分享:
分享到微信朋友圈
X
综述
高分辨MR颅内血管壁成像技术研究及临床应用新进展
李俊彤 苗丰 王效春

李俊彤,苗丰,王效春.高分辨MR颅内血管壁成像技术研究及临床应用新进展.磁共振成像, 2018, 9(5): 376-380. DOI:10.12015/issn.1674-8034.2018.05.010.


[摘要] 颅内动脉病变导致的动脉狭窄是缺血性脑卒中的主要风险之一,其病因包括动脉粥样硬化、动脉夹层、动脉炎、烟雾病等。高分辨MR血管壁成像(high resolution magnetic resonance vascular wall imaging,HR-MR VWI)是目前唯一可在体进行颅内血管壁成像的无创检查技术,具有高空间分辨率、对比-噪声比等优势,能鉴别诊断颅内动脉粥样硬化、动脉夹层、动脉炎、烟雾病等,为临床诊断和指导治疗提供重要信息和依据。作者就3.0 T高分辨率MR颅内血管壁成像技术及临床应用进展予以综述。
[Abstract] Arterial stenosis caused by intracranial artery disease is one of the main risk factors of ischemic stroke. Its causes include atherosclerosis, arterial dissection, arteritis, moyamoya disease and so on. High resolution magnetic resonance imaging of vascular wall is the only non-invasive technology that can be used for intracranial vascular wall imaging in the present. It has the advantages of high spatial resolution, contrast noise ratio and can differentiate intracranial atherosclerosis, arterial dissection, arteritis and moyamoya disease. It provides important information and evidence for clinical diagnosis and treatment. The following is a summary of the progress in imaging technique research and clinical application of 3.0 T high resolution MR imaging of intracranial vascular wall.
[关键词] 血管壁成像;脑血管障碍;磁共振成像
[Keywords] Vascular wall imaging;Cerebrovascular disorders;Magnetic resonance imaging

李俊彤 山西医科大学医学影像学系,太原 030001

苗丰 山西医科大学第二临床医学院,太原 030001

王效春* 山西医科大学第一医院影像科,太原 030001

通讯作者:王效春,E-mail:2010xiaochun@163.com


收稿日期:2017-12-31
接受日期:2018-03-11
中图分类号:R445.2; R743 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2018.05.010
李俊彤,苗丰,王效春.高分辨MR颅内血管壁成像技术研究及临床应用新进展.磁共振成像, 2018, 9(5): 376-380. DOI:10.12015/issn.1674-8034.2018.05.010.

       随着人类生活水平的提高及生活方式的改变,脑卒中已成为严重威胁人类健康的致死性疾病之一。在我国,脑卒中是成人致残或致死的首要危险因素[1]且发病年龄呈年轻化趋势。Wang等[2]研究发现,我国约46.6%的急性缺血性卒中(acute ischemic stroke)由颅内动脉粥样硬化疾病(intracranial atherosclerotic disease,ICAD)引起,相关的脑血管事件每年复发率极高。颅内动脉夹层、Moyamoya病、脑动脉炎等也可导致缺血性脑卒中,因此早期鉴别诊断脑血管病对临床指导治疗和患者预后十分重要。

       目前临床主要应用管腔狭窄程度来评估脑血管病变的严重程度。常用的影像学检查技术有CT血管成像(computed tomography angiography,CTA)、数字减影血管造影(digital subtraction angiography,DSA)和MR血管成像(magnetic resonance angiography,MRA)等,DSA为有创检查,现已逐步被CTA及MRA取代。上述脑血管检查技术只能显示管腔狭窄程度,不能明确狭窄处管壁结构及导致其狭窄原因[3,4]。Leng等[5]认为单纯研究管腔狭窄程度对脑血管病变的诊断,评估病变特征及预防继发卒中的风险分层明显不足,而对病变处动脉管壁结构的研究更有意义。

       高分辨率MR成像(high resolution magnetic resonance imaging,HR-MRI)在颅外颈动脉斑块研究和临床应用中日渐成熟,其病理结果与高分辨率MR成像定义的斑块成分有很好的相关性,近年来逐渐被用于颅内动脉的研究,是目前唯一可在体进行脑血管成像的方法[6]。高分辨率MR成像与常规MRI相比,具有更高的信噪比(signal/noise ratio,SNR)、空间分辨率等优势[7]

1 颅内血管壁HR-MRI原理

       HR-MRI采用3.0 T高场强MR扫描设备及多通道头部线圈,显著提高了图像空间分辨率、对比噪声比(contrast/noise ratio,CNR)、信噪比(signal/noise ratio,SNR),提高了图像质量[8]。高分辨率MR成像在脑血管成像中,较成熟的扫描技术有"亮血技术"和"黑血技术"。

1.1 亮血技术

       "亮血技术"即三维时间飞跃法MR血管成像(3D time of flight magnetic resonance angiography,3D-TOF MRA),是一种扰相梯度回波序列,采用短回波时间(echo time,TE),短重复时间(repetition time,TR)及较小激发角度,使斑块显示为低信号、血流为高信号,在颅外颈动脉斑块成像中能够区分出管壁、血流及斑块等不同成分[9],在显示低信号的纤维帽和高信号的斑块内出血(intraplaque hemorrhage,IPH)等方面具有优势。

1.2 黑血技术

       "黑血技术"即使用双反转恢复、饱和脉冲法等方法来抑制管腔内血液信号,使血流呈低信号、管壁软组织和斑块呈较高信号,从而更好地显示管壁和斑块等结构。有学者研究发现,双反转恢复法较饱和脉冲法对血流的抑制效果更好,该血管壁成像方法临床应用较广泛,近年来被国内外学者用于颅内动脉管壁的成像研究,并获得了较好的病理印证,是HR-MRI黑血技术现阶段比较公认的标准方法。

2 颅内HR MRI成像技术进展

2.1 三维磁化准备快速梯度回波序列

       Mugler等[10]于1990年首次提出三维磁化准备快速梯度回波序列(3D magnetization prepared rapid gradient echo,3D MP-RAGE)序列,并将其应用于腹部与头颅的MR成像。3D MP-RAGE序列依赖反转恢复脉冲能很好地抑制血流信号和背景组织,较为敏感地识别出斑块内出血(intraplaque hemorrhage,IPH)信号,与传统的T1W和TOF序列相比,3D MP-RAGE序列可对IPH进行较准确的定量测量,其测量结果与病理结果具有较高的一致性[11]。Kwak等[12]采用3D MP-RAGE序列对大脑中动脉(middle cerebral artery,MCA)夹层进行高分辨率MR管壁成像研究,发现该序列能很好地显示假腔内出血信号。

2.2 三维同时非对比增强血管成像和斑块内出血成像序列

       三维同时非对比增强血管成像和斑块内出血(3D simultaneous noncontrast angiography and intraplaque hemorrhage,3D SNAP)成像序列充分利用选择性相位敏感反转恢复(slab-selective phase-sensitive inversion-recovery,SPI)技术的优势(IPH显示为高信号,血流显示为低信号),只需一次扫描就可区分出狭窄管腔和IPH;该技术既能在一次扫描过程中检测出ICAD管腔狭窄程度及IPH两个重要危险因素,又能灵活地对这两个因素进行独立分析或联合分析[13]。Wang等[14]分别用3D SNAP序列和3D TOF序列对大脑中动脉(middle cerebral artery,MCA)成像,发现两者在显示动脉狭窄病变方面具有较高的一致性,且3D SNAP成像对大脑中动脉最小可见分支的显示优于TOF图像。

2.3 3D快速自旋回波序列

       3D快速自旋回波(3D turbo spin echo,3D TSE)序列采用非选择脉冲和变角度回聚脉冲,使回波间距明显缩短,扫描效率得到提高[15]。该技术由不同的MR平台优化后形成了GE公司的CUBE序列、Siemens公司的SPACE序列和Philips公司的VISTA序列。Edjlali等[16]在3.0 T下采用变翻转角度3D快速自旋回波T1(CUBE T1)非对比增强成像对11例颈动脉夹层患者进行研究,发现该序列可准确识别动脉夹层管壁壁间血肿,弥补了传统2D轴位成像的不足。2010年Fan等[17]将运动敏感散相脉冲(flow-sensitive dephasing,FSD)与3D SPACE序列相结合,提高了管壁与大管腔之间的CNR (P<0.001)及管壁与残余血流区域的CNR (P<0.001)。Zhu等[18]认为3D VISTA成像可以区分获得性动脉粥样硬化性狭窄与椎动脉发育不全(vertebral artery hypoplasia,VAH)。Qiao等[19]对13例健康志愿者及4例患者行3D VISTA成像研究,并与传统的2D TSE成像对比,发现管壁SNR提高了约60%,管腔与管壁的CNR提高了约74%。

3 颅内血管壁高分辨率MR成像临床应用新进展

3.1 颅内动脉粥样硬化性病变

       颅内动脉粥样硬化性病变(intracranial atherosclerotic disease,ICAD)是缺血性脑卒中主要风险之一。在中国,缺血性脑卒中患者约33%~50%存在颅内动脉粥样硬化[20]。Turan等[21]报道,3.0 T HR-MRI在体粥样硬化斑块成分与症状性ICAD患者斑块的病理标本具有较高一致性,可研究在体颅内动脉粥样硬化狭窄的病理改变,定性及定量分析斑块成分大小,探测管壁、管腔结构。HR-MRI可用于测量管壁厚度、管腔面积和管壁面积,分析斑块负荷、管壁重构及判断斑块易损性。Chung等[22]将HR-MRI应用于椎动脉脑卒中患者的成像研究并获得其病理结果,发现HR-MRI能够确定其潜在的病理生理机制,从而改善症状性颅内动脉疾病的风险分层和治疗决策。

3.2 烟雾病

       烟雾病(Moyamoya disease,MMD)是一种由于单侧或双侧颈内动脉终末端、MCA或大脑前动脉起始段狭窄或闭塞性脑血管疾病,常伴有异常血管网形成,其发病率仅次于动脉粥样硬化性MCA闭塞[23,24]。临床表现与动脉粥样硬化性疾病相近,常难以鉴别,且有时可并发。Kim等[25]对Moyamoya病、颅内动脉粥样硬化患者MCA管壁进行高分辨率扫描,发现Moyamoya病患者MCA狭窄部位血管外径较小,少见偏心斑块,增强扫描局部未见明显强化。与动脉粥样硬化病变组相应病变部位比较,MMD患者同心圆型管壁更加均匀,伴有侧支血管形成,常可见MCA病理收缩现象,可作为病程进展的一个重要征象[26,27],从而对MMD病程不同阶段进行监测及治疗。

3.3 颅内动脉夹层

       颅内动脉夹层多发于椎基底动脉,是青年患者缺血性脑卒中及自发性蛛网膜下腔出血(subarachnoid hemorrhage,SAH)的常见病因,在东亚人群中发病率达67%~90%。Jung等[28]采用3.0 T HR-MRI对自发性破裂和未破裂的急性颅内动脉夹层(spontaneous and unruptured acute intracranial artery dissection,SID)患者进行定量解剖研究,并对各脑动脉之间的差异进行了探讨,从而扩宽了HR-MR VWI的研究方向。Natori等[29]对16例颅内椎基底动脉夹层(intracranial vertebrobasilar artery dissection,iVBD)患者进行前瞻性研究,发现与多序列MRI相比,T1W (3D-vascular wall imaging) 3D-VWI能直接显示脑卒中急性期血管壁异常病变,可清楚的显示夹层内膜瓣、双腔征以及假腔内血肿等。Chung等[22]认为HR-MRI可以发现大脑前动脉和MCA等颅内更加细小分支血管夹层。

3.4 颅内动脉炎性病变

       颅内动脉炎性病变是一种因感染、药物或变态反应等因素导致脑动脉管腔狭窄、闭塞,病变供血区脑组织缺血、梗死的脑血管疾病,是缺血性脑卒中的发病原因之一。Saam等[30]报道,采用脂肪抑制技术下的HR-MR对比增强T1WI序列可对颅内动脉炎性病变进行诊断,该技术可代替常规血管造影和脑活检等有创性检查;此外,HR-MRI还能提供疾病相关炎性活动信息,可用于监测抗炎治疗。Siemonsen等[31]经活检证实HR-MRI能可靠地检测出巨细胞性动脉炎(giant cell arteritis,GCA),发现病变颞浅动脉和枕动脉管壁呈弥漫性同心圆型增厚,病变处管壁光滑,对比增强明显强化,该方法检测GCA的灵敏度和特异性均可达80%。

3.5 其他脑血管病变

       有学者将3D HR-MRI管壁成像应用于颅内动脉瘤、VAH等疾病导致缺血性脑卒中机制的研究[18,32]。Li等[33]对放疗后患者大脑中动脉行HR-MRI检查,发现病变管壁呈同心圆增厚,增强扫描均匀强化,其特征与动脉炎一致。近年有学者认为MRI管壁成像在鉴别血管炎与可逆性脑血管收缩综合征(reversible cerebral vasoconstriction syndrome,RCVS)方面也有重要价值[34,35]

4 存在问题及展望

       高分辨率MR血管壁成像(high resolution magnetic resonance vascular wall imaging,HR-MR VWI)是目前唯一可在体进行颅内血管壁成像的无创检查技术,具有高空间分辨率、对比-噪声比(contrast/noise ratio,CNR)及信噪比(signal/noise ratio,SNR)等优势;可在体、无创、无辐射地评估颅内血管壁病变情况,为脑血管病变鉴别诊断、对因治疗提供极大帮助和影像依据,具有很大的潜力和临床应用前景,有望成为临床脑血管病鉴别诊断、预后评估及早期预防的重要检查手段之一。目前,HR-MR颅内血管壁成像仍存在扫描序列及参数不统一、扫描时间较长、病人耐受差、受运动伪影影响较大等问题,需要更多科研团队积极开展相关研究,并对成像参数及扫描序列做进一步改进和统一,相信随着相应研究的进展,这些问题即将被解决,HR-MRI将成为脑血管病变的一项常规检查手段。

[1]
Wang Y, Li Z, Zhao X, et al. Stroke care quality in China: substantial improvement, and a huge challenge and opportunity. Int J Stroke, 2017, 12(3): 229-235.
[2]
Wang Y, Zhao X, Liu L, et al. Prevalence and outcomes of symptomatic intracranial large artery stenoses and occlusions in China: the Chinese Intracranial Atherosclerosis (CICAS) study. Stroke, 2014, 45(3):663-669.
[3]
Xu P, Lv L, Li S, et al. Use of high-resolution 3.0-T magnetic resonance imaging to characterize atherosclerotic plaques in patients with cerebral infarction. Exp Ther Med, 2015, 10(6): 2424-2428.
[4]
Zhao DL, Deng G, Xie B, et al. High-resolution MRI of the vessel wall in patients with symptomatic atherosclerotic stenosis of the middle cerebral artery. J Clin Neurosci, 2015, 22(4): 700-704.
[5]
Leng X, Wong KS, Liebeskind DS. Evaluating intracranial atherosclerosis rather than intracranial stenosis. Stroke, 2014, 45(2): 645-651.
[6]
Zhang DF, Chen YC, Chen H, et al. A high-resolution MRI study of relationship between remodeling patterns and ischemic stroke in patients with atherosclerotic middle cerebral artery stenosis. Front Aging Neurosci, 2017, 9: 140.
[7]
Sui B, Gao P, Lin Y, et al. Distribution and features of middle cerebral artery atherosclerotic plaques in symptomatic patients: a 3.0 T high-resolution MRI study. Neurol Res, 2015, 37(5): 391-396.
[8]
Bhatti L, Hoang JK, Dale BM, et al. Advanced magnetic resonance techniques: 3 T. Radiol Clin North Am, 2015, 53(3): 441-455.
[9]
Li M, Le WJ, Tao XF, et al. Advantage in bright-blood and black-blood magnetic resonance imaging with high-resolution for analysis of carotid atherosclerotic plaques. Chin Med J (Engl), 2015, 128(18): 2478-2484.
[10]
Mugler JP 3rd, Brookeman JR. Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE). Magn Reson Med, 1990, 15(1): 152-157.
[11]
Ota H, Yarnykh VL, Ferguson MS, et al. Carotid intraplaque hemorrhage imaging at 3.0-T MR imaging: comparison of the diagnostic performance of three T1-weighted sequences. Radiology, 2010, 254(2): 551-563.
[12]
Kwak HS, Hwang SB, Chung GH, et al. High-resolution magnetic resonance imaging of symptomatic middle cerebral artery dissection. J Stroke Cerebrowasc Dis, 2014, 23(3): 550-553.
[13]
Wang J, Börnert P, Zhao H, et al. Simultaneous noncontrast angiography and intraplaque hemorrhage (SNAP) imaging for carotid atherosclerotic disease evaluation. Magn Reson Med, 2013, 69(2): 337-345.
[14]
Wang J, Guan M, Yamada K, et al. In vivo validation of simultaneous non-contrast angiography and intraplaque hemorrhage (SNAP) magnetic resonance angiography: an intracranial artery study. PLoS One, 2016, 11(2): e0149130.
[15]
Mugler JP 3rd, Bao S, Mulkern RV, et al. Optimized singleslab three-dimensional spin-echo MR imaging of the brain. Radiology, 2000, 216(3): 891-899.
[16]
Edjlali M, Roca P, Rabrait C, et al. 3D fast spin-echo T1 black-blood imaging for the diagnosis of cervical artery dissection. AJNR Am J Neuroradiol, 2013, 34(9): E103-E109.
[17]
Fan Z, Zhang Z, Chung YC, et al. Carotid arterial wall MRI at 3T using 3D variable-flip-angle turbo spin-echo (TSE) with flow-sensitive dephasing (FSD). J Magn Reson Imaging, 2010, 31(3): 645-654.
[18]
Zhu XJ, Wang W, Du B, et al. Wall imaging for unilateral intracranial vertebral artery hypoplasia with three-dimensional high-isotropic resolution magnetic resonance images. Chin Med J (Engl), 2015, 128(12): 1601-1606.
[19]
Qiao Y, Steinman DA, Qin Q, et al. Intracranial arterial wall imaging using three-dimensional high isotropic resolution black blood MRI at 3.0 Tesla. J Magn Reson Imaging, 2011, 3(1): 22-30.
[20]
Ojha R, Huang D, An H, et al. Distribution of ischemic infarction and stenosis of intra-and extracranial arteries in young Chinese patients with ischemic stroke. BMC Cardiovasc Disord, 2015, 15: 158.
[21]
Turan TN, Rumboldt Z, Granholm AC, et al. Intracranial atherosclerosis:correlation between in-vivo 3T high resolution MRI and pathology. Atherosclerosis, 2014, 237(2): 460-463.
[22]
Chung JW, Kim BJ, Choi BS, et al. High-resolution magnetic resonance imaging reveals hidden etiologies of symptomatic vertebral arterial lesions. J Stroke Cerebrovasc Dis, 2014, 23(2): 293-302.
[23]
Bang OY, Fujimura M, Kim SK, et al. The pathophysiology of moyamoya disease:an update. J Stroke, 2016, 18(1): 12-20.
[24]
Kim JS. Moyamoya disease: epidemiology,clinical features,and diagnosis. J Stroke, 2016, 18(1): 2-11.
[25]
Kim JM, Jung KH, Sohn CH, et al. High-resolution MR technique can distinguish moyamoya disease from atherosclerotic occlusion. Neurology, 2013, 80(8): 775-776.
[26]
Ryoo S, Cha J, Kim SJ, et al. High-resolution magnetic resonance wall imaging findings of Moyamoya disease. Stroke, 2014, 45(8): 2457-2460.
[27]
Yuan M, Liu ZQ, Wang ZQ, et al. High-resolution MR imaging of the arterial wall in moyamoya disease. Neurosci Lett, 2015, 584: 77-82.
[28]
Jung SC, Kim HS, Choi CG, et al. Quantitative analysis using high-resolution 3T MRI in acute intracranial artery dissection. J Neuroimaging. 2016, 26(6): 612-617.
[29]
Natori T, Sasaki M, Miyoshi M, et al. Detection of vessel wall lesions in spontaneous symptomatic vertebrobasilar artery dissection using T1-weighted 3-dimensional imaging. J Stroke Cerebrovasc Dis, 2014, 23(9): 2419-2424.
[30]
Saam T, Habs M, Pollatos O, et al. High-resolution black-blood contrast-enhanced T1 weighted images for the diagnosis and follow-up of intracranial arteritis. Br J Radiol, 2010, 83(993): e182-e184.
[31]
Siemonsen S, Brekenfeld C, Holst B, et al. 3T MRI reveals extra- and intracranial involvement in giant cell arteritis. AJNR Am J Neuroradiol, 2015, 36(1): 91-97.
[32]
Endo H, Niizuma K, Fujimura M, et al. Ruptured cerebral microaneurysm diagnosed by 3-dimensional fast spin-echo T1 imaging with variable flip angles. J Stroke Cerebrovasc Dis, 2015, 24(8): e231-e235.
[33]
Li M, Wu SW, Xu WH. High-resolution MRI of radiation-induced intracranial vasculopathy. Neurology, 2015, 84(6): 631.
[34]
Mossa-Basha M, Hwang WD, De HA, et al. Multicontrast high-resolution vessel wall magnetic resonance imaging and its value in differentiating intracranial vasculopathic processes. Stroke, 2015, 46(6): 1567-1573.
[35]
Obusez EC, Hui F, Hajj-Ali RA, et al. High-resolution MRI vessel wall imaging:spatial and temporal patterns of reversible cerebral vasoconstriction syndrome and central nervous system vasculitis. AJNR Am J Neuroradiol, 2014, 35(8): 1527-1532.

上一篇 小肠炎性肌纤维母细胞肿瘤CT和MRI表现一例
下一篇 网格细胞的电生理及脑功能成像研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2