分享:
分享到微信朋友圈
X
综述
MRI定量参数分析肝硬化背景下小肝癌的研究进展
马晚俊 郭顺林 潘晓华 卢冠文 崔毛毛

Cite this article as: Ma WJ, Guo SL, Pan XH, et al. Quantitative analysis of MRI parameters for small hepatocellular carcinoma in the background of cirrhosis.Chin J Magn Reson Imaging, 2019, 10(1): 68-71.本文引用格式:马晚俊,郭顺林,潘晓华,等. MRI定量参数分析肝硬化背景下小肝癌的研究进展.磁共振成像, 2019, 10(1): 68-71. DOI:10.12015/issn.1674-8034.2019.01.013.


[摘要] 肝细胞肝癌(hepatocellular carcinoma,HCC)是慢性肝炎肝硬化患者的主要死因。其早期症状不典型,检出率低,病死率高,对癌变结节或小肝癌(small hepatocellular carcinoma,SHCC)早诊早治是提高肝癌疗效最直接和最重要的途径。近年来,磁共振成像(magnetic resonance imaging,MRI)技术发展迅速,包括MRI动态对比增强(dynamic contrast enhanced MRI,DCE-MRI)、体素不相干运动成像(intravoxel incoherent motion imaging,IVIM)、扩散峰度成像(diffusion kurtosis imaging,DKI)、纵向弛豫时间成像(T1 mapping)、LiverLab肝脏脂肪及铁定量等技术,分析肝脏结节癌变的一系列病理生理及血流动力学改变,使小肝癌的检出率显著提高。作者将MRI定量参数分析肝硬化背景下小肝癌的相关研究作一综述。
[Abstract] Hepatocellular carcinoma (HCC) is the main cause of death in patients with chronic hepatitis cirrhosis. Its early symptoms are atypical, the detection rate is low, and the mortality rate is high. Early diagnosis and treatment of cancerous nodules or small hepatocellular cancer (SHCC) are the most direct and important ways to improve the curative effect of HCC. In recent years, MRI technology has developed rapidly, including dynamic contrast enhanced MRI (DCE-MRI), intravoxel incoherent motion imaging (IVIM), diffusion kurtosis imaging (DKI), T1 mapping, LiverLab and other technologies. A series of pathophysiological and hemodynamic changes in the carcinogenesis of hepatic nodules were analyzed, which significantly increased the detection rate of SHCC. In this paper, correlation research about MRI quantitative parameters analysis of small hepatocellular cancer in the background of cirrhosis will be reviewed.
[关键词] 癌,肝细胞;磁共振成像;综述
[Keywords] carcinoma, hepatocellular;magnetic resonance imaging;review

马晚俊 兰州大学,兰州 730000;兰州大学第一医院放射科,兰州 730000

郭顺林* 兰州大学第一医院放射科,兰州 730000

潘晓华 兰州大学,兰州 730000;兰州大学第一医院放射科,兰州 730000

卢冠文 兰州大学,兰州 730000;兰州大学第一医院放射科,兰州 730000

崔毛毛 兰州大学,兰州 730000;兰州大学第一医院放射科,兰州 730000

通信作者:郭顺林,E-mail:guoshunlin@msn.com

利益冲突:无。


收稿日期:2018-07-26
接受日期:2018-10-28
中图分类号:R445.2; R735.7 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2019.01.013
本文引用格式:马晚俊,郭顺林,潘晓华,等. MRI定量参数分析肝硬化背景下小肝癌的研究进展.磁共振成像, 2019, 10(1): 68-71. DOI:10.12015/issn.1674-8034.2019.01.013.

       肝细胞肝癌(hepatocellular carcinoma,HCC)在恶性肿瘤死因中位列第三[1]。小肝癌(small hepatocellular carcinoma,SHCC)的5年生存率远高于进展期HCC,为50%~60%[2]。因此,早期诊断小肝癌具有重要临床意义。

       HCC绝大多数是在肝硬化背景下由再生结节(regenerating nodule,RN)逐渐转变为低级不典型增生结节(low grade dysplastic nodule,LGDN)、高级不典型增生结节(high grade dysplastic nodule,HGDN)、SHCC,最终演变为HCC的病理过程,此过程中,门静脉供血逐渐减少,动脉供血逐步增加,并且结节内的铁含量也会随之变化,通过MRI参数定量分析肝硬化结节及HCC有助于早期识别HCC。

       目前MRI动态对比增强(dynamic contrast enhanced MRI,DCE-MRI)、体素不相干运动成像(intravoxel incoherent motion imaging,IVIM)、扩散峰度成像(diffusion kurtosis imaging,DKI)、纵向弛豫时间成像(T1 mapping)、LiverLab等技术在肝硬化背景下小肝癌定量分析中发挥着重要作用,对于如何早期精准诊断小肝癌进行了一系列相关研究。

1 DCE-MRI

       肝脏常用磁共振对比剂有肝细胞特异性对比剂普美显或钆塞酸二钠(gadoxetic acid,Gd-EOB-DTPA)、锰福地吡三钠(mangafodipir trisodium,Mn-DPDP)和超顺磁性对比剂超顺磁性氧化铁(super paramagnetic iron oxide,SPIO)。Gd-EOB-DTPA动态增强反映HCC的血供和血液动力学特性,动脉期强化呈高信号,门脉期及延迟信号减低,肝细胞期呈低信号的病灶可高度怀疑HCC,Mn-DPDP增强MRI通过提高病灶轮廓清晰度,增加病变检出可信度[3],SPIO被肝脏网状内皮系统中的Kupffer细胞摄取后,通过增加HCC与肝脏的对比度检出HCC[4],三种不同对比剂增强检查,对提高HCC诊断和鉴别诊断的准确性具有一定的价值。据报道Gd-EOB-DTPA有肝毒性、肾毒性和神经毒性[5],Mn-DPDP的临床应用受限[6],SPIO结合磁共振平扫信号特点、超顺磁性氧化铁强度比及信号强度降低百分比有助于退变结节与肝细胞癌的诊断,其增强图像不能显示肝脏病灶的血流动力学特点[7]。Gd-EOB-DTPA对肝脏结节及HCC的评估优于Mn-DPDP[8,9],欧洲胃肠及腹部放射学会(the European Society of Gastrointestinal and Abdominal Radiology,ESGAR)也推荐使用Gd-EOB-DTPA肝脏特异性对比剂[10]。以下主要对于Gd-EOB-DTPA动态对比增强定量评估HCC的相关研究进行综述。

       DCE-MRI成像原理基于肿瘤新生血管的形成,新生的血管结构扭曲杂乱,基底膜连续性差,血管渗透性远高于正常血管,使对比剂的分布和代谢在癌变和正常组织中存在差异[11]。DCE-MRI原始图像经后处理得到一系列组织灌注参数,包括血浆容积分数(Vp)、血管外细胞外容积分数(Ve)、对比剂从血浆到血管外细胞外空间的转运系数(Ktrans)和对比剂从血管外细胞外空间回流到血浆的速率常数(Kep)等定量参数及钆剂浓度-时间曲线下初始面积(initial area under the gadolinium concentration-time curve,iAUC)、时间-信号强度曲线(time-signal intensity curve,TIC)、强化时间(mean time to enhance,MTE)、正向强化积分(positive enhancement integral,PEI)、达峰时间(time to peak,TP)、最大上升斜率(maximum slope of increase,MSI)、最大下降斜率(maximum slope of decrease,MSD)半定量参数,定量评估结节的血流灌注和毛细血管通透性等微血管环境的改变。

       钆塞酸二钠(gadoxetic acid,Gd-EOB-DTPA)动态增强各期结节信号与邻近正常肝实质信号存在差异,通过对比分析可鉴别DN与HCC[12]。Bartolozzi等[13]研究通过DCE-MRI与病理结果对照发现肝细胞期HGDN和HCC的信号重叠,鉴别困难,HGDN和HCC分别与LGDN有明显的信号差异,通过MRI动态增强分析结节信号的差异,有助于诊断小肝癌,但难以区分HGDN与HCC。Zhang等[14]研究发现参数Ktrans和iAUC在肝硬化结节、SHCC及HCC中呈升高趋势,HCC中最高。Jajamovich等[15]研究表明参数Ktrans在评估肝硬化结节性质中有良好的准确性和稳定性。Chen等[16]认为参数Ktrans可通过评估微血管密度(micro vascular density,MVD)来反映肿瘤血管的生成情况。因此,参数Ktrans对肝硬化结节的鉴别与早期癌变结节的诊断有很大价值。

2 IVIM

       IVIM同时反映真性水分子扩散和微循环灌注引起的假性扩散,获得更全面组织扩散及灌注信息[17]。通过图像后处理得到表观扩散系数(apparent diffusion coefficient,ADC)、扩散系数(D)、伪扩散系数(D*)、灌注分数(Perfusion fraction,f)等一系列定量参数[18]

       IVIM为双指数模型,不同于扩散加权成像(diffusion weighted imaging,DWI)单指数模型,Zhu等[19]和Granata等[20]认为IVIM在鉴别高度恶性HCC和低度恶性HCC中更有优势,并且ADC和D值与组织学分级之间存在良好的相关性。Woo等[21]进一步研究表明D和ADC值均与HCC组织学分级呈负相关,D较ADC值的相关性更强,可能因为肝硬化结节癌变过程中细胞密度和微循环灌注的增加使ADC值增加,真正的D值不受影响,D值在确定HCC组织病理分级有更高的参考价值,ADC值和IVIM参数值在增强前和增强后各期无显著差异,只有f值增强后大于增强前,f值可以反映肿瘤血管的生成情况,有利于小肝癌的检出。但Wagner等[22]研究表明,D、D*、f和ADC值在对比剂使用前后均无任何显著差异。因此,IVIM参数f及D*对小肝癌的诊断价值还需进一步探究。

3 DKI

       DKI是扩散张量成像(diffusion tensor imaging,DTI)的一种扩展,DKI对微观结构变化高敏感,DTI不能完全反映基底膜细胞结构的复杂变化。利用DKI通过扫描图像处理得到扩散峰度系数(Kapp),扩散系数(Dapp)等定量参数,其中最大b值一般都在2000~3500 mm2/s[23,24]

       随着DKI在腹部的逐渐推广应用,因DKI为高阶扩散模型,扩散方向至少需要15个方向,扫描时间长。Goshima等[25]在肝脏DKI的研究中应用了50、500、1000、1500和2000 mm2/s的5个b值以及DKI的3个正交运动探测梯度方向,采集时间可以缩短到1~2 min,证实使用6个b值和三个运动探测梯度方向可以进行肝脏DKI的研究。Wang等[26]认为较高的平均峰度值(Kapp)结合不规则的边缘增强是肝癌血管侵犯(microvascular invasion,MVI)的潜在预测指标,判断微血管侵犯的标准是显微镜下微血管腔内发现肿瘤细胞。分析HCC或SHCC瘤周微血管侵犯情况,对患者的预后、复发和转移的预测以及肿瘤术后或放化疗、介入栓塞等治疗疗效的评估有重要的临床意义,目前DKI评估MVI的相关研究较少,还需要大量的研究和探索。DKI与扩散技术的联合将会提高其在临床的应用价值,如多次激发解剖扩散成像技术(RESOLVE)[27]可以显著减小磁化率伪影,提升图像分辨率,从而提高DKI诊断疾病的准确性。

4 T1 mapping

       T1 mapping是一种新型MRI技术,可用于组织的定量测量[28]

       Katsube等[29]认为Gd-EOB-DTPA给药前后病灶T1弛豫时间的测量可以定量评估Gd-EOB-DTPA摄取,进一步揭示病变的相关特性。Yoshimura等[30]的研究表明Gd-EOB-DTPA增强MRI联合T1 mapping图像能够定量区分肝血管瘤与转移性肿瘤。Peng等[31]研究通过测量每个感兴趣区(region of interest,ROI)3次,应用3个值的平均值来计算T1d%:T1d=T1p-T1e;T1d%=[(T1p- T1e)/T1p]×100%,其中T1d为增强前后T1值的变化,T1p (pre-contrast)增强前T1弛豫时间,T1e (hepatobiliary phase)增强后20 min肝细胞期T1弛豫时间,定量测量结果显示,T1d%与组织学等级的相关性最好,增强后肝细胞期T1值的下降百分比(T1d%)是HCC分型的最佳指标,并且认为Gd-EOB-DTPA给药前后通过T1 mapping图像根据Edmondson-Steiner等级对HCC的分化程度进行定量评估,Edmondson-Steiner等级越高,T1d和T1d%越低。Peng等[32]的另一项研究发现在T1P、T1e和T1d%中,T1d%的相关系数最高,与T1p、T1e或T1d不同,T1d%与变化的成像参数无关,是显示病变特征最好的参数,此外,交叉试验结果提示与单变量分析相比,基于T1p,T1e和T1d%三个变量使区别肝脏结节的准确率提高至88.2%,该研究还认为DCE-MRI结合T1mapping图像可以提高肝脏结节诊断的准确性,提供肝脏结节的定量信息,DCE-MRI联合T1d%在肝脏结节的鉴别诊断中具有良好的敏感性和特异性。T1 mapping参数定量评估HCC有望在手术前预测肿瘤分级,指导临床选择治疗方案。

5 LiverLab技术

       LiverLab是西门子公司推出的肝脏分析软件,包括多回波(Multi-echo) Dixon技术和肝脏波谱成像(HISTO)以及相关的后处理程序。该技术采用多个小角度翻转角、多次回波的DIXON方法计算相应的R2*值,运用算法进行R2*拟合,消除脂肪与水的相位混淆造成的影响,更准确地估算T2*,通过校正T2*效应得到的T2值也较常规序列更准确。扫描快,患者屏气时间短,对肝脏体积准确分割,可选择是否进行下一步更为精准的脂肪及铁定量评估,对弥漫性或局灶性肝脏病变均可精准的定量评估。

       LiverLab包含两种定量方法,采用肝脏分割算法自动整合计算,得到正常肝脏、肝脏脂肪沉积、铁沉积、同时存在脂肪和铁沉积的定量结果,并用脂肪分数和数值结合彩色进度条直观显示,HISTO可以选择感兴趣区对肝脏进行再次定量,为肝硬化背景下的可疑病灶的准确定性提供更丰富的鉴别诊断信息。肝硬化结节演变为HCC的过程中,其内铁的含量逐渐减少,HCC内铁含量明显减少,对肝硬化结节、SHCC、HCC内铁质的定量评估有利于早期结节癌变的检出[33]

       陈晓飞等[34]研究表明HISTO和Multi-echo Dixon的定量结果之间具有很好的相关性,并且二者分别与肝脏穿刺活检的病理结果对应良好,认为LiverLab技术可用于定量评估肝脏中铁质及脂肪成分,也可作为肝脏穿刺活检的替代方法,使病人获益。Pineda等[35]研究进一步认为HISTO是一种非侵入肝脏脂质定量的方法。有研究认为R2*/T2*定量评估肝脏铁过载优于R2(横向弛豫率,R2=1/T2)[36]。但仍在技术及铁过载诊断分级方面存在问题[37]。MR定量磁化率成像(quantitative susceptibility mapping,QSM)可直接得到肝脏的磁化率,对铁过载的定量分析较R2*更简洁准确,临床应用前景广阔[38]。LiverLab对肝硬化结节铁质及脂肪的定量分析可以为结节性质的判定提供更全面的信息,有利于早期诊断癌变结节。

       DCE-MRI、IVIM、DKI、T1 mapping、LiverLab等参数定量对肝硬化结节、SHCC和HCC的诊断及鉴别诊断有一定的价值,对肝硬化结节早期癌变的诊断和鉴别诊断各有优势和不足,对于HGDN和SHCC的鉴别仍然是一个需要解决的问题。IVIM参数f及D*在肝脏肿瘤等病变的应用还需大量探索,DKI参数Kapp评估肝癌MVI还需更深入的研究,T1 mapping参数有望在HCC手术前预测肿瘤分级,指导临床选择治疗方案,LiverLab技术可以提供更全面的信息,有望实现肝脏结节的定性以及鉴别,未来可能作为肝脏穿刺活检的替代方法,使病人获益。近年来,多模态影像成像技术的联合逐渐成为研究热点,联合两种或两种以上MRI参数可以在时间、空间分辨率上优势互补,有望更精准的诊断肿瘤等疾病。

[1]
Song P, Tang W, Tamura S, et al. The management of hepatocellular carcinoma in Asia: a guideline combining quantitative and qualitative evaluation. Bioscience trends, 2010, 4(6): 283-287.
[2]
Chatterjee R, Mitra A. An overview of effective therapies and recent advances in biomarkers for chronic liver diseases and associated liver cancer. Int Immunopharmacol, 2015, 24(2): 335-45.
[3]
Murakami T, Baron RL, Peterson MS, et al. Hepatocellular carcinoma: MR imaging with mangafodipir trisodium (Mn-DPDP). Radiology, 1996, 200(1): 69-77.
[4]
Guo DM, Qiu TS, Kang W, et al. Texture analysis of SPIO- enhanced MR imaging in rat models of hepatocellular carcinoma and hepatocirrhosis based on gray level co-occurrence matrix. Chin J Med Imaging Technology, 2010, 26(3): 563-566.
[5]
Rogosnitzky M, Branch S. Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms. Biometals, 2016, 29(3): 365-376.
[6]
Crossgrove J, Zheng W. Manganese toxicity upon overexposure. NMR Biomed, 2004, 17(8):544-553.
[7]
Wang CZ. Degenerative nodules and hepatocellular carcinoma with superparamagnetic iron oxide enhanced magnetic resonance imaging. Dalian: Dalian Medical University, 2008.
王长征.退变结节与肝细胞癌超顺磁性氧化铁增强磁共振成像研究.大连:大连医科大学, 2008.
[8]
Chanyaputhipong J, Low SC, Chow PK. Gadoxetate acid-enhanced MR imaging for HCC: a review for clinicians. Int J Hepatol, 2011, 2011:489342.
[9]
Bae K, Na JB, Choi DS, et al. Contrast-enhanced MR cholangiography: comparison of Gd-EOB-DTPA and Mn-DPDP in healthy volunteers. Br J Radiol, 2012, 85(1017): 1250-1254.
[10]
Neri E, Bali MA, Bassalamah A, et al. ESGAR consensus statement on liver MR imaging and clinical use of liver-specific contrast agents. Eur Radiol, 2016, 26(4): 921-931.
[11]
Ng IO, Poon RT, Lee JM, et al. Microvessel density, vascular endothelial growth factor and its receptors Flt-1 and Flk-1/KDR in hepatocellular carcinoma. Am J Clin Pathol, 2001, 116(6): 838-845.
[12]
Kwon HJ, Byun JH, Kim JY, et al. Differentiation of small (</=2 cm) hepatocellular carcinomas from small benign nodules in cirrhotic liver on gadoxetic acid-enhanced and diffusion-weighted magnetic resonance images. Abdom Imaging, 2015, 40(1): 64-75.
[13]
Bartolozzi C, Battaglia V, Bargellini I, et al. Contrast-enhanced magnetic resonance imaging of 102 nodules in cirrhosis: correlation with histological findings on explanted livers. Abdom Imaging, 2013, 38(2): 290-296.
[14]
Zhang W, Chen HJ, Wang ZJ, et al. Dynamic contrast enhanced MR imaging for evaluation of angiogenesis of hepatocellular nodules in liver cirrhosis in N-nitrosodiethylamine induced rat model. Eur Radiol, 2017, 27(5): 2086-2094.
[15]
Jajamovich GH, Huang W, Besa C, et al. DCE-MRI of hepatocellular carcinoma: perfusion quantification with Tofts model versus shutter-speed model-initial experience. MAGMA, 2016, 29(1): 49-58.
[16]
Chen J, Qian T, Zhang H, et al. Combining dynamic contrast enhanced magnetic resonance imaging and microvessel density to assess the angiogenesis after PEI in a rabbit VX2 liver tumor model. Magn Reson imaging, 2016, 34(2): 177-182.
[17]
Taouli B, Vilgrain V, Dumont E, et al. Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two single-shot echo-planar MR imaging sequences: prospective study in 66 patients. Radiology, 2003, 226(1): 71-78.
[18]
Wirestam R, Borg M, Brockstedt S, et al. Perfusion-related parameters in intravoxel incoherent motion MR imaging compared with CBV and CBF measured by dynamic susceptibility-contrast MR technique. Acta Radiol, 2001, 42(2): 123-128.
[19]
Zhu SC, Liu YH, Wei Y, et al. Intravoxel incoherent motion diffusion-weighted magnetic resonance imaging for predicting histological grade of hepatocellular carcinoma: Comparison with conventional diffusion-weighted imaging. World J Gastroenterol, 2018, 24(8): 929-940.
[20]
Granata V, Fusco R, Catalano O, et al. Intravoxel incoherent motion (IVIM) in diffusion-weighted imaging (DWI) for Hepatocellular carcinoma: correlation with histologic grade. Oncotarget, 2016, 7(48): 79357-79364.
[21]
Woo S, Lee JM, Yoon JH, et al. Intravoxel incoherent motion diffusion-weighted MR imaging of hepatocellular carcinoma: correlation with enhancement degree and histologic grade. Radiology. 2014, 270(3): 758-767.
[22]
Wagner M, Doblas S, Daire JL, et al. Diffusion-weighted MR imaging for the regional characterization of liver tumors. Radiology, 2012, 264(2): 464-472.
[23]
Rosenkrantz AB, Padhani AR, Chenevert TL, et al. Body diffusion kurtosis imaging: basic principles, applications, and considerations for clinical practice. J Magn Reson Imaging, 2015, 42(5): 1190-1202.
[24]
Anderson SW, Barry B, Soto J, et al. Characterizing non-gaussian, high b-value diffusion in liver fibrosis: Stretched exponential and diffusional kurtosis modeling. J Magn Reson Imaging, 2014, 39(4): 827-834.
[25]
Goshima S, Kanematsu M, Noda Y, et al. Diffusion kurtosis imaging to assess response to treatment in hypervascular hepatocellular carcinoma. AJR Am J Roentgenol, 2015, 204(5): W543-549.
[26]
Wang WT, Yang L, Yang ZX, et al. Assessment of microvascular invasion of hepatocellular carcinoma with diffusion kurtosis imaging. Radiology, 2018, 286(2): 571-580.
[27]
Bai Y, Jiang XY, Zhang J, et al. Comparative analysis of 3.0 T resolve- DWI and SS-EPI DWI in rat brain imaging. Chin J Med Imaging Technol, 2016, 32(9): 1325-1329.
白岩,姜兴岳,张洁,等. 3.0 T resolve-DWI与SS-EPI DWI在大鼠颅脑成像中的对比分析.中国医学影像技术, 2016, 32(9): 1325-1329.
[28]
Ding Y, Rao SX, Meng T, et al. Usefulness of T1 mapping on Gd-EOB-DTPA-enhanced MR imaging in assessment of non-alcoholic fatty liver disease. Eur Radiol, 2014, 24(4): 959-966.
[29]
Katsube T, Okada M, Kumano S, et al. Estimation of liver function using T1 mapping on Gd-EOB-DTPA-enhanced magnetic resonance imaging. Invest Radiol, 2011, 46(4): 277-283.
[30]
Yoshimura N, Saito K, Saguchi T, et al. Distinguishing hepatic hemangiomas from metastatic tumors using T1 mapping on gadoxetic-acid-enhanced MRI. Magn Resone Imaging, 2013, 31(1): 23-27.
[31]
Peng Z, Jiang M, Cai H, et al. Gd-EOB-DTPA-enhanced magnetic resonance imaging combined with T1 mapping predicts the degree of differentiation in hepatocellular carcinoma. BMC cancer. 2016, 16: 625.
[32]
Peng Z, Li C, Chan T, et al. Quantitative evaluation of Gd-EOB-DTPA uptake in focal liver lesions by using T1 mapping: differences between hepatocellular carcinoma, hepatic focal nodular hyperplasia and cavernous hemangioma. Oncotarget, 2017, 8(39): 65435-65444.
[33]
Liu D, Song B, Huang ZX, et al. MRI and pathological study of iron content in rat liver cancer-related nodules. J Sichuan University (Med Sci), 2016, 47(3): 376-380.
刘丹,宋彬,黄子星,等.大鼠肝癌相关结节铁含量的MRI与病理对照研究.四川大学学报(医学版), 2016, 47(3): 376-380.
[34]
Chen XF. Quantitative study of hepatic steatosis and iron deposition in patients with NAFLD by HISTOX Six- echo DIXON technique. Jinan: Shandong University, 2017.
陈晓飞. HISTO、SiX-echo DIXON技术对NAFLD患者肝脏脂肪变性及铁沉积的定量研究.济南:山东大学, 2017.
[35]
Pineda N, Sharma P, Xu Q, et al. Measurement of hepatic lipid: high-speed T2-corrected multiecho acquisition at 1H MR spectroscopy-a rapid and accurate technique. Radiology, 2009, 252(2): 568-576.
[36]
Liu HP, Li WZ, Li HL, et al. Application of magnetic resonance imaging in liver iron overload. Magn Reson Imaging, 2017, 8(6): 475-480.
刘华平,李文政,李海兰,等.磁共振成像技术在肝脏铁过载的应用进展.磁共振成像, 2017, 8(6): 475-480.
[37]
Labranche R, Gilbert G, Cerny M, et al. Liver iron quantification with MR imaging: a primer for radiologists. Radiographics, 2018, 38(2): 392-412.
[38]
Sharma SD, Hernando D, Horng DE, et al. Quantitative susceptibility mapping in the abdomen as an imaging biomarker of hepatic iron overload. Magn Reson Med, 2015, 74(3): 673-683.

上一篇 磁共振成像在面肌痉挛中的研究进展
下一篇 DWI在前列腺癌诊断中的研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2