分享:
分享到微信朋友圈
X
临床研究
DCE-MRI对高危坏死股骨头微循环灌注的评价
马伟丽 赵德伟 王本杰 杨松 杨培 常晓丹

Cite this article as: Ma WL, Zhao DW, Wang BJ, et al. Evaluation of microcirculation perfusion in high-risk necrotic femoral head by DCE-MRI. Chin J Magn Reson Imaging, 2019 10(4): 263-267.本文引用格式:马伟丽,赵德伟,王本杰,等. DCE-MRI对高危坏死股骨头微循环灌注的评价.磁共振成像, 2019, 10(4): 263-267. DOI:10.12015/issn.1674-8034.2019.04.005.


[摘要] 目的 通过动态增强磁共振(dynamic contrast enhanced magnetic resonance imaging,DCE-MRI)评价股骨头坏死高危人群股骨头微循环灌注的变化及正常人群股骨头内血流灌注的异质性,为超早期股骨头坏死提供影像学依据。材料与方法 共选取50人60例股骨头,实验组为30例高危股骨头,对照组为30例正常股骨头,两组均行髋部DCE-MRI扫描,在股骨头负重区(前上方)、非负重区(下方)及股骨头中心区分别选取感兴趣区(region of interest,ROI),绘制百分比时间信号曲线(time-intensity curve,TIC),读取TIC上首次峰值(fEmax)、最高信号强度(Emax)、达峰时间(time to peak,TTP)参数,通过独立样本t检验比较股骨头坏死高危人群股骨头不同ROI与正常股骨头相应区域ROI灌注参数的差异;股骨头负重区与非负重区及股骨头中心ROI灌注参数差异的比较采用方差分析。结果 实验组与对照组负重区fEmax、Emax差异有统计学意义(P<0.05),实验组与对照组非负重区TTP差异有统计学意义(P<0.05),实验组与对照组股骨头中心区fEmax、Emax、TTP差异有统计学意义(P<0.05)。对照组内负重区、中心区fEmax、Emax大于非负重区fEmax、Emax,且差异有统计学意义(P<0.01),对照组内不同ROI间TTP差异无统计学意义(P>0.05)。结论 股骨头坏死高危患者比正常人股骨头血流灌注低;正常人群中股骨头负重区与非负重区血流灌注具有异质性,负重区血流灌注较多。此外,高危人群股骨头血流灌注量小于健康人,灌注时间较正常股骨头长,存在血流瘀滞现象。因此,DCE-MRI可应用于指导临床进行早期预防股骨头坏死发生。
[Abstract] Objective: To evaluate the changes of femoral head microcirculation perfusion in high-risk population of femoral head necrosis and the heterogeneity of femoral head blood perfusion in the normal femoral head by DCE-MRI, providing imaging evidence for ultralearly femoral head necrosis.Materials and Methods: Dynamic contrast-enhanced MRI of the hip was performed in 50 adults (a total of 60 cases of femoral head) with 30 cases experimental group who was high-risk patients with osteonecrosis of the femoral head. Another 30 cases of were selected as normal control group. The region of interest (ROI) was selected in the weight-bearing area (anterosuperior), non-weight-bearing area (inferior) and the central area of the femoral head, and the percentage time-intensity curve (TIC) was drawn to read the maximum percentage of enhancement at first pass (fEmax), maximum percentage of enhancement at first pass (Emax), time to peak (TTP) and other related parameters. Comparison of perfusion parameters between different ROI of normal femoral head and corresponding regions of high-risk population of femoral head necrosis by independent sample t-test. Comparison of perfusion parameters between weight bearing areas, non-weight bearing areas and the center of femoral head using analysis of variance.Results: The Emax of ROI in weight-bearing area, non-weight bearing area of the control group was greater than that of high-risk group of femoral head necrosis (P<0.05). The TTP of ROI in non-load area, centre of high risk group was greater than that of the control group of femoral head necrosis (P<0.05). Another important finding was that the fEmax, Emax varied widely in the control group. fEmax and Emax were significantly greater for the weight-bearing area, the center area than for the non-weight bearing area (P<0.01). There was no significant difference in TTP between different ROI in the control group (P>0.05).Conclusions: The ROI of the patients with high risk of avascular necrosis which was decreased compared with the ROI in corresponding with the normal femoral head; areas with more mechanical load had more blood perfusion. In addition, the perfusion volume of femoral head in high risk population is smaller than that of healthy people. The perfusion time was longer than that of the normal femoral head, and there was blood stasis. Therefore, DCE-MRI can be used to guide clinical practice and prevent avascular necrosis of the femoral head at an early stage.
[关键词] 股骨头坏死;磁共振成像;动态增强;微循环;血流灌注;高危人群
[Keywords] femoral head necrosis;magnetic resonance imaging;dynamic contrast enhanced;microcirculation;blood perfusion;high risk group

马伟丽 大连大学附属中山医院放射科,大连 116000

赵德伟 大连大学附属中山医院骨科,大连 116000

王本杰 大连大学附属中山医院骨科,大连 116000

杨松 大连大学附属中山医院骨科,大连 116000

杨培 华中科技大学附属武汉中心医院,武汉 430014

常晓丹* 大连大学附属中山医院放射科,大连 116000

通信作者:常晓丹,E-mail:13384111832@163.com

利益冲突:无。


基金项目: 国家自然科学基金项目 编号:81672139
收稿日期:2019-01-14
接受日期:2019-02-18
中图分类号:R445.2; R681.8 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2019.04.005
本文引用格式:马伟丽,赵德伟,王本杰,等. DCE-MRI对高危坏死股骨头微循环灌注的评价.磁共振成像, 2019, 10(4): 263-267. DOI:10.12015/issn.1674-8034.2019.04.005.

       股骨头坏死(avascular necrosis of the femoral head,ANFH)是一种以骨细胞和骨髓的死亡为特征的致残性临床疾病[1],其最终阶段往往是软骨下骨折、关节结构的破坏,最终丧失关节功能[2]。众所周知,大剂量糖皮质激素的使用及酗酒是股骨头坏死的高危因素[3]。动物研究已经证明,如果在短时间内加以干预股骨头骨骺的早期缺血可以逆转[4],骨缺血的早期诊断对于有效的治疗改善预后较为有价值。骨代谢是复杂的,远未被完全理解,骨代谢中的血管化逐渐引起人们的关注[5];由于较多评估组织血管化的成像技术均为侵入性的检查[6],股骨头内的微血管化相关性研究罕见报道。与其他测量股骨头血流灌注的方法相比,动态增强磁共振(dynamic enhanced magnetic resonance imaging,DCE-MRI)为非侵入性检查,且具有可检测组织微循环灌注等优点,目前DCE-MRI已成为骨肌系统的研究热点。本研究旨在通过DCE-MRI前瞻性地检测股骨头坏死高危人群骨股头微循环灌注变化及血流灌注特征,分析其血流动力学特点及生理学意义,为超早期股骨头坏死提供影像学依据。

1 材料与方法

1.1 一般资料

       选取大连大学附属中山医院2017年8月至2018年7月激素性及酒精性单侧股骨头坏死患者及常规MRI检查正常但有骨坏死高危因素的患者20人(30例股骨头)纳入研究,男性10例,女性10例,年龄47~75岁,平均年龄(52.5±8.8)岁。另将30名健康志愿者常规MRI检查正常,行双髋关节DCE-MRI检查,随机选取左右髋关节各15例,共30例作为对照组,男女各15例,年龄48~75岁,平均年龄(60.0±10.3)岁。

1.2 实验组纳入标准

       不同情况下接受类固醇激素治疗(总剂量>2 g,强的松当量)或长期大量饮酒者(每周>400 mL)双髋关节常规MRI检查正常且有髋关节疼痛者;类固醇激素治疗及大量饮酒单侧股骨头坏死患者的对侧股骨头。

       排除标准:创伤性股骨头坏死、髋关节外伤及手术史;代谢性骨病;有骨髓恶性肿瘤病史、血液系统疾病的患者。

1.3 双髋关节MRI检查方法

1.3.1 常规MRI检查

       采用西门子3.0 T超导型磁共振,患者取仰卧位,加腹带。检查序列为冠状面快速自旋回波序列T1WI加权像TR=478 ms,TE=20 ms,FOV为380×320,分辨率为448×314,层厚为3 mm;横断面快速自旋回波序列T2WI加权像TR=4000 ms,TE=88 ms,FOV为380×320,分辨率为448×336,层厚为3 mm;横断面快速自旋回波STIR序列TR=3000 ms,TE=29 ms,FOV=380×300,分辨率为320×220,层厚3 mm。

1.3.2 DCE-MRI检查

       FLASH (fast low-angle shot)序列横断面T1WI,TR=5.08 ms,TE=1.71 ms,翻转角度=15°,层厚3.6 mm,层数24,FOV=300×300,分辨率为192× 138。常规MRI检查完毕后启动FLASH序列,采集总时间为160~240 s。对比剂采用钆喷替酸葡钾氨(Gd- DTPA),剂量是0.2 mL/kg,注射流速是3.0 mL/s,对比剂注射完毕后以同样的速率注射生理盐水20 mL。

1.4 DCE-MRI数据后处理

       将原始数据导入西门子3.0 T Verio超导型磁共振自带软件Mean curve即可自动生成时间信号强度曲线(time-intensity curve,TIC),软件自动将其转换为百分比TIC,文中简称为信号强度。股骨头感兴趣区(region of interest,ROI)的选择:在股骨头最大负重区即股骨头前上方、股骨头中心点及股骨头非负重区即股骨头下方各选取1 cm2的ROI (图1)。灌注参数的选择:每个ROI在TIC上读取3个半定量灌注参数:首次峰值(fEmax)、最大信号强度(Emax)、达峰时间(time to peak,TTP)。其中fEmax代表毛细血管密度,Emax代表血管外细胞外间隙,TTP主要代表首次通过时间。

图1  股骨头ROI选择示意图。在股骨头不同负重区分别选取ROI,1:负重区(股骨头前上方-机械负荷较大的区域),2:股骨头中心区,3:非负重区(股骨头下方-机械负荷较小的区域)
图2  股骨头坏死高危患者与正常者股骨头负重区灌注参数的比较,黄线为正常股骨头,蓝线为高危股骨头
图3  正常股骨头负重区与非负重区ROI灌注曲线,红线为负重区灌注曲线,白线为股骨头中心灌注曲线,绿线为非负重区灌注曲线
Fig. 1  ROI selection sketch map of femoral head selected ROI. 1: Load-bearing area (anterosuperior of femoral head-area with more mechanical load), 2: Central area of femoral head, 3: Non-load bearing area (inferior of femoral head with less mechanical load) in different load bearing areas of femoral head.
Fig. 2  Comparing perfusion parameters of femoral head between high-risk patients with femoral head necrosis and normal patients, the yellow line is normal femoral head and the blue line is high-risk femoral head.
Fig. 3  The ROI perfusion curves of normal and non-weight bearing areas of the femoral head. The red line is the perfusion curve of the weight-bearing area, the white line is the central perfusion curve of the femoral head, and the green line is the perfusion curve of the non-weight bearing area.

1.5 统计学方法

       采用SPSS 20.0软件分析,所有计量资料采用平均值±标准差表示,计数资料采用例表示;各灌注参数间的比较,正常股骨头不同ROI间灌注参数的比较采用方差分析,骨坏死高危患者与正常股骨头相同ROI间灌注参数的比较采用独立样本t检验,以P<0.05为差异有统计学意义。

2 结果

2.1 股骨头坏死高危人群与正常股骨头相同ROI间灌注参数的比较(图2)

       股骨头坏死高危患者与正常人股骨头负重区fEmax、Emax差异有统计学意义(P<0.05),股骨头坏死高危患者与正常人股骨头非负重区TTP差异有统计学意义(P<0.05),股骨头坏死高危患者与正常人股骨头中间区fEmax、Emax、TTP差异有统计学意义(P<0.05),见表1

表1  股骨头坏死高危患者与正常人相同ROI间灌注参数的比较
Tab. 1  Comparison of perfusion parameters between high-risk patients with femoral head necrosis and normal subjects with the same ROI

2.2 正常股骨头不同负重区ROI间灌注参数的比较(图3)

       30例正常股骨头在负重区、非负重区及股骨头中心ROI的fEmax分别是3.77±0.67、0.48±0.47、2.21±0.48,Emax分别是5.82±0.80、1.87±0.62、4.73±0.75,TTP分别是1.01±0.13、1.33±0.11、1.01±0.12,三组间fEmax、Emax差异均有统计学意义(F值分别是9.630、7.900,P<0.05),三组间TTP差异无统计学意义(F=2.047,P>0.05);两两比较得负重区、中心区fEmax、Emax大于非负重区fEmax、Emax,且差异有统计学意义(P<0.001);其他ROI间比较无统计学意义。

3 讨论

3.1 股骨头坏死高危人群与正常股骨头同一ROI间灌注参数的差异

       股骨头缺血坏死的发病机制在实验及临床已被广泛研究[7],缺血是骨坏死发病的关键因素[8],常规MRI检查诊断骨坏死的特异性较高,但对超早期的改变缺乏敏感性,较容易出现产生假阴性结果。相关研究已报道,大剂量糖皮质激素治疗以及大量饮酒是股骨头坏死的高危因素[9,10]。Tsai等[9]报道,激素性及酒精性双侧股骨头坏死中有32.4%由单侧股骨头坏死进展而来。以上研究结果表明,激素性及酒精性单侧股骨头坏死的对侧股骨头也有较高进展为坏死的风险。如若能在发生形态学改变之前就能检测到其微循环血流灌注的变化,对股骨头坏死的预防及早期治疗都将具有重要价值。

       文献报道,乳腺癌DCE-TIWI所测得首次通过fEmax与△R2有很好的正相关性[11],说明fEmax是评估组织毛细血管密度的有效方法。本研究中股骨头坏死高危组fEmax小于正常组fEmax且差异有统计学意义。Folkman等[12]的研究发现,糖皮质激素可以抑制毛细血管的正常生长和再生,也可促使已生长的毛细血管退化。长期大剂量使用糖皮质激素可损伤血管内皮细胞,也可使其快速退化、闭合[13]。此外,Motomura等[14]报道使用激素和酒精诱导的骨坏死病理结果相似,这也间接证明了本研究结果是正确的。大剂量使用激素后,股骨头毛细血管密度降低,股骨头血流量也随之下降。股骨头毛细血管密度降低是股骨头血流量下降至关重要的原因[13],这也可能是骨坏死的早期阶段。

       Emax主要与血管外组织间隙容积(extravascular extracellular space,EES)相关[11,15],Emax越大即表示组织的间隙容积越大。本组研究结果显示,股骨头坏死高危人群中股骨头Emax较正常人Emax明显下降且差异有统计学意义;骨髓内脂肪主要是来源于骨髓间充质干细胞的分化[16]。体外研究结果显示,大剂量的类固醇激素及酒精导致骨髓微环境的病理改变主要是骨髓间充质干细胞的成脂能力提高[16,17,18],故而组织间隙脂肪细胞数量及体积增加并最终导致组织EES下降,骨髓间充质干细胞成脂能力的提高与激素性及酒精性骨坏死密切相关[19]

       本研究TTP较股骨头正常组长,且差异有统计学意义。笔者分析原因可能是脂肪细胞体积增大可能会压迫毛细血管床[20],导致骨髓腔中静水压增加,从而限制了血液流动[21],故而微循环灌注时间延长。

3.2 正常股骨头不同负重区ROI血流灌注的异质性

       已有文献报道,髋部不同组成骨红黄骨髓髓内血流灌注的异质性[5,22,23,24,25],但利用半定量DCE-MRI参数评价股骨头不同机械负荷区血流灌注的相关研究却未见报道,了解骨髓微血管的性质将有助于更好地理解骨代谢[5]

       Lane等[26]报道,股骨头最大负重区软骨下骨毛细血管密度较其他区域增加25%,这与本研究基本相符,本研究中发现正常人股骨头负重区fEmax大于非负重区fEmax,且差异有统计学意义。Farkas等[27]也在兔的实验中发现,以50 ms负荷距跟关节软骨下骨,6周后观察到骨量增加10%以及小血管数目明显增加,这也间接证明了本研究结果是正确的。股骨头也可通过内分泌的刺激来调节组织的微血管化[28],笔者分析原因可能髋关节是承重关节,有可能是机械负荷与组织微血管之间的联系导致股骨头血流灌注的异质性。

       红骨髓含有较多窦状毛细血管且管径较粗,而黄骨髓毛细血管管径与其他组织毛细血管管径无明显差异,且数量较红骨髓所含窦状毛细血管明显减少。近年来,关于DCE-MRI在髋关节骨髓的研究中已经表明,红骨髓与黄骨髓灌注参数有较大差别[5,25]。20岁以后股骨头内主要分布的是黄骨髓,较主要含有红骨髓的髋臼的fEmax明显降低。Niu等[29]研究表明股骨头fEmax虽较低,但其Emax较fEmax明显升高,约是fEmax的2倍,这与本研究基本相符。本研究中正常人群股骨头不同ROI的Emax较fEmax明显高,约是其2倍。生理状态下,股骨头毛细血管密度虽较低,各种新陈代谢以及细胞活力的维持可能与股骨头有相对较大的EES有关[29]

       本研究中正常人股骨头内不同ROI间TTP差异无统计学意义,这与Budzik等[5]的研究结果相近。

       本研究尚存在一定的局限性。首先,本研究所有ROI均为手动勾画,可能会存在一定的人为主观性;所有ROI只是选择一个平面而不是三维的勾画;另外,本研究样本量偏少,对研究结果会存在一定影响;再者,本研究缺乏所纳入实验组的临床随访及相关的病理学支持。

       总之,正常人股骨头不同负重区的血流灌注具有异质性,股骨头负重区血流灌注较其他ROI血流灌注较多。此外,大剂量使用类固醇激素及大量饮酒者高危人群,股骨头血流灌注量小于健康人,但灌注时间较正常股骨头长,存在血流瘀滞现象。因此,DCE-MRI参数可用于评价股骨头微循环变化情况,有助于对超早期股骨头坏死的筛选,可应用于指导临床进行早期预防股骨头坏死发生。

[1]
Xie XH, Wang XL, Yang HL, et al. Steroid-associated osteonecrosis: Epidemiology, pathophysiology, animal model, prevention, and potential treatments (an overview). J Orthop Translat, 2015, 3(2): 58-70.
[2]
Malizos KN, Karantanas AH, Varitimidis SE, et al. Osteonecrosis of the femoral head: etiology, imaging and treatment. Eur J Radiol, 2007, 63(1): 16-28.
[3]
Mont MA, Cherian JJ, Sierra RJ, et al. Nontraumatic osteonecrosis of the femoral head: Where do we stand today? A ten-year update. J Bone Joint Surg Am, 2015, 97(19): 1604-1627.
[4]
Li X, Hu J, Zhen H, et al. Early reversible ischemia of femoral head epiphysis in piglets on gadolinium-enhanced MRI: an experimental study. J Huazhong Univ Sci Technol Med Sci, 2006, 26(4): 482-484.
[5]
Budzik JF, Lefebvre G, Behal H, et al. Bone marrow perfusion measured with dynamic contrast enhanced magnetic resonance imaging is correlated to body mass index in adults. Bone, 2017, 99: 47-52.
[6]
Budzik JF, Lefebvre G, Behal H, et al. Assessment of the zonal variation of perfusion parameters in the femoral head: a 3-T dynamic contrast-enhanced MRI pilot study. Skeletal Radiol, 2018, 47(2): 261-270.
[7]
Nakamura T, Matsumoto T, Nishino M, et al. Early magnetic resonance imaging and histologic findings in a model of femoral head necrosis. Clin Orthop Relat Res, 1997, 334(334): 68-72.
[8]
Schneider T, Drescher W, Becker C. Dynamic gadolinium-enhanced MRI evaluation of porcine femoral head ischemia and reperfusion. Skeletal Radiol, 2003, 32(2): 59-65.
[9]
Tsai SW, Wu PK, Chen CF, et al. Etiologies and outcome of osteonecrosis of the femoral head: Etiology and outcome study in a Taiwan population. J Chin Med Assoc, 2016, 79(1): 39-45.
[10]
Jones LC, Hungerford DS. The pathogenesis of osteonecrosis. Instr Course Lect, 2007, 56(56): 179-196.
[11]
Daldrup HE, Shames DM, Husseini W, et al. Quantification of the extraction fraction for gadopentetate across breast cancer capillaries. Magn Reson Med, 1998, 40(4): 537-543.
[12]
Folkman J, Ingber DE. Angiostatic steroids. Method of discovery and mechanism of action. Ann Surg, 1987, 206(3): 374.
[13]
Hu CG, Chen JC, Liu Q. Mechanism of femoral head necrosis induced by long term glucocorticoid treatment in rabbit model. Chin J Orthop, 2004, 24(6): 359.
[14]
Motomura G, Yamamoto T, Miyanishi K, et al. Combined effects of an anticoagulant and a lipid-lowering agent on the prevention of steroid-induced osteonecrosis in rabbits. Arthritis Rheumatol, 2014, 50(10): 3387-3391.
[15]
Rahmouni A, Montazel JL, Divine M, et al. Bone marrow with diffuse tumor infiltration in patients with lymphoproliferative diseases: dynamic gadolinium-enhanced MR imaging. Radiology, 2003, 229(3): 710.
[16]
Wang Y, Li Y, Mao K, et al. Alcohol-induced adipogenesis in bone and marrow: a possible mechanism for osteonecrosis. Clin Orthop Relat Res, 2003, 410(410): 213-224.
[17]
Cui Q, Wang GJ, Balian G. Pluripotential marrow cells produce adipocytes when transplanted into steroid-treated mice. Connect Tissue Res, 2000, 41(1): 45.
[18]
Tomlinson JJ, Boudreau A, Wu D, et al. Modulation of early human preadipocyte differentiation by glucocorticoids. Endocrinology, 2006, 147(11): 5284-5293.
[19]
Hui S, Ge Z, Cheung W, et al. Elevated adipogenesis of marrow mesenchymal stem cells during early steroid-associated osteonecrosis development. J Orthop Surg Res, 2007, 2(1): 15.
[20]
Wang GJ, Sweet DE, Reger SI, et al. Fat-cell changes as a mechanism of avascular necrosis of the femoral head in cortisone-treated rabbits. J Bone Joint Surg Am, 1977, 59(6): 729-735.
[21]
Cruess RL. Osteonecrosis of bone. Current concepts as to etiology and pathogenesis. Clin Orthop Relat Res, 1986, 208(208): 30.
[22]
Griffith JF, Yeung DK, Tsang PH, et al. Compromised bone marrow perfusion in osteoporosis. J Bone Miner Res, 2008, 23(7): 1068-1075.
[23]
Bluemke DA, Petri M, Zerhouni EA. Femoral head perfusion and composition: MR imaging and spectroscopic evaluation of patients with systemic lupus erythematosus and at risk for avascular necrosis. Radiology, 1995, 197(2): 433-438.
[24]
Griffith JF, Yeung DKW, Leung JCS, et al. Prediction of bone loss in elderly female subjects by MR perfusion imaging and spectroscopy. Eur Radiol, 2011, 21(6): 1160-1169.
[25]
Budzik JF, Lefebvre G, Forzy G, et al. Study of proximal femoral bone perfusion with 3D T1 dynamic contrast-enhanced MRI: a feasibility study. Eur Radiol, 2014, 24(12): 3217-3223.
[26]
Lane L, Villacin A, Bullough P. The vascularity and remodelling of subchondrial bone and calcified cartilage in adult human femoral and humeral heads. An age and stress-related phenomenon. J Bone Joint Surg Br, 1977, 59(3): 272-278.
[27]
Farkas T, Boyd RD, Schaffler MB, et al. Early vascular changes in rabbit subchondral bone after repetitive impulsive loading. Clin Orthop Relat Res, 1987(219): 259-267.
[28]
Scheller EL, Rosen CJ. What's the matter with MAT? Marrow adipose tissue, metabolism, and skeletal health. Ann N Y Acad Sci, 2014, 1311(1): 14-30.
[29]
Niu JL, Wang J, Feng GS, et al. Bone marrow perfusion of the hip evaluated with dynamic contrast-enhanced MRI: The preliminary results. Chin J Med Imaging Technol, 2008, 24(10): 1493-1496.

上一篇 不同扩散模型对Ⅰ期子宫内膜癌肌层浸润深度的诊断价值
下一篇 基于VMHC方法的青少年网络成瘾静息态功能磁共振成像研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2