分享:
分享到微信朋友圈
X
临床研究
脑脊液1H-MRS对线粒体脑病的诊断价值研究
周志凌 陆洁艳 郉妩 胡平 廖伟华

周志凌,陆洁艳,郉妩,等.脑脊液1H-MRS对线粒体脑病的诊断价值研究.磁共振成像, 2018, 9(9): 641-647. DOI:10.12015/issn.1674-8034.2018.09.001.


[摘要] 目的 探讨脑脊液1H-MRS对线粒体脑病的诊断价值,为临床诊断提供新的线索和思路。材料与方法 选取经线粒体脑肌病标准评分系统确诊的13例线粒体脑病(mitochondrial disorders,ME)患者及17例临床上疑似线粒体脑病但最终确诊非线粒体病的患者为对照组,所有患者行常规MRI和1H-MRS检查,选取MRI异常信号区(脑内无明显病变者,选取左侧基底节区为感兴趣区)、正常脑组织区及脑脊液区为感兴趣区,分别比较两组患者相应区域乳酸(Lac)峰的差异。结果 脑脊液区1H-MRS显示,10例(10/13) ME脑脊液区可见Lac峰;3例(3/17)对照组脑脊液区见Lac峰。脑内病变区1H-MRS显示,5例(5/12)线粒体脑病患者病变区可见Lac峰,7例(7/12)病变区未见Lac峰,无病变者左侧基底节区未见Lac峰;6例(6/16)对照组病变区可见异常升高的Lac峰。脑脊液区1H-MRS出现Lac峰诊断线粒体脑病的灵敏度、正确指数、阳性似然比、阴性似然比、符合率均优于病灶区。联合脑脊液区与病灶区1H-MRS诊断线粒体脑病分析,相比于单独脑脊液区1H-MRS结果,串联试验的灵敏度降低,特异度升高;并联试验灵敏度不变,特异度降低。串联、并联试验的正确指数及符合率均低于脑脊液区。结论 线粒体脑病NAA峰降低、Cho峰升高无特异性,与其它非线粒体脑病难以鉴别;脑脊液区1H-MRS出现Lac峰对线粒体脑病的诊断价值优于脑内病变区,有助于对脑脊液乳酸水平的检测。
[Abstract] Objective: To investigate the diagnostic value of cerebrospinal fluid 1H-MRS for mitochondrial encephalopathy and provide new clues and ideas for clinical diagnosis.Materials and Methods: Thirteen patients with mitochondrial encephalopathy (ME) and 17 patients with clinically suspected mitochondrial encephalopathy but ultimately diagnosed with non-mitochondrial disease were selected as control group. All patients underwent routine MRI and 1H-MRS examination. The Lac peak were compared between the two groups of patients respectively.Results: Cerebrospinal fluid 1H-MRS showed that 10 cases (10/13) of the cerebrospinal fluid area showed Lac peaks, 3 cases (3/17) of the control group showed Lac peaks in the cerebrospinal fluid area. 1H-MRS showed 5 cases (5/12) Lac peaks were observed in the lesion area of ME. Elevated Lac peaks were observed in the lesion area of the control group in 6 cases (6/16). The sensitivity, correct index, positive likelihood ratio, negative likelihood ratio, and coincidence rate of lac peak in the diagnosis of mitochondrial encephalopathy in the 1H-MRS in cerebrospinal fluid region were better than those in lesion area. Analysis of 1H-MRS diagnosis of mitochondrial encephalopathy combined with cerebrospinal fluid area and lesion area showed that compared with 1H-MRS results of cerebrospinal fluid alone, the sensitivity of the tandem test was reduced, and the specificity was increased. The correct index and coincidence rate of serial and parallel tests were lower than those in the cerebrospinal fluid region.Conclusions: The appearance of Lac peak in cerebrospinal fluid 1H-MRS is superior to that in brain lesion area, which contributes to the lactate level detection in cerebrospinal fluid.
[关键词] 线粒体疾病;脑疾病;磁共振波谱学
[Keywords] Mitochondrial diseases;Brain diseases;Magnetic resonance spectroscopy

周志凌 中南大学湘雅医院放射科,长沙 410005

陆洁艳 中南大学湘雅医院放射科,长沙 410005

郉妩 中南大学湘雅医院放射科,长沙 410005

胡平 中南大学湘雅医院放射科,长沙 410005

廖伟华* 中南大学湘雅医院放射科,长沙 410005

通讯作者:廖伟华,E-mail:ouwenliao@163.com


基金项目: 国家自然科学基金 编号:81671676
收稿日期:2018-03-08
接受日期:2018-03-24
中图分类号:R445.2; R742 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2018.09.001
周志凌,陆洁艳,郉妩,等.脑脊液1H-MRS对线粒体脑病的诊断价值研究.磁共振成像, 2018, 9(9): 641-647. DOI:10.12015/issn.1674-8034.2018.09.001.

       线粒体病(mitochondrial disorders,MD)是由线粒体DNA或核基因缺陷引起细胞内线粒体结构及(或)功能异常,导致细胞呼吸链及能量代谢障碍的一组多系统疾病[1,2]。其中以中枢神经系统受累为主者,称为线粒体脑病(mitochondrial encephalopathy,ME)[3],临床包括多种亚型,其常规MRI表现多无特征性[1,4],常被误诊为缺血性脑卒中、脑炎及脱髓鞘脑病等[5,6]

       磁共振波谱成像(1H-magnetic resonance spectroscopy,1H-MRS)可检测脑组织细胞的多种代谢产物[7],脑组织1H-MRS出现特异性升高的乳酸(Lac)峰是ME特异性较高的征象[5]。目前ME的1H-MRS临床应用多限于脑内异常信号区,但当脑组织异常代谢物浓度较低时,其诊断特异度降低[8]。由于脑内因异常代谢产生的乳酸主要通过脑脊液清除,脑脊液中的乳酸浓度甚至高于脑内病灶区,故本研究旨在探讨脑脊液1H-MRS对线粒体脑病的诊断价值,为临床诊断提供新的线索和思路。

1 材料与方法

1.1 研究对象

       选取中南大学湘雅医院2015年12月至2017年6月期间经临床确诊的13例线粒体脑病患者作为研究对象,其中男4例,女9例;全部病例符合线粒体脑肌病标准评分系统的确诊标准[9],其中线粒体脑病伴乳酸酸中毒及卒中样发作(mitochondrial encephalopathy,lactic acidosis,and stroke-like episodes ,MELAS) 3例,Leigh综合征3例,Alpers'综合征1例,线粒体复合酶I缺乏症2例,其余无法确定亚型4例。对照组选取临床上疑似线粒体脑病但最终确诊为非线粒体病的各类患者共17例,其中男6例,女11例。所有病例均行颅脑常规MRI及1H-MRS检查。

1.1.1 线粒体脑病组的临床资料

       具体见表1

表1  线粒体脑病组患者的临床资料
Tab. 1  Clinical data of patients with mitochondrial encephalopathy

1.1.2 对照组的临床资料

       具体见表2

表2  对照组患者的临床资料
Tab. 2  Clinical data of patients in the control group

1.2 扫描仪器及参数

       采用GE 3.0 T SIGNA HDX磁共振扫描仪,头部正交线圈。

       常规颅脑MRI:轴位T1WI(自旋回波序列,TR 400~600 ms,TE 15~20 ms)、FSE T2WI(快速自旋回波序列,TR 2000~4000 ms,TE 80~120 ms)、FLAIR(液体衰减反转恢复),层厚5 mm,层间距1 mm,扫描层面平行于前后联合连线;矢状位T1WI,层厚5 mm,无间隔。

       1H-MRS:采用PRESS序列,先进行自动预扫描(匀场、抑水,线宽不超过10 Hz),采取超选择性饱和法(very selective saturation,VSS)饱和感兴趣区周围的脂肪,并应用梯度散相位带宽选择性反转序列(band selective inversion with gradientdephasing,BASING)抑制水和脂肪信号,以降低其对感兴趣区内代谢物的共振影响。

       扫描区域:于FLAIR像上选择异常高信号区(若脑内无明显异常信号灶,则选取左侧基底节区为感兴趣区)、脑脊液区(对于侧脑室不大的患者,感兴趣区跨透明隔将双侧额角包括在内)及脑内正常脑组织区作为感兴趣区(region of interest,ROI),避免来自头皮脂肪、颅底骨质的信号干扰。

       扫描参数:TR 1500 ms,TE 35 ms(若谱线于1.33 ppm位置出现异常代谢峰,则加扫TE 144 ms),FOV 22 cm×22 cm~24 cm×24 cm,体素最大选择2.0 cm×2.0 cm×2.0 cm,单次扫描时间为3 min 48 s。

1.3 数据后处理

       使用FuncTool 4.4后处理软件获得代谢物谱线图,按照乳酸(Lac)1.33 ppm选择代谢物峰后采集数据,同时进行适当的校正。正常脑组织内乳酸浓度较低(10~25 ug/dL) ,1H-MRS谱线上不可见Lac峰;采用盲法阅片,当TE为35 ms时于1.33 ppm位置出现高尖峰,且TE为144 ms时该峰倒置,则可判定为Lac峰。

2 结果

2.1 常规MRI表现

2.1.1 线粒体脑病组

       13例线粒体脑病患者中12例(12/13)常规MRI显示异常信号,其中4例主要累及皮质或皮层下区,并呈游走性、迁移性改变,3例主要累及白质区(其中1例伴多发小囊性灶),4例呈双侧基底节区对称性改变,1例呈全脑弥漫性异常信号;2例患者合并脑萎缩改变(图1图2图3)。经治疗后复查,3例患者常规MRI显示病变发生进展或另有新发病灶。

       1例(1/13)线粒体脑病患者常规MRI未见异常。

图1  Leigh综合征(线粒体脑病组03)。A~C:双侧基底节区对称性异常信号;D:DWI病灶呈高信号,提示为急性期;E:ROI位于左侧基底节病灶区(实线框),1H-MRS示1.33 ppm位置处Lac峰;F:ROI位于脑脊液区(虚线框),1H-MRS亦可见Lac峰
Fig. 1  Leigh syndrome (mitochondrial encephalopathy group 03). A-C: Bilateral basal ganglia symmetry abnormal signal. D: DWI lesions showed high signal, suggesting an acute phase. E: ROI was located in the left basal ganglia lesion area (solid frame), 1H-MRS showed 1.33 ppm position at Lac Peak. F: ROI is located in cerebrospinal fluid area (dotted box), and 1H-MRS also shows Lac peak.
图2  MELAS(线粒体脑病组07)。A~C:右侧大脑半球异常信号,双侧脑室明显扩大,脑萎缩改变;D:ROI位于右额叶病灶区(实线框),1H-MRS(TE 144 ms)示1.33 ppm位置处倒置的Lac峰;E、F:ROI位于脑脊液区(虚线框),1H-MRS示明显的Lac双峰,且峰高较病灶区大
图3  线粒体复合酶I缺乏症(线粒体脑病组08)。A~C:双侧脑室旁对称性异常信号;D:DWI病灶呈高信号,提示为急性期;E:ROI位于左额叶病灶区(实线框),1H-MRS未见Lac峰;F:ROI位于脑脊液区(虚线框),1H-MRS示1.33ppm位置处Lac峰
Fig. 2  MELAS (mitochondrial encephalopathy group 07). A-C: Right hemisphere abnormal signal, bilateral ventricle enlargement, brain atrophy changes. D: ROI is located in the right frontal lobe lesion (solid frame), 1H-MRS (TE 144 ms) shows Lac peak inverted at 1.33 ppm. E, F: ROI is located in the cerebrospinal fluid area (dotted box), 1H-MRS shows a distinct Lac double peak, and the peak height is larger than the lesion area.
Fig. 3  Mitochondrial complex enzyme I deficiency (mitochondrial encephalopathy group 08). A-C: Bilateral paraventricular symmetry abnormal signal. D: DWI lesion showed high signal, suggesting acute phase. E: ROI located in the left frontal lobe lesion (solid frame), 1H-MRS shows no Lac peak. F: ROI is located in cerebrospinal fluid area (dotted box), 1H-MRS shows Lac peak at 1.33 ppm.

2.1.2 对照组

       17例对照组患者中16例(16/17)常规MRI显示异常信号,其中12例主要累及白质区(其中8例呈脑室旁对称性异常信号),2例主要累及皮质或皮层下区,2例同时累及皮质及白质区;7例患者合并脑萎缩改变。经治疗后复查,3例患者常规MRI显示病变发生进展或另有新发病灶。

       1例(1/17)对照组患者常规MRI未见异常。

2.2 1H-MRS乳酸峰诊断线粒体脑病的结果

       脑脊液区1H-MRS显示,10例(10/13)线粒体脑病患者脑脊液区可见特征性的Lac峰;3例(3/17)对照组脑脊液区见异常升高的Lac峰。

       脑内病变区1H-MRS显示,5例(5/12)线粒体脑病患者病变区可见Lac峰(图1F图2E图3F),7例(7/12)脑内病变区未见Lac峰(图3E),脑内无明显病灶者左侧基底节区未见Lac峰。6例(6/16)对照组患者脑内病变区可见异常升高的Lac峰(图1E图2D),10例(10/16)病变区未见Lac峰,脑内无明显病灶者左侧基底节区未见Lac峰。

       以脑脊液1H-MRS出现乳酸峰作为阳性诊断标准,对30名患者的诊断试验结果详见表3

       以脑内病变区1H-MRS出现乳酸峰作为阳性诊断标准,对30名患者的诊断试验结果详见表4

表3  脑脊液区1H-MRS诊断线粒体脑病结果(例)
Tab. 3  Results of diagnosis of ME in cerebrospinal fluid 1H-MRS (n)
表4  病灶区1H-MRS诊断线粒体脑病结果(例)
Tab. 4  Results of diagnosis of ME in lesion area 1H-MRS (n)

2.3 脑脊液区、病灶区1H-MRS诊断线粒体脑病的评价

       以脑脊液区和病灶区1H-MRS乳酸峰判定线粒体脑病的灵敏度、特异度、正确指数、阳性似然比、阴性似然比、符合率,详见表5

       经比较,脑脊液区诊断线粒体脑肌病的灵敏度、正确指数、阳性似然比、阴性似然比、符合率均优于病灶区。联合脑脊液区与病灶区1H-MRS诊断线粒体脑病分析,相比于单独脑脊液区1H-MRS结果,串联试验的灵敏度降低,特异度升高;并联试验灵敏度不变,特异度降低。串联、并联试验的正确指数及符合率均低于脑脊液区。

表5  脑脊液区、病灶区1H-MRS以及串联、并联试验诊断线粒体脑病的比较
Tab. 5  Comparison of diagnostic mitochondrial encephalopathy in 1H-MRS in cerebrospinal fluid area, lesion area and tandem and parallel test

3 讨论

3.1 概述

       线粒体脑病是一种常见遗传代谢性疾病,以不同的临床表型、组织生化特征及基因突变位点,将其分为MELAS、MERRF (myoclonus epilepsy with ragged red fibers)、Kearns-Sayre Syndrome (KSS)、Leigh综合征、Alpers综合征、NARP等类型[10]

       各型线粒体脑病复杂多样的MRI表现,可大致总结为非特异性改变、特异性改变及脑白质营养不良样改变三类[5],最常见的MRI表现为大脑皮层及小脑的萎缩样改变,且常伴有皮层及皮层下脑实质、脑干核团的损伤,但大部分类型线粒体脑病患者的常规MRI表现无特征性;在疾病早期,常规MRI也可能无异常表现[5,6]。各型线粒体脑病之间、ME与其它代谢性脑病或具有相似症状及MRI表现的其他原因脑病之间的鉴别有一定难度[11,12,13,14]

       本研究纳入13例线粒体脑病患者,并选取17例临床上疑似线粒体脑病但最终确诊为非线粒体病的各类患者作为对照组,旨在探讨当临床表现、实验室检查等指向线粒体脑病诊断时,应用1H-MRS如何迅速而准确地将线粒体脑病患者从中鉴别出来。

3.2 病灶区、脑脊液区1H-MRS对诊断线粒体脑病的比较

       1H-MRS可检测脑组织的多种代谢产物,成为代谢性脑病最重要的诊断方法之一[15],甚至在MRI结构相出现改变前,即可检测早期代谢改变[16]。脑组织所需能量主要由有氧代谢提供,当氧化磷酸化异常时,则会引起脑组织不同程度的损伤,从而产生一系列神经系统异常表现;同时,无氧代谢增加将使得乳酸在脑内大量堆积[17,18]。线粒体脑病作为一组能量代谢疾病,1H-MRS能提供脑内代谢物的重要诊断信息。脑内病灶1H-MRS出现特异性升高的乳酸(Lac)峰是线粒体脑病特异性较高的征象[19]

       目前临床上线粒体脑病的1H-MRS应用多限于脑内异常信号区,主要表现为NAA峰降低[20]、Cho峰升高[21],并出现典型的Lac峰。短回波时间(TE=35 ms)能很好地显示谷氨酰胺、谷氨酸、以及肌醇等代谢物[22,23],但脂质及Lac均可位于1~ 2 ppm处;而长回波时间(TE=135 ms)则可将脂质的信号调零,此时Lac峰发生倒置,因此可确认Lac水平[24,25]

       但临床实践中存在的问题是,乳酸检测阳性结果的特异性并不高,在很多非线粒体脑病,如脑肿瘤[26]、炎性病变[27]或缺血性损伤等亦可出现乳酸水平的升高。此外,脑组织异常代谢物浓度较低时,其诊断特异度明显降低,Cross等[8]证实,只有当乳酸浓度超过4.0 mmol/L的时候,才可以在1H-MRS上显示出阳性结果。

       本研究脑脊液区1H-MRS结果显示,10例(10/13)线粒体脑病患者脑脊液区可见特征性的Lac峰;3例(3/17)对照组脑脊液区见异常升高的Lac峰。同时脑内病变区1H-MRS显示,5例(5/12)线粒体脑病患者病变区可见Lac峰,6例(6/16)对照组患者脑内病变区可见异常升高的Lac峰。

       对结果做进一步诊断试验发现,脑脊液区1H-MRS出现Lac峰诊断线粒体脑肌病的灵敏度、正确指数、阳性似然比、阴性似然比、符合率均优于病灶区。

3.3 联合试验对线粒体脑病的诊断价值

       此外,本研究还采取了联合诊断试验的方法,联合脑脊液区与病灶区1H-MRS对线粒体脑病进行诊断分析。在串联试验中,病灶区和脑脊液区1H-MRS均出现Lac峰的患者才被诊断为线粒体脑病阳性,提高了诊断试验的特异度。在并联试验中,病灶区和脑脊液区1H-MRS之一出现Lac峰,即诊断为阳性,一定程度上提高了诊断试验的灵敏度。

       结果表明,相比于单独脑脊液区1H-MRS结果,串联试验的特异度升高(94.12%),但灵敏度过低(38.46%),假阴性率为61.54%,从而导致大量患者被漏诊,错过最佳的治疗时机;并联试验的灵敏度不变,但特异度降低(52.94%),因此并联试验也不是诊断线粒体脑病的合理方案。

       在本研究中,正确指数表示所选择的筛检方法鉴别线粒体脑病与非线粒体脑病的总能力,指数越大,其真实性越高;而符合率指筛检试验判定的结果与金标准结果相同的数占总受检人数的比例。

       相较之下,脑内病变区(0.26、63.33%)、串联试验(0.33、70.00%)及并联试验(0.30、63.33%)的正确指数及符合率均低于脑脊液区(0.59、80.00%)。由此可见,脑脊液区1H-MRS出现Lac峰对线粒体脑病的诊断价值优于脑内病变区,有助于对脑脊液乳酸水平的检测。

3.4 脑脊液区1H-MRS Lac峰的应用价值

       另有国内外研究报道,脑脊液区1H-MRS对于某些中枢神经系统疾病[28]具有重要的临床诊断价值。Zanigni等[29]在对脑白质营养不良(adult-onset autosomal dominant leukodystrophy,ADLD)患者的研究中发现,脑脊液区1H-MRS可见异常Lac峰。Shungu等[30]在对慢性疲劳综合征(chronic fatigue syndrome ,CFS)患者的研究中亦得到类似结论。

       究其原因可能是中枢神经系统中异常氧化代谢所产生的乳酸主要通过脑脊液清除:继发于脑细胞损伤后所引起反应性脑实质乳酸水平升高,由损伤的脑细胞代谢至细胞间隙,进而由乳酸的清除途径聚集于脑脊液中,这部分升高的乳酸再经蛛网膜颗粒回流入血,最终运送至肝脏氧化为丙酮酸。Inao等[31]证实,乳酸经蛛网膜颗粒回流入血的速度明显慢于其由损伤的脑细胞清除至脑脊液中的速度,因此乳酸将大量堆积于脑脊液中,其乳酸浓度甚至高于脑内病变区。另外,由于脑脊液区一般无NAA、Cho等脑内代谢物的干扰[32],理论上测定脑脊液区Lac峰的灵敏度将高于脑实质病变区。

       总之,探讨临床上应用脑脊液1H-MRS对线粒体脑病的诊断价值具有重要的意义,有助于线粒体脑肌病的早期诊断和鉴别诊断。脑脊液1H-MRS作为一种无创性检查,有望替代腰椎穿刺对于脑脊液乳酸水平的检测。

[1]
Mordekar SR, Guthrie P, Bonham JR, et al. The significance of reduced respiratory chain enzyme activities: clinical, biochemical and radiological associations. Eur J Paediatr Neurol, 2006, 10(2): 78-82.
[2]
Gropman AL. The neurological presentations of childhood and adult mitochondrial disease: established syndromes and phenotypic variations. Mitochondrion, 2004, 4(5-6): 503-520.
[3]
Finsterer J. Central nervous system manifestations of mitochondrial disorders. Acta Neurol Scand, 2006, 114(4): 217-238.
[4]
Chaturvedi S, Bala K, Thakur R, et al. Mitochondrial encephalomyopathies: advances in understanding. Med Sci Monit, 2005, 11(7): RA238-246.
[5]
Bianchi MC, Sgandurra G, Tosetti M, et al. Brain magnetic resonance in the diagnostic evaluation of mitochondrial encephalopathies. Biosci Rep, 2007, 27(1-3): 69-85.
[6]
Tang QF, Wu LY, Chen HW, et al. Comparative study of MRI characteristics between posterior reversible encephalopathy syndrome and MELAS syndrome. Chin J Magn Reson Imaging, 2012, 3(1): 24-29.
汤群锋,吴力源,陈宏伟,等.脑后部可逆性脑病综合征与MELAS的磁共振特征对照研究.磁共振成像, 2012, 3(1): 24-29.
[7]
van der Voorn JP, Pouwels PJ, Hart AA, et al. Childhood white matter disorders: quantitative MR imaging and spectroscopy. Radiology, 2006, 241(2): 510-517.
[8]
Cross JH, Gadian DG, Connelly A, et al. Proton magnetic resonance spectroscopy studies in lactic acidosis and mitochondrial disorders. J Inherit Metab Dis, 1993, 16(4): 800-811.
[9]
Morava E, van den Heuvel L, Hol F, et al. Mitochondrial disease criteria: diagnostic applications in children. Neurology, 2006, 67(10): 1823-1826.
[10]
Finsterer J. Central nervous system manifestations of mitochondrial disorders. Acta Neurol Scand, 2006, 114(4): 217-238.
[11]
Arii J, Tanabe Y. Leigh syndrome: serial MR imaging and clinical follow-up. AJNR Am J Neuroradiol, 2000, 21(8): 1502-1509.
[12]
Farina L, Chiapparini L, Uziel G, et al. MR findings in Leigh syndrome with COX deficiency and SURF-1 mutations. AJNR Am J Neuroradiol, 2002, 23(7): 1095-1100.
[13]
Moroni I, Bugiani M, Bizzi A, et al. Cerebral white matter involvement in children with mitochondrial encephalopathies. Neuropediatrics, 2002, 33(2): 79-85.
[14]
Barragán-Campos HM, Vallée JN, Lô D, et al. Brain magnetic resonance imaging findings in patients with mitochondrial cytopathies. Arch Neurol, 2005, 62(5): 737-742.
[15]
Du Y1, Li Y, Lan Q. Clinical proton MR spectroscopy in central nervous system disorders. Radiology, 2014, 270(3): 658-679.
[16]
Lin DD, Crawford TO, Barker PB. Crawford and P.B. Barker, Proton MR spectroscopy in the diagnostic evaluation of suspected mitochondrial disease. AJNR Am J Neuroradiol, 2003, 24(1): 33-41.
[17]
Regenold WT, Phatak P, Marano CM, et al. Elevated cerebrospinal fluid lactate concentrations in patients with bipolar disorder and schizophrenia: implications for the mitochondrial dysfunction hypothesis. Biol Psychiatry, 2009, 65(6): 489-494.
[18]
Zheng Y, Wang XM. Changes in lactate and associated transporters expression in basal ganglia following hypoxic-ischemic brain injury in piglets. Chin J Magn Reson Imaging, 2017, 8(1): 45-50.
郑阳,王晓明.新生猪缺氧缺血脑损伤后基底节乳酸代谢及其转运体表达的研究.磁共振成像, 2017. 8(1): 45-50.
[19]
Chi CS, Lee HF, Tsai CR, et al. Lactate peak on brain MRS in children with syndromic mitochondrial diseases. J Chin Med Assoc, 2011, 74(7): 305-309.
[20]
Rigotti DJ, Inglese M, Gonen O. Whole-brain N-acetylaspartate as a surrogate marker of neuronal damage in diffuse neurologic disorders. AJNR Am J Neuroradiol, 2007, 28(10): 1843-1849.
[21]
Licata SC, Renshaw PF. Neurochemistry of drug action: insights from proton magnetic resonance spectroscopic imaging and their relevance to addiction. Ann N Y Acad Sci, 2010, 1187: 148-171.
[22]
Govind V, Young K, Maudsley AA. Corrigendum: proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed, 2015, 28(7):923-924.
[23]
Luo Y, de Graaf RA, DelaBarre L, et al. BISTRO: an outer-volume suppression method that tolerates RF field inhomogeneity. Magn Reson Med, 2001, 45(6): 1095-1102.
[24]
Hofmann L, Slotboom J, Jung B, et al. Quantitative 1H-magnetic resonance spectroscopy of human brain: Influence of composition and parameterization of the basis set in linear combination model-fitting. Magn Reson Med, 2002, 48(3): 440-453.
[25]
Oz G, Tkác I, Charnas LR, et al. Assessment of adrenoleukodystrophy lesions by high field MRS in non-sedated pediatric patients. Neurology, 2005, 64(3): 434-441.
[26]
Howe FA, Barton SJ, Cudlip SA, et al. Metabolic profiles of human brain tumors using quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med, 2003. 49(2): 223-232.
[27]
Gupta RK, Jobanputra KJ, Yadav A. MR spectroscopy in brain infections. Neuroimaging Clin N Am, 2013, 23(3): 475-498.
[28]
Oz G, Alger JR, Barker PB, et al. Clinical proton MR spectroscopy in central nervous system disorders. Radiology, 2014, 270(3): 658-679.
[29]
Zanigni S, Terlizzi R, Tonon C, et al. Brain magnetic resonance metabolic and microstructural changes in adult-onset autosomal dominant leukodystrophy. Brain Res Bull, 2015, 117: 24-31.
[30]
Shungu DC, Weiduschat N, Murrough JW, et al. Increased ventricular lactate in chronic fatigue syndrome. III. Relationships to cortical glutathione and clinical symptoms implicate oxidative stress in disorder pathophysiology. NMR Biomed, 2012, 25(9): 1073-1087.
[31]
Inao S, Marmarou A, Clarke GD, et al. Production and clearance of lactate from brain tissue, cerebrospinal fluid, and serum following experimental brain injury. J Neurosurg, 1988, 69(5): 736-744.
[32]
Regenold WT, Phatak P, Marano CM, et al. Elevated cerebrospinal fluid lactate concentrations in patients with bipolar disorder and schizophrenia: implications for the mitochondrial dysfunction hypothesis. Biol Psychiatry, 2009, 65(6): 489-494.

上一篇 影像组学在乳腺癌应用中的研究进展
下一篇 阻塞性睡眠呼吸暂停低通气综合征的脑ReHo和ALFF研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2