分享:
分享到微信朋友圈
X
综述
高分辨率磁共振血管壁成像在评估颅内动脉瘤稳定性中的研究进展
朱梦颖 李澄 陈雅筝 陈晓晖 赵登玲 彭新桂

朱梦颖,李澄,陈雅筝,等.高分辨率磁共振血管壁成像在评估颅内动脉瘤稳定性中的研究进展.磁共振成像, 2018, 9(8): 631-636. DOI:10.12015/issn.1674-8034.2018.08.014.


[摘要] 传统的影像学技术如数字减影血管造影术(digital subtraction angiography,DSA)、CT血管造影术(computed tomography angiography,CTA)及磁共振血管造影术(magnetic resonance angiography,MRA),对颅内动脉瘤的检出、定位及形态学的评估具有一定优势,而对动脉瘤本身血管特征的评估存在很大的局限性。近年来,高分辨率磁共振血管壁成像(high resolution magnetic resonance vessel wall imaging,HR-VWI)逐渐应用于动脉管壁结构的观察与分析,与血管壁的病理特征相结合,对颅内动脉瘤的稳定性进行直接定性评估。笔者将对HR-VWI技术在不同类型颅内动脉瘤中的应用进行综述。
[Abstract] Traditional imaging techniques, such as digital subtraction angiography (DSA), computer tomography angiography (CTA) and magnetic resonance angiography (MRA), can detect and locate intracranial aneurysms and can also evaluate its morphological features. However, these techniques have great limitations in the assessment of the vessel wall characteristics of aneurysm itself. In recent years, high-resolution vessel wall imaging (HR-VWI), combined with the pathological features of the vessel wall, has been gradually applied on the observation and analysis of vessel wall. Then the stability of intracranial aneurysms can be directly evaluated qualitatively. In this review we discuss the application of HR-VWI in various types of intracranial aneurysms.
[关键词] 磁共振成像;血管壁成像;颅内动脉瘤
[Keywords] Magnetic resonance imaging;Vessel wall imaging;Intracranial aneurysm

朱梦颖 东南大学附属中大医院影像科,南京 210009

李澄* 东南大学附属中大医院影像科,南京 210009

陈雅筝 东南大学附属中大医院影像科,南京 210009

陈晓晖 东南大学附属中大医院影像科,南京 210009

赵登玲 东南大学附属中大医院影像科,南京 210009

彭新桂 东南大学附属中大医院影像科,南京 210009

通讯作者:李澄,E-mail:cjr.licheng@vip.163.com


基金项目: 江苏省卫生计生委项目 编号:H2017008 江苏省自然科学基金(青年基金) 编号:BK20170704
收稿日期:2018-03-20
接受日期:2018-06-01
中图分类号:R445.2; R593.24 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2018.08.014
朱梦颖,李澄,陈雅筝,等.高分辨率磁共振血管壁成像在评估颅内动脉瘤稳定性中的研究进展.磁共振成像, 2018, 9(8): 631-636. DOI:10.12015/issn.1674-8034.2018.08.014.

       颅内动脉瘤是一种常见的脑血管病,是指颅内动脉的病理性扩张、膨大,存在于3.6%~6%的人群中[1,2]。颅内动脉瘤破裂是蛛网膜下腔出血(subarachnoid haemorrhage,SAH)的首要病因,致残率及致死率均可达1/3[3,4,5]。因此,精确评估颅内动脉瘤的特征对预测其破裂风险至关重要。以往的影像学检查如数字减影血管造影术(digital subtraction angiography,DSA)、CT血管造影术(computed tomography angiography ,CTA)及磁共振血管造影术(magnetic resonance angiography,MRA),只能通过动脉瘤的位置、大小、形态等信息间接评价颅内动脉瘤的破裂风险。如:生长中的颅内动脉瘤具有破裂的倾向,且更易自发性出血[6];位于前交通动脉的动脉瘤比其他前循环动脉瘤更易破裂[7];瘤体长度/瘤颈宽度越大,动脉瘤破裂风险越高[8];另外,含子囊的动脉瘤,其破裂风险更高[9]。最新研究表明,当动脉瘤的瘤壁组织发生炎症反应时,其破裂的风险大幅度提高[10]。由此可见,以上这些评价指标虽然在预测颅内动脉瘤破裂风险方面具有一定的价值,但因其不能直观反映瘤壁的特征,故其精准性较差。近年来,高分辨率磁共振管壁成像(high resolution magnetic resonance vessel wall imaging,HR-VWI)技术已逐渐应用于颅内血管病变的研究,如动脉硬化、血管炎和动脉瘤等[11,12,13,14]。同时,已有实验证实,不稳定或破裂颅内动脉瘤的瘤壁明显强化[15]。因此,应用磁共振管壁成像技术,通过观察瘤壁的特征直接判断动脉瘤的稳定性。由于此技术具有广阔的应用前景,笔者将对近几年HR-VWI技术在不同病理类型的动脉瘤稳定性评估中的应用进展进行如下综述。

1 颅内动脉瘤HR-VWI成像的主要序列

       颅内动脉具有管径细、管壁纤薄等特征,如大脑中动脉起始部血管内径为3~5 mm,血管壁厚度为0.5~0.7 mm。有研究显示,颅内动脉瘤因瘤壁病理性破坏或重构导致瘤壁变薄或增厚,尸检与术中病理组织切片得知动脉瘤壁的厚度为0.02~0.50 mm[16]。因此,要求磁共振血管壁成像分辨率在毫米级以下水平。此外,颅内动脉走行迂曲、动脉瘤形态多样,需要三维成像技术同时显示动脉瘤长轴、瘤颈及动脉瘤与载瘤动脉的关系,从多个截面对动脉瘤壁进行观察。最后,动脉瘤壁与周围脑实质之间缺乏良好的组织对比[17],因此常需借助对比剂来提高动脉瘤壁的成像质量。

       HR-VWI序列主要包括T1加权成像(T1 weighted imaging ,T1WI)、T2加权成像(T2 weighted imaging,T2WI)、质子密度加权成像(proton density weighted image,PDWI)及运动敏感驱动平衡三维快速自旋回波(motion-sensitized driven equilibrium three-dimensional turbo spin echo,MSDE-3D-TSE)序列等,以上序列对动脉管壁的显示各具优势。其中,T1 HR-VWI序列的优势较为明显,主要有:①该序列可同时获得"黑血"及"黑脑脊液",从而清晰显示动脉血管壁[13];②应用T1WI序列进行钆增强扫描可显示血管壁的强化情况,这也是HR-VWI技术的核心部分。PDWI序列也可获得"黑血"信号,但对脑脊液信号的抑制较弱,此序列的优势为增强前后图像均有较高信噪比[18]。并且,Ryu等[19]在研究颅内动脉粥样硬化时,发现PDWI序列在显示血管边缘及管腔时更具优势。T2WI序列可获得"黑血"但无"亮脑脊液",在血管壁成像中尤其适用于有钆禁忌证的患者。MSDE-3D-TSE序列对管腔中快速流动血液的抑制效果好,采集图像的时间短,可实现3D成像。

2 HR-VWI技术在不同病理类型颅内动脉瘤中的应用

       颅内血管壁的组成主要包括内膜、中膜和外膜。未破裂动脉瘤的管壁特点是含有完整的内皮细胞层和无炎性细胞的光滑平滑肌层。相反,破裂或不稳定动脉瘤的管壁相对脆弱,可能由于炎性巨噬细胞浸润,导致管壁平滑肌细胞受损、基质蛋白降解[20]。外膜炎性反应及血管滋养管促进颅内巨大动脉瘤的形成[21]。组织病理学及影像学研究均表明,破裂或不稳定动脉瘤的瘤壁较薄,更易形成血栓,炎性标志物表达更高[20,22,23,24]

2.1 囊性动脉瘤

       HR-VWI对于预测颅内囊性动脉瘤的发生发展具有一定作用。2012年,Hasan等[25]研究发现,以纳米氧化铁作为增强对比剂,在T2WI-TSE序列为低信号,利用此特征探究纳米氧化铁早期吸收与动脉瘤稳定性的关系。注射对比剂24 h及72 h后分别对受试者进行HR-VWI扫描成像,发现24 h即强化的动脉瘤组极不稳定,并且很可能在6个月内发生破裂。因此得出,早期强化的动脉瘤的破裂风险远远高于延迟强化和无强化的动脉瘤。此外,该研究还对一部分动脉瘤标本进行免疫组化分析,发现早期强化动脉瘤的瘤壁炎性细胞表达量明显高于其他两组。但由于纳米氧化铁对比剂的安全性尚未明确,其临床应用受到限制。后来,Edjlali等[11]应用GE 3.0 T VW-MRI的T1 FSE序列,在注射钆剂前后分别扫描成像,发现大约90%增大或破裂的动脉瘤发生环形强化,而稳定动脉瘤仅有30%出现这一特征,差异有统计学意义(P<0.01)。同年,Nagallata等[26]应用3.0 T MRI的MSDE-3D-TSE序列,对117例动脉瘤患者进行扫描成像。此次研究将动脉瘤壁强化程度分为明显强化(即与脉络从或静脉丛强化程度相等)、轻度强化(瘤壁信号高于增强前)、无强化。结果显示,78.3%的破裂动脉瘤瘤壁出现强化,而未破裂组只有4.8%的强化率,并且破裂动脉瘤组瘤壁强化程度显著高于未破裂组。但是,瘤壁强化程度与动脉瘤发生发展的关系需要进一步验证。不久后,Omodaka等[27]对动脉瘤瘤壁强化程度进行首次定量评估,引入瘤壁强化指数(wall enhancement index,WEI)这一概念。结果表明,破裂动脉瘤组的WEI明显高于未破裂动脉瘤组。并且,WEI区分破裂和未破裂动脉瘤的敏感性为96%,特异性为47%。最近,Wang等[28]对瘤壁强化速率(enhancement rate,ER)及瘤壁部分强化(partial wall enhancement,PWE)的意义进行研究。结果表明,ER (OR=6.638)和PWE (OR=6.710)能更好地预测颅内动脉瘤破裂的风险,并且明确到当ER≥61.5%时,应当引起重视。总而言之,这些研究均表明,颅内动脉瘤瘤壁强化及程度与动脉瘤是否稳定有关,而动脉瘤的瘤壁炎性反应又与动脉瘤的稳定性密切相关,因此有时可将瘤壁强化作为血管壁炎性反应的标志。尤其值得注意的是,不稳定或破裂动脉瘤也可能无瘤壁强化的表现,这可能与较薄的动脉瘤壁有关[11]。同样,一些稳定的动脉瘤也可能发生瘤壁强化[21]。此外,截至目前,大多数钆增强HR-VWI研究的动脉瘤均小于1 cm,而对于更大或巨大动脉瘤的研究较少。因此,需要更多大量的实验研究来证实瘤壁强化这一特征的可靠性。

       HR-VWI还可对动脉瘤瘤壁形态学特征进行很好地评价。传统认为,瘤壁较薄的动脉瘤相对易破裂、出血。因此,研究动脉瘤壁的厚度对于评估动脉稳定性具有重要意义。Kleinloog等[29]应用7.0 T MRI的3D MPRAGE序列,对瘤壁厚度测量的可实施性进行研究。研究引入"表观厚度"这一概念,即将瘤壁强度信号与周围脑组织信号配比,然后将动脉瘤壁表观厚度与实际测得的厚度做相关性分析。活检测量2个动脉瘤壁组织标本,结果显示瘤壁厚度与表观厚度间呈线性相关, Pearson相关系数为0.86。该团队还采用楔形标准化模型进行了进一步验证,结果表明,表观厚度与标准化模型的厚度具有很好的线性相关。因此,可以得出这样的结论:现有的高分辨率磁共振血管壁成像技术可以实现动脉瘤壁厚度的定性研究[29,30]。但是,瘤壁厚度并不能明确作为评估动脉瘤破裂的独立因素。Wang等[28]研究发现,破裂动脉瘤的瘤壁厚高于未破裂动脉瘤。他们解释可能由于测量的为注射对比剂后的瘤壁,掺杂了一些其他组织成分或漏出的对比剂,也可能是人们高估了瘤壁厚度导致的部分容积效应。

       近期,Kim等[31]研究一多发颅内动脉瘤女性患者,对其左侧大脑中动脉分叉处动脉瘤进行夹闭。随访1年后发现对侧颞前动脉瘤有自发恢复的趋势,他们应用HR-VWI对其进行评价,不仅发现瘤体体积变小,并证实瘤内无血栓形成、管腔较前相仿、瘤壁无明显强化。最终,临床决定继续观察。由此,HR-VWI也可在颅内动脉瘤随访过程中发挥一定的作用。

2.2 夹层动脉瘤

       颅内动脉夹层(intracranial arterial dissection ,IAD)是由不同原因引起血管腔内血液渗入血管壁间,也可由于动脉壁本身滋养动脉破裂形成壁内血肿的一种疾病。如果形成瘤样突起,则称为颅内夹层动脉瘤(intracranial dissecting aneurysm,IDA)[32,33,34,35]。若壁内血肿在内膜和中膜之间形成则可引起动脉管腔狭窄,产生相应的缺血症状。由于颅内血管的外膜较薄,若壁内血肿在中膜和外膜之间形成则易发生破裂或形成假性动脉瘤,造成蛛网膜下腔出血,这也是夹层动脉瘤最为严重的并发症[36,37]

       HR-VWI不仅能显示血管腔狭窄和扩张、血管闭塞等间接征象,还可应用"黑血"序列清晰显示动脉夹层的直接征象(如壁内血肿、双腔征、内膜瓣)。Natori等[38]应用不同影像技术对60例椎基底动脉夹层患者进行扫描成像,结果显示T1WI 3D-VWI成像观测到管腔狭窄、动脉瘤样扩张、壁内高信号和内膜瓣的敏感性分别为100%、68.8%、100%和6.3%;而应用传统MRA及BPAS技术的敏感性分别为93.8%、75.0%、75.0%和75.0%。对比得出,T1WI 3D-VWI成像技术可更加直观地显示动脉瘤管腔及瘤壁的病变特征。并且,壁内血肿可清晰表现为动脉壁之间的新月形异常信号,在不同时期信号高低表现亦不相同。早期,壁内血肿多呈短T1长T2,后期逐渐变为低信号。该研究还发现,假腔中缓慢的血流或滋养血管的增殖可使血管壁发生异常强化,具有特征性意义。另外,有两个研究也都证实,相比于无创管腔成像(如MRA、CTA),HR-VWI T1WI更易观察到内膜瓣及双腔征[39,40]。需要注意的是,当血管管腔狭窄伴近端动脉痉挛时,夹层动脉瘤易误诊为囊性动脉瘤,两者的区别是IAD的血管狭窄是不规则的,而动脉瘤破裂引起的血管痉挛是规则的。因为夹层动脉瘤所致的急性壁内血肿比梭形/囊性动脉瘤更加危急,常常需要进行责任血管栓塞、颅内动脉支架植入术或分流等介入治疗[36],因此对于它们的鉴别具有重要意义。

2.3 梭形动脉瘤

       梭形动脉瘤为血管壁的短距离非囊性膨胀,大多学者认为动脉粥样硬化是主要原因[41]。梭形动脉瘤由于内弹力层薄弱且部分断裂,易发生破裂出血,甚至夹层形成,导致致残率、致死率明显升高。此外,血管壁炎症反应与梭形动脉瘤的发生发展密切相关[42]。Nasr等[43]对152例椎基底动脉瘤患者进行研究,发现瘤壁存在T1信号时,随访后发现有40%持续增长或破裂;而瘤壁无T1信号时,随访仅发现16%的动脉瘤增长或破裂。

       以往研究主要通过形态和大小对动脉瘤的发生发展进行预测。近年来,HR-VWI已被用来显示这些动脉瘤的管壁特征。有研究表明,伴有壁内血肿的动脉瘤瘤壁呈T1高信号;注射钆对比剂后,瘤壁强化,从而预测动脉瘤的生长[22,44]。较早前,已有团队对52个梭形动脉瘤进行研究,发现有增长趋势的动脉瘤瘤壁呈T1高信号[45]。另外,Iihara等[22]对9例椎基底动脉梭形动脉瘤伴有血栓的患者进行研究,发现瘤壁均呈T1高信号,SSFP序列增强扫描后瘤壁明显强化。由于梭形动脉瘤壁内血肿形成时,其破裂的风险显著提高。因此,大多数时候可通过HR-VWI观察瘤壁有无强化来间接预测梭形动脉瘤的稳定性,但仍需要更全面更系统的研究来证实这一特征的可靠性。

2.4 不规则型动脉瘤

       Bjorkman等[46]研究发现,动脉瘤的不规则形状是动脉瘤破裂的独立危险因素,并与动脉瘤破裂存在最强的相关性(比值比为90.3,95%可信区间为47~173.5)。最近,Lv等[47]应用HR-VWI对颅内多发动脉瘤进行研究,发现不规则指数(nonsphericity index,NSI)与瘤壁强化具有高度一致性(比值比为3.54,95%置信区间为1.10~11.35,P=0.033),间接证明瘤壁强化可作为评估颅内动脉瘤高风险性的一个指标。

3 总结

       虽然磁共振管壁成像在预测动脉瘤破裂风险方面还处于初级阶段,但它使人们对动脉瘤的评估从单一的"解剖"水平扩展至"病理生理"水平,真正意义上实现了"血管"成像,而非"血流"成像,使人们对颅内动脉瘤稳定性的预测更加可靠。并且随着HR-VWI技术的发展,动脉瘤壁环形强化程度逐渐从定性到半定量,再精准到完全定量。因此,如何科学利用钆剂、纳米氧化铁或其他分子标志物来判断动脉瘤壁的病理学改变,从而准确做出动脉瘤稳定性的评估,将成为未来的研究趋势。但管壁成像技术也存在着一些不可忽视的问题,如由于动脉瘤壁纤薄的特点及部分容积效应的制约,磁共振血管壁成像分辨率仍不够高;成像序列扫描时间较长,要想采集分辨率<0.5 mm的动脉瘤壁图像,扫描时间一般超过10 min。并且,由于动脉瘤本身危险性较高、患者耐受性较差等问题,该项技术目前尚未作为临床常规检查。此外,仍需大量前瞻性实验研究、长期随访以及相关病理组织学标本的对照,来进一步研究瘤壁强化的具体机制及意义。

[1]
Arimura H, Li Q, Korogi Y, et al. Computerized detection of intracranial aneurysms for three-dimensional MR angiography: Feature extraction of small protrusions based on a shape-based difference image technique. Med Physics, 2006, 33(2): 394-401.
[2]
Gasparotti R, Liserre R. Intracranial aneurysms. Euro Radiol, 2005, 15(3): 441-447.
[3]
Morita A, Kirino T, Hashi K, et al. The natural course of unruptured cerebral aneurysms in a Japanese cohort. N Engl J Med, 2012, 366(26): 2474-2482.
[4]
Lin N, Ho A, Charoenvimolphan N, et al. Analysis of morphological parameters to differentiate rupture status in anterior communicating artery aneurysms. PLoS One, 2013, 8(11): e79635.
[5]
Zhao L, Zhang L, Zhang X, et al. An analysis of 1256 cases of sporadic ruptured cerebral aneurysm in a single Chinese institution. PLoS One, 2014, 9(1): e85668.
[6]
Inoue T, Shimizu H, Fujimura M, et al. Annual rupture risk of growing unruptured cerebral aneurysms detected by magnetic resonance angiography. J Neurosurg, 2012, 117(1): 20-25.
[7]
Bijlenga P, Ebeling C, Jaegersberg M, et al. Risk of rupture of small anterior communicating artery aneurysms is similar to posterior circulation aneurysms. Stroke, 2013, 44(11): 3018-3026.
[8]
Amenta PS, Yadla S, Campbell PG, et al. Analysis of nonmodifiable risk factors for intracranial aneurysm rupture in a large, retrospective cohort. Neurosurgery, 2012, 70(3): 693-701.
[9]
Zhang Y, Mu S, Chen J, et al. Hemodynamic analysis of intracranial aneurysms with daughter blebs. Eur Neurol, 2011, 66(6): 359-367.
[10]
Liu P, Qi H, Liu A, et al. Relationship between aneurysm wall enhancement and conventional risk factors in patients with unruptured intracranial aneurysms: A black-blood MRI study. Interv Neuroradiol, 2016, 22(5): 501-505.
[11]
Edjlali M, Gentric J, Régent-Rodriguez C, et al. Does aneurysmal wall enhancement on vessel wall MRI help to distinguish stable from unstable intracranial aneurysms?. Stroke, 2014, 45(12): 3704-3706.
[12]
Natori T, Sasaki M, Miyoshi M, et al. Evaluating middle cerebral artery atherosclerotic lesions in acute ischemic stroke using magnetic resonance T1-weighted 3-Dimensional vessel wall imaging. J Stroke Cerebrovasc Dis, 2014, 23(4): 706-711.
[13]
Dieleman N, van der Kolk AG, Zwanenburg JJM, et al. Imaging intracranial vessel wall pathology with magnetic resonance imaging: Current prospects and future directions. Circulation, 2014, 130(2): 192-201.
[14]
Endo H, Niizuma K, Fujimura M, et al. Ruptured cerebral microaneurysm diagnosed by 3-Dimensional fast spin-echo T1 imaging with variable flip angles. J Stroke Cerebrovasc Dis, 2015, 24(8): e231-e235.
[15]
Nagahata S, Nagahata M, Obara M, et al. Wall enhancement of the intracranial aneurysms revealed by magnetic resonance vessel wall imaging using three-dimensional turbo spin-echo sequence with motion-sensitized driven-equilibrium: A sign of ruptured aneurysm?. Clin Neuroradiol, 2016, 26(3): 277-283.
[16]
Kadasi LM, Dent WC, Malek AM. Cerebral aneurysm wall thickness analysis using intraoperative microscopy: effect of size and gender on thin translucent regions. J Neurointerv Surg, 2013, 5(3): 201-206.
[17]
van der Kolk AG, Zwanenburg JJ, Brundel M, et al. Intracranial vessel wall imaging at 7.0-T MRI. Stroke, 2011, 42(9): 2478-2484.
[18]
Qiao Y, Zeiler SR, Mirbagheri S, et al. Intracranial plaque enhancement in patients with cerebrovascular events on high-spatial-resolution MR images. Radiology, 2014, 271(2): 534-542.
[19]
Ryu CW, Kwak HS, Jahng GH, et al. High-resolution MRI of intracranial atherosclerotic disease. Neurointervention, 2014, 9(1): 9-20.
[20]
Kataoka K, Taneda M, Asai T, et al. Structural fragility and inflammatory response of ruptured cerebral aneurysms: A comparative study between ruptured and unruptured cerebral aneurysms. Stroke, 1999, 30(7): 1396-1401.
[21]
Krings T, Piske RL, Lasjaunias PL. Intracranial arterial aneurysm vasculopathies: targeting the outer vessel wall. Neuroradiology, 2005, 47(12): 931-937.
[22]
Iihara K, Murao K, Yamada N, et al. Growth potential and response to multimodality treatment of partially thrombosed large or giant aneurysms in the posterior circulation. Neurosurgery, 2008, 63(5): 832-842, 842-844.
[23]
Hasan DM, Chalouhi N, Jabbour P, et al. Imaging aspirin effect on macrophages in the wall of human cerebral aneurysms using ferumoxytol-enhanced MRI: Preliminary results. J Neuroradiol, 2013, 40(3): 187-191.
[24]
Berge J, Blanco P, Rooryck C, et al. Understanding flow patterns and inflammatory status in intracranial aneurysms: Towards a personalized medicine. J Neuroradiol, 2016, 43(2): 141-147.
[25]
Hasan D, Chalouhi N, Jabbour P, et al. Early change in ferumoxytol-enhanced magnetic resonance imaging signal suggests unstable human cerebral aneurysm: a pilot study. Stroke, 2012, 43(12): 3258-3265.
[26]
Nagahata S, Nagahata M, Obara M, et al. Wall enhancement of the intracranial aneurysms revealed by magnetic resonance vessel wall imaging using three-dimensional turbo spin-echo sequence with motion-sensitized driven-equilibrium: A sign of ruptured aneurysm?. Clin Neuroradiol, 2016, 26(3): 277-283.
[27]
Omodaka S, Endo H, Niizuma K, et al. Quantitative assessment of circumferential enhancement along the wall of cerebral aneurysms using MR imaging. AJNR Am J Neuroradiol, 2016, 37(7): 1262-1266.
[28]
Wang GX, Wen L, Lei S, et al. Wall enhancement ratio and partial wall enhancement on MRI associated with the rupture of intracranial aneurysms. J Neurointerv Surg, 2018, 10(6): 566-570.
[29]
Kleinloog R, Korkmaz E, Zwanenburg JJM, et al. Visualization of the aneurysm wall. Neurosurgery, 2014, 75(6): 614-622.
[30]
Blankena R, Kleinloog R, Verweij BH, et al. Thinner regions of intracranial aneurysm wall correlate with regions of higher wall shear stress: A 7 T MRI study. AJNR Am J Neuroradiol, 2016, 37(7): 1310-1317.
[31]
Kim S, Kang M, Jo J, et al. Spontaneous regression of an intracranial aneurysm following remote aneurysm clipping: evaluation with high-resolution vessel wall MRI. Cardiovasc Intervent Radiol, 2018, 41(4): 660-663.
[32]
Schievink WI. Spontaneous dissection of the carotid and vertebral arteries. N Engl J Med, 2001, 344(12): 898-906.
[33]
Chinese Medical Association. Guidelines for clinical diagnosis and treatment (cardiovascular surgery fascicles). Beijing: People's Medical Publishing House, 2009: 133-139.
中华医学会.临床诊疗指南(心血管外科分册).北京:人民卫生出版社, 2009: 133-139.
[34]
Kobayashi N, Murayama Y, Yuki I, et al. Natural course of dissecting vertebrobasilar artery aneurysms without stroke. AJNR Am J Neuroradiol, 2014, 35(7): 1371-1375.
[35]
Chinese Medical Association Neurosurgery Branch Committee of Neurointervention experts, Chinese Stroke Society Neurointervention Branch, Committee of Young Physicians of the Neurosurgeon Branch of the Chinese Association of Physicians. Chinese expert consensus on imaging diagnosis of intracranial artery dissection. Chin J Neurosurg, 2016, 32(11): 1085-1094.
中国医师协会神经外科医师分会神经介入专家委员会,中国卒中学会神经介入分会,中国医师协会神经外科医师分会青年医师委员会.颅内动脉夹层的影像学诊断中国专家共识.中华神经外科杂志, 2016, 32(11): 1085-1094.
[36]
Fusco MR, Harrigan MR. Cerebrovascular dissections--a review part I: Spontaneous dissections. Neurosurgery, 2011, 68(1): 242-257.
[37]
Santos-Franco JA, Zenteno M, Lee A. Dissecting aneurysms of the vertebrobasilar system: A comprehensive review on natural history and treatment options. Neurosurgical Review, 2008, 31(2): 131-140.
[38]
Natori T, Sasaki M, Miyoshi M, et al. Detection of vessel wall lesions in spontaneous symptomatic vertebrobasilar artery dissection using T1-weighted 3-dimensional imaging. J Stroke Cerebrovasc Dis, 2014, 23(9): 2419-2424.
[39]
Sakurai K, Miura T, Sagisaka T, et al. Evaluation of luminal and vessel wall abnormalities in subacute and other stages of intracranial vertebrobasilar artery dissections using the volume isotropic turbo-spin-echo acquisition (VISTA) sequence: A preliminary study. J Neuroradiol, 2013, 40(1): 19-28.
[40]
Wang Y, Lou X, Li Y, et al. Imaging investigation of intracranial arterial dissecting aneurysms by using 3 T high-resolution MRI and DSA: from the interventional neuroradiologists' view. Acta Neurochir (Wien), 2014, 156(3): 515-525.
[41]
Findlay JM, Hao C, Emery D. Non-atherosclerotic fusiform cerebral aneurysms. Can J Neurol Sci, 2002, 29(1): 41-48.
[42]
Krings T, Mandell DM, Kiehl T, et al. Intracranial aneurysms: from vessel wall pathology to therapeutic approach. Neurology, 2011, 7(10): 547.
[43]
Nasr DM, Brinjikji W, Rouchaud A, et al. Imaging characteristics of growing and ruptured vertebrobasilar non-saccular and dolichoectatic aneurysms. Stroke, 2015, 47(1): 106-112.
[44]
Martin AJ, Hetts SW, Dillon WP, et al. MR imaging of partially thrombosed cerebral aneurysms: Characteristics and evolution. AJNR Am J Neuroradiol, 2011, 32(2): 346-351.
[45]
Mangrum WI, Huston RJ, Link MJ, et al. Enlarging vertebrobasilar nonsaccular intracranial aneurysms: frequency, predictors, and clinical outcome of growth. J Neurosurgery, 2005, 102(1): 72.
[46]
Bjorkman J, Frosen J, Tahtinen O, et al. Irregular shape identifies ruptured intracranial aneurysm in subarachnoid hemorrhage patients with multiple aneurysms. Stroke, 2017, 48(7): 1986-1989.
[47]
Lv N, Tang H, Chen S, et al. Morphological parameters related to aneurysm wall enhancement in patients with multiple intracranial aneurysms. World Neurosurg, 2018, 114: 338-343.

上一篇 疼痛与中脑导水管周围灰质磁共振研究进展
下一篇 影像组学在乳腺癌应用中的研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2