

上一篇 磁共振功能成像在高级别胶质瘤疗效监测的研究进展
下一篇 强直性脊柱炎骶髂关节病变磁共振成像定量研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2