分享:
分享到微信朋友圈
X
临床研究
术中磁共振、超声、5-ALA引导荧光技术对脑胶质瘤切除残留诊断价值的Meta分析
叶冬熳 杨劭劼 于韬

Cite this article as: Ye DM, Yang SJ, Yu T. Comparison of intraoperative magnetic resonance imaging, ultrasound and fluorescence guided with 5-ALA in the diagnosis of residual glioma: a Meta-analysis. Chin J Magn Reson Imaging, 2019, 10(5): 342-347.本文引用格式:叶冬熳,杨劭劼,于韬.术中磁共振、超声、5-ALA引导荧光技术对脑胶质瘤切除残留诊断价值的Meta分析.磁共振成像,2019,10(5):342-347. DOI:10.12015/issn.1674-8034.2019.05.005.


[摘要] 目的 评价应用术中磁共振(intraoperative magnetic resonance imaging,iMRI)、术中超声(intraoperative ultrasound,iUS)、5-氨酸乙酰丙酸荧光引导技术(fluorescence guided with 5-aminolevulinic acid,fluorescence guided with 5-ALA)对胶质瘤切除残留的诊断价值。材料与方法 计算机检索Pubmed、Embase、the Cochrane Library、中国知网、万方数据库自建库起至2018年4月有关术中MRI、术中超声、术中荧光技术对脑胶质瘤残余肿瘤的诊断的相关文献。由2名研究者按照纳入及排除标准独立筛选文献,应用QUADAS-2对纳入文献进行质量评价。采用Meta-Disc 1.4、Stata 13.0软件进行分析,对敏感度(sensitivity,Sen)、特异度(specificity,Spe)、阳性似然比(positive likelihood ratio,PLR)、阴性似然比(negative likelihood ratio,NLR)、诊断比值比(diagnositc odds ratio,DOR)进行汇总分析并进行异质性检验,计算综合受试者工作曲线(summary receiver operating characteristic curve,SROC)并进行比较。结果 最终纳入34篇文献,采用随机效应模型进行分析,iMRI、iUS、5-ALA的汇总分析。Sen、Spe、PLR、NLR、DOR分别为0.698 (0.651,0.742)、0.819 (0.762,0.867)、3.815 (2.208,7.175)、0.230 (0.110,0.484)、22.556 (5.657,89.933),0.746 (0.717,0.773)、0.872 (0.850,0.892)、4.041 (2.588,6.310)、0.313 (0.227,0.433)、15.951 (8.190,31.068),0.752 (0.726,0.777)、0.862 (0.839,0.882)、3.877 (2.593,5.798)、0.313 (0.230,0.425)、15.256 (8.309,28.046)。SROC的AUC分别为0.897、0.865、0.891,经Z检验发现其并无明显统计学意义。结论 iMRI,iUS,5-ALA对胶质瘤切除后残余肿瘤的诊断具有重要的诊断价值,iMRI与iUS在显示切除瘤、周围水肿、血肿等可以提供重要的影像信息,iMRI的诊断效能略高于iUS、5-ALA,在术中可实时了解整体脑部的出血水肿等情况,而iUS的特异度略高于其他两种技术,一定程度上可以减少误诊率,这在功能区胶质瘤的手术具有极大的诊断意义,5-ALA荧光技术的敏感度较高,可以减少漏诊率,但在脑功能成像存在一定不足,因此尚不能完全替代iMRI、iUS。目前,术中多种影像技术的结合在胶质瘤切除中发挥更大的作用,可以极大地提高神经外科手术的精确性。
[Abstract] Objective: To evaluate the value of intraoperative magnetic resonance imaging, intraoperative ultrasound and intraoperative fluorescence guided with 5-aminolevulinic acid (5-ALA) in the diagnosis of residual glioma.Materials and Methods: Literatures on intraoperative MRI, intraoperative ultrasound and 5-ALA in the diagnosis of residual glioma were collected from Pubmed, Embase, the Cochrane Library, CNKI and Wanfang Database from the establishment of the database to April 2018. Two researchers independently screened the literature according to inclusion and exclusion criterias, and used QUADAS-2 to evaluate the quality of the included literatures. The sensitivity (Sen), specificity (Spe), positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic ratio (DOR) were analyzed by Meta- Disc 1.4 and Stata 13.0 software. The heterogeneity was tested and the summary receiver operating characteristic curve (SROC) was calculated.Results: Thirty-four papers were included and analyzed by random effect model. The Sen, Spe, PLR, NLR and DOR of iMRI, iUS and 5-ALA were 0.698 (0.651, 0.742), 0.819 (0.762, 0.867), 3.815 (2.208, 7.175), 0.230 (0.110, 0.484), 22.556 (5.657, 89.933). 0.746 (0.717, 0.773), 0.872 (0.850, 0.892), 4.041 (2.588, 6.310), 0.313 (0.227, 0.433), 15.951 (8.190, 31.068). 0.752 (0.726, 0.777), 0.862 (0.839, 0.882), 3.877 (2.593, 5.798), 0.313 (0.230, 0.425), 15.256 (8.309, 28.046). The AUC of iMRI, iUS, 5-ALA were 0.897, 0.865, 0.891. There were no significant statistical significance by Z test.Conclusions: iMRI, iUS, 5-ALA have important diagnostic value for the diagnosis of residual tumor after glioma resection. iMRI and iUS can provide important imaging information of tumor resection, peripheral edema, hematoma, etc. The AUC of iMRI is slightly higher than that of iUS, 5-ALA.iMRI could provide real-time information of the overall brain hemorrhage and edema in the operation. The specificity of iUS is slightly higher than the other two technologies, and it can reduce the rate of misdiagnosis. It can make great dianostic significance in the functional area of glioma surgery. The sensitivity of 5-ALA is higher, which can reduce the rate of missed diagnosis. However, there is a certain deficiency in brain function imaging. So it cannot completely replace iMRI and iUS. At present, the combination of multiple imaging techniques in the operation plays a great role in glioma resection, which can greatly improve the accuracy of neurosurgery.
[关键词] 磁共振成像;超声检查;荧光技术;监测,手术中;神经胶质瘤;基于文献的发现
[Keywords] magnetic resonance imaging;ultrasonography;fluorescence technology;monitoring, intraoperative;glioma;literature based discovery

叶冬熳 中国医科大学肿瘤医院辽宁省肿瘤医院超声科,沈阳 110042

杨劭劼 中国医科大学附属第一医院妇科,沈阳 110001

于韬* 中国医科大学肿瘤医院辽宁省肿瘤医院超声科,沈阳 110042

通信作者:于韬,E-mail:yutao@cancerhosp-lncmu.com

利益冲突:无。


收稿日期:2018-09-27
接受日期:2019-01-20
中图分类号:R445.2; R739.41 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2019.05.005
本文引用格式:叶冬熳,杨劭劼,于韬.术中磁共振、超声、5-ALA引导荧光技术对脑胶质瘤切除残留诊断价值的Meta分析.磁共振成像,2019,10(5):342-347. DOI:10.12015/issn.1674-8034.2019.05.005.

       脑胶质瘤是常见的颅内肿瘤,手术切除是目前主要的治疗手段[1]。术中辅以影像技术可帮助术者提高肿瘤的切除率,减少不必要的脑功能损伤,从而最大程度地提高胶质瘤患者的生存率及生存质量[2]。目前常用的术中影像技术包括:术中磁共振、术中超声、术中荧光技术、神经导航技术等。但目前尚无相关研究同时将术中磁共振(intraoperative magnetic resonance imaging,iMRI)、术中超声(intraoperative ultrasound,iUS)、术中5-氨酸乙酰丙酸荧光技术(fluorescence guided with 5-aminolevulinic acid,fluorescence guided with 5-ALA)对脑胶质瘤残余肿瘤的诊断价值进行比较分析。为此,笔者采用Meta分析的方法评价三种术中影像方法的诊断价值,为临床术中辅助影像技术的选择提供更有力的循证医学证据。

1 材料与方法

1.1 文献检索

       计算机检索Pubmed、Embase、the Cochrane Library、中国知网、万方数据库自建库起至2018年4月有关iMRI、iUS、5-ALA对脑胶质瘤残余肿瘤的诊断的相关文献。英文检索词为glioma、intraoperative、MRI、ultrasound、fluorescence、5-Aminolevulinic acid、5-ALA等;中文检索词为胶质瘤、术中磁共振、术中超声、术中荧光技术、5-ALA,以关键词与自由词组合的方式进行检索。为避免文献遗漏,由2名研究者共同筛选文献,意见不统一时,应与由第三名研究者共同商议决定文献的纳入与否,对于重复发表文献,应予以剔除。

1.2 纳入及排除标准

       纳入标准:(1)研究对象为接受手术的胶质瘤患者;(2)所有患者接受iMRI或iUS或5-ALA检查;(3)病理结果或术后72 h内进行MRI检查作为诊断残余肿瘤的标准;(4)回顾性或前瞻性研究;(5)从文献中数据可计算真阳性(true positive,TP)、假阳性(false positive,FP)、真阴性(true negative,TN)、假阴性(false negative,FN)值;(6)语种为中文或英文。

       排除标准:(1)动物实验研究、综述、会议论文等;(2)重复发表文献;(3)样本量<10;(4)文章内研究颅内其他原发肿瘤或转移瘤。

1.3 资料提取及纳入文献质量评价

       由2名研究者独立筛选文献,如遇分歧,由第三名研究者共同协商解决。2名研究者应用诊断性试验文献质量评价工具(QUADADS-2)[3]对纳入文献进行方法学质量评价,对每个条目做出是(低度偏倚或适用性好)、否(高度偏倚或适用性差)、不清楚(缺乏相关信息或偏倚情况不明确)的判断。对初筛获得的文献进行信息提取,包括文献的相关信息(作者、发表时间、国家等)、患者相关信息(年龄、性别等),四格表数据(真阳性、假阳性、真阴性、假阴性)。根据上述纳入及排除标准对所获文献进行筛查。用Review manager Meta分析软件对文献质量和偏倚程度进行分析。

1.4 数据分析

       采用Meta-Disc 1.4软件,分布计算合并后的iMRI、iUS、5-ALA的敏感度(sensitivity,Sen)、特异度(specificity,Spe)、阳性似然比(positive likelihood ratio,PLR)、阴性似然比(negative likelihood ratio,NLR)、诊断比值比(diagnositc odds ratio,DOR),结果以95%可信区间(confidence level,CI)显示,并对汇总受试者工作特征曲线(summary receiver operating characteristic curve,SROC)进行拟合,绘制受试者工作特征曲线(receiver operating characteristic curve,ROC)曲线,计算三种技术的ROC曲线下面积(area under curve,AUC),根据AUC值的大小评价不同影像技术的诊断效能,AUC>0.9时,说明诊断准确性较高,AUC为0.7~0.9时,说明诊断准确性中等,AUC<0.7时,说明诊断准确性较低,并采用Z检验分析是否存在统计学差异。采用Spearman相关分析检验是否存在由阈值效应引起的异质性;采用I2值对非阈值效应引起的异质性进行分析,当I2≤50%,采用固定效应模型;当I2≥50%,采用随机效应模型。采用统计分析软件Stata 13.0分别对三种技术进行Deek's漏斗图不对称试验,以评估纳入的研究是否存在发表偏倚。

2 结果

2.1 文献检索结果

       初步检索获得文献2497篇,利用Endnote软件删除重复发表文献后获得2160篇,对2160篇文献进行阅读题目及摘要,88篇文献阅读全文后最终纳入文献34篇[4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37],本研究从文献中提取第一作者、发表时间、研究类型、患者数量、平均年龄、术中辅助影像技术,纳入研究的基本信息见表1,文献质量评价结果显示大部分文献质量较好,但仍有文献存在不同程度的偏倚。

表1  纳入研究基本信息
Tab. 1  The basic information of included studies

2.2 Meta分析结果

2.2.1 异质性分析

       iMRI、iUS、5-ALA的SROC曲线不呈肩翼状分布,Spearman等级相关参数分别为-0.378 (P=0.316)、0.351 (P=0.130)、-0.300 (P=0.433),说明本篇Meta分析不存在阈值效应。纳入研究间异质性检验结果:iMRI的I2sen=92.6%,I2spe=71.9%;iUS的I2sen= 87.6%,I2spe=91.2%;5-ALA的I2sen=87.1%,I2spe=91.2%;表明研究间存在较大的异质性,故均采用随机效应模型计算合并效应量。

2.2.2 汇总分析

       iMRI、iUS、5-ALA的汇总分析结果:Sen、Spe、PLR、NLR分别为0.698 (0.651,0.742)、0.819 (0.762,0.867)、3.815 (2.208,7.175)、0.230 (0.110,0.484),0.746 (0.717,0.773)、0.872 (0.850,0.892)、4.041 (2.588,6.310)、0.313 (0.227,0.433),0.752 (0.726,0.777)、0.862 (0.839,0.882)、3.877 (2.593,5.798)、0.313 (0.230,0.425)。汇总分析结果见表2。SROC曲线图见图1,iMRI、iUS、5-ALA的AUC分别为0.897、0.865、0.891,经Z检验统计分析表明三种技术间并不存在明显统计学差异。

图1  iMRI,iUS、5-ALA诊断胶质瘤残余肿瘤的SROC曲线图。A:MRI;B:US;C:5-ALA。图中圆点表示纳入的研究
Fig. 1  Summary receiver operating characteristic curve(SROC) of iMRI, iUS and 5-ALA in the diagnosis of residual glioma. A: MRI. B: US. C: 5-ALA. The dots in the figure represent the included studies.
表2  汇总分析表
Tab. 2  The Summary analysis table

2.3 敏感性分析及发表偏倚

2.3.1 敏感性分析

       逐一剔除文献后,iMRI、iUS、5-ALA的Meta分析结果均无差异,说明纳入文献稳定性较好。

2.3.2 发表偏倚

       通过对iMRI、iUS、5-ALA三种Meta分析分别做Deek's漏斗图不对称试验,并对代表偏倚的回归直线的斜率进行检验,结果显示P值分别为0.85、0.36、0.44,均大于0.05,说明纳入的研究不存在明显的发表偏倚。

3 讨论

       胶质瘤是颅内常见的肿瘤,手术切除是胶质瘤最为有效的治疗方法。而近期相关研究指出,对于功能区的胶质瘤,保护神经功能比肿瘤的大范围切除更有意义[38]。在胶质瘤手术中行术中影像学相关检查可以帮助临床医生客观判断残余肿瘤的切除情况,可最大程度提高肿瘤的切除率并保存患者脑功能,从而提高患者的生存率及生存质量。

       本组分析共纳入34篇文献,结果提示,iMRI诊断残余肿瘤的汇总敏感度、特异度分别为0.698 (0.651,0.742),0.819 (0.762,0.867);PLR和NLR分别为3.815 (2.208,7.175)、0.230 (0.110,0.484),提示正确诊断残余肿瘤是错误诊断的3.815倍,而错误排除残余肿瘤占正确排除残余瘤的0.230;AUC是反映诊断试验诊断价值的综合指标,iMRI的AUC为0.897,提示iMRI具有较高的诊断价值。iUS诊断残余肿瘤的汇总敏感度、特异度分别为0.746 (0.717,0.773)、0.872 (0.850,0.892);PLR和NLR分别为4.041 (2.588,6.310)、0.313 (0.227,0.433),提示正确诊断残余肿瘤是错误诊断的4.041倍,而错误排除残余肿瘤占正确排除残余瘤的0.313;iUS的AUC为0.865,提示iUS具有中等诊断价值。5-ALA诊断残余肿瘤的汇总敏感度、特异度分别为0.752 (0.726,0.777)、0.862 (0.839,0.882);PLR和NLR分别为3.877 (2.593,5.798)、0.313 (0.230,0.425),提示正确诊断残余肿瘤是错误诊断的3.877倍,而错误排除残余肿瘤占正确排除残余瘤的0.313;5-ALA的AUC为0.801,提示5-ALA具有中等诊断价值。

       三种技术敏感度排序:5-ALA>iUS>iMRI;特异度排序:iUS>5-ALA>iMRI;AUC排序:iMRI>iUS> 5-ALA;DOR:iMRI>5-ALA>iUS;约登指数排序:5-ALA>iUS>iMRI。5-ALA的敏感度最高,但仍有25%的漏诊率;iUS的特异度最高,但仍有12.4%的误诊率。约登指数作为一个较为理想的综合性指标,对敏感度、特异度赋予相同的权重,但同时存在也将假阳性、假阴性错误视为相同的危害的缺陷,从约登指数来看,iUS的优势略高于iMRI及5-ALA。SROC曲线分析得出,iMRI、iUS及5-ALA对胶质瘤残余肿瘤的诊断准确性均处于中等水平,iMRI的AUC略大于iUS及5-ALA,但经Z检验比较三种影像技术发现,三者AUC并无明显统计学差异。

       颅内手术最常见的问题是,由于肿瘤的切除、脑脊液的流失等原因常常会引起脑移位。而术中磁共振可以很好地解决这一问题,iMRI在术中重新扫描,帮助术者精确定位,判断肿瘤的切除情况,了解脑部的整体状况如出血、水肿等,从而为下一步的治疗提供可靠的方案。Meta分析结果显示iMRI的AUC略高于iUS、5-ALA,说明其诊断效能较好。且目前可以根据不同肿瘤类型及手术过程选择不同的扫描序列,极大提高诊断的准确性,为术者提供更多脑功能相关的信息,但iMRI也存在一定缺陷,磁共振在术中的应用需要对手术室进行相应的改造,需要特制的手术器械等,极大地增加了手术成本,这可能是导致术中磁共振未能广泛应用的原因之一;Lu等[39]术中应用磁共振会相应延长手术时间,使感染的风险增加;有学者研究发现,在应用高场强磁共振时,心电描记会出现假阳性情况,这对术中监护造成一定的困扰[40]。术中超声在手术中不会受到脑移位的影响,可多次多方位进行探查,减少手术时间,操作简便,且价格经济实惠,性价比较高。Meta分析结果显示iUS特异度最高,这提示其误诊可能性最低,这对于功能区的胶质瘤具有极大的诊断意义,可以防止因误判而切除较多脑实质,而影响患者的预后及生存质量。但术中超声存在一定局限性:对肿瘤的探查很大程度依赖于检查人员丰富的经验及高超的技术;由于检查过程中需要将探头放到颅内,这对开颅的位置及切口大小提出更高的要求[41];术中肿瘤切除后,伪影、血肿常与残余肿瘤难以分辨[42]。5-氨酸乙酰丙酸是血红蛋白前体,可在胶质瘤聚集并在蓝光下显示出红色荧光,给药途径简单,可反复多次治疗,术者不需掌握其他相关操作要领即可在术中找到肿瘤并切除[43]。一项随机对照研究发现,有荧光辅助的胶质瘤手术全切率明显高于传统白光手术,且延长患者的生存期[44]。本篇Meta分析结果提示:5-ALA的敏感度最高,这提示其漏诊可能性最低,也是综合敏感度特异度指标后均较高的技术,在常规切除胶质瘤的手术中,因其操作简单、给药途径方便,可多次治疗而受到广泛应用,但是5-ALA同样存在一些缺陷,因5-ALA荧光引导技术是在显微镜下进行,很容易在视野死角处残留肿瘤;同样,若肿瘤组织被正常的脑组织分隔,在术中正常脑组织很可能会掩盖荧光信号而造成漏诊。目前对于肿瘤周边的弱荧光组织是否需要被切除尚未统一观点,Stummer等[45]研究发现周边弱荧光组织是受浸润的脑组织,过多切除会增加神经功能障碍的风险。此外,5-ALA在低级别胶质瘤、水肿及炎性组织易出现假阳性[46]。相比于其他技术,在提供脑功能信息方面仍是5-ALA荧光技术的短板。5-ALA也常可作为iMRI、iUS的辅助技术在胶质瘤切除中联合诊断,极大提高肿瘤的切除率[47]

       目前,脑胶质瘤的手术治疗已进入一个崭新的阶段,术中应用不同的影像技术使手术更加细化,减少患者术后神经功能损伤。笔者就常用的三种术中技术iMRI、iUS、5-ALA做诊断Meta,旨在帮助临床医生根据患者的病情、经济情况等选择最适宜的影像方法,为患者制订最佳的治疗方案。有研究表明,联合应用术中影像技术极大地提高肿瘤切除范围,同时保护脑功能[48],这也是未来术中影像技术发展的一个趋势。本研究存在的局限性:(1)只探讨三种影像技术对残余胶质瘤的诊断价值,但未对高低级别胶质瘤进行具体探讨;(2)有研究使用病灶进行统计,有研究使用患者进行统计;(3)只纳入中英文文献,可能存在语种偏倚;(4)单个研究纳入的数量不同,仪器不同,术者对不同技术的经验及熟练程度不同,这可能是使研究间存在一定异质性;(5)术中病理取材方法有差别。

       综上所述,术中磁共振、术中超声、5-ALA对胶质瘤切除后残余肿瘤具有较高的诊断价值,iMRI,iUS,5-ALA对胶质瘤切除后残余肿瘤的诊断具有重要的诊断价值,iMRI与iUS在显示切除瘤、周围水肿、血肿等可以提供重要的影像信息,iMRI的诊断效能略高于iUS、5-ALA,在术中可实时了解整体脑部的出血水肿等情况,而iUS的特异度略高于其他两种技术,一定程度上可以减少误诊率,这在功能区胶质瘤的手术中具有极大的诊断意义,5-ALA荧光技术的敏感度较高,可以减少误诊率,但在脑功能成像存在一定不足,因此尚不能完全替代iMRI、iUS。目前,术中多种影像技术的结合在胶质瘤切除中发挥更大的作用,可以极大的提高神经外科手术的精确性,相信未来这种模式必将极大地推动神经外科手术的发展,为患者提供更加精准的治疗。

[1]
Wolbers JG. Novel strategies in glioblastoma surgery aim at safe, supra-maximum resection in conjunction with local therapies. Chin J Cancer, 2014, 33(1): 8-15.
[2]
Hervey-Jumper SL, Berger MS. Role of surgical resection in low- and high-grade gliomas. Curr Treat Options Nurol, 2014, 16(4): 284.
[3]
Whiting PF, Rutjes AW, Westwood ME, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med, 2011, 155(8): 529-536.
[4]
Coburger J, Engelke J, Scheuerle A, et al. Tumor detection with 5-aminolevulinic acid fluorescence and Gd-DTPA-enhanced intraoperative MRI at the border of contrast-enhancing lesions: a prospective study based on histopathological assessment. Neurosurg Focus, 2014, 36(2): E3.
[5]
Gessler F, Forster MT, Dutzmann S, et al. Combination of intraoperative magnetic resonance imaging and intraoperative fluorescence to enhance the resection of contrast enhancing gliomas. Neurosurgery, 2015, 77(1): 16-22.
[6]
Hauser SB, Kockro RA, Actor B, et al. Combining 5-aminolevulinic acid fluorescence and intraoperative magnetic resonance imaging in glioblastoma surgery: a histology-based evaluation. Neurosurgery. 2016, 78(4): 475-483.
[7]
Hesselmann V, Mager AK, Goetz C, et al. Accuracy of high-field intraoperative MRI in the detectability of residual tumor in glioma grade IV resections. RoFo, 2017, 189(6): 519-526.
[8]
Moiyadi AV, Kannan S, Shetty P. Navigated intraoperative ultrasound for resection of gliomas: predictive value, influence on resection and survival. Neurology India, 2015, 63(5): 727-735.
[9]
Pamir MN, Ozduman K, Yildiz E, et al. Intraoperative magnetic resonance spectroscopy for identification of residual tumor during low-grade glioma surgery: clinical article. J Neurosurg, 2013, 118(6): 1191-1198.
[10]
Panciani PP, Fontanella M, Schatlo B, et al. Fluorescence and image guided resection in high grade glioma. Clin Neurol Neurosurg, 2012, 114(1): 37-41.
[11]
Coburger J, Scheuerle A, Kapapa T, et al. Sensitivity and specificity of linear array intraoperative ultrasound in glioblastoma surgery: a comparative study with high field intraoperative MRI and conventional sector array ultrasound. Neurosurg Rev, 2015, 38(3): 499.
[12]
Munkvold BKR, Jakola AS, Reinertsen I, et al. The diagnostic properties of intraoperative ultrasound in glioma surgery and factors associated with gross total tumor resection. World Neurosurg, 2018, 115: e129-e136.
[13]
Roldán P, García S, González J, et al. Low field intra-operative magnetic resonance imaging for brain tumour surgery: preliminary experience. Neurocirugia (Astur), 2017, 28(3): 103-110.
[14]
Rygh OM, Selbekk T, Torp SH, et al. Comparison of navigated 3D ultrasound findings with histopathology in subsequent phases of glioblastoma resection. Acta Neurochir (Wien), 2008, 150(10): 1033-1041.
[15]
Sage W, Guilfoyle M, Luney C, et al. Local alkylating chemotherapy applied immediately after 5-ALA guided resection of glioblastoma does not provide additional benefit. J Neurooncol, 2018, 136(2): 273-280.
[16]
Tian YJ, Lin S, Liu HZ, et al. Value of intra-operative ultrasound in detecting the boundaries of intracranial gliomas. Zhonghua Yi Xue Za Zhi, 2009, 89(19): 1305-1308.
[17]
Valdés PA, Jacobs V, Harris BT, et al. Quantitative fluorescence using 5-aminolevulinic acid-induced protoporphyrin IX biomarker as a surgical adjunct in low-grade glioma surgery. J Neurosurgery, 2015, 123(3): 771-780.
[18]
Unsgaard G, Selbekk T, Brostrup M T, et al. Ability of navigated 3D ultrasound to delineate gliomas and metastases--comparison of image interpretations with histopathology. Acta Neurochir (Wien), 2005, 147(12): 1259-1269.
[19]
von Campe G, Moschopulos M, Hefti M. 5-aminolevulinic acid-induced protoporphyrin IX fluorescence as immediate intraoperative indicator to improve the safety of malignant or high-grade brain tumor diagnosis in frameless stereotactic biopsies. Acta Neurochir (Wien), 2012, 154(4): 585-588.
[20]
Widhalm G, Kiesel B, Woehrer A, et al. 5-Aminolevulinic acid induced fluorescence is a powerful intraoperative marker for precise histopathological grading of gliomas with non-significant contrast-enhancement. PloS One, 2013, 8(10): e76988.
[21]
Chen YH. The basical study and application of intraoperative clinical ultrasound in brain glioma resections. Guangzhou: Southern Medical University, 2008: 1-85.
陈运洪. 脑胶质瘤术中超声的基础及临床应用研究. 广州: 南方医科大学, 2008: 1-85.
[22]
Guo SQ, Chen YH, Luo JB. Intraoperative ultrasonography for residual tumors after surgery of brain glioma. J Pract Med, 2011, 27(5): 852-854.
郭少琼,陈远洪,罗建彬. 术中超声对脑胶质瘤术后残余肿瘤的观察研究. 实用医学杂志, 2011, 27(5): 852-854.
[23]
He Y, He W, Du LJ, et al. The value of intraoperative contrast-enhanced ultrasonography for improving the completely resection of cerebral gliomas. Chin J Med Ultrasound (Elect), 2012, 9(1): 36-39.
贺焱,何文,杜丽娟, 等. 术中超声造影对提高脑胶质瘤完全切除的临床应用价值. 中华医学超声杂志(电子版), 2012, 9(1): 36-39.
[24]
Liu J. Intraoperative ultrasound on the evaluation of residual tumor after resection of supratentorial gliomas. Urumchi: Xinjiang Medical University, 2009: 1-31.
刘晶. 术中超声对幕上胶质瘤术后残余的评价. 乌鲁木齐: 新疆医科大学, 2009: 1-31.
[25]
Song ZJ. Application of high-field intraoperative magnetic resonance imaging in glioma resections and its impact on the extension of resection. Beijing: Chinese PLA General Hospital, 2011: 1-44.
宋志军. 高场强术中磁共振在胶质瘤术中应用的可靠性研究及其对切除程度的影响: 北京: 解放军总医院, 2011: 1-44.
[26]
Wang LS, He W, Liu HZ, et al. A comparative study for intraoperative ultrasound and pathologic evaluation on resection of parenchymal brain tumours. Chin J Med Ultrasound (Elect), 2009, 6(3): 43-46.
王立淑,何文,刘会昭, 等. 术中超声与病理评价颅脑胶质瘤切除程度的对照研究. 中华医学超声杂志(电子版), 2009, 6(3): 43-46.
[27]
Yang GF. The value of intraoperative ultrasound and contrast-enhanced ultrasound in glioma surgery. Yinchuan: Ningxia Medical University, 2013: 1-38.
杨光飞. 术中超声及超声造影在脑胶质瘤手术中的应用价值. 银川:宁夏医科大学, 2013: 1-38.
[28]
Coburger J, Scheuerle A, Pala A, et al. Histopathological insights on imaging results of intraoperative magnetic resonance imaging, 5-aminolevulinic acid, and intraoperative ultrasound in glioblastoma surgery. Neurosurgery, 2017, 81(1): 165-174.
[29]
Coburger J, Scheuerle A, Thal DR, et al. Linear array ultrasound in low-grade glioma surgery: histology-based assessment of accuracy in comparison to conventional intraoperative ultrasound and intraoperative MRI. Acta Neurochir (Wien), 2015, 157(2): 195-206.
[30]
Gerganov VM, Samii A, Giordano M, et al. Two-dimensional high-end ultrasound imaging compared to intraoperative MRI during resection of low-grade gliomas. J Clin Neurosci, 2011, 18(5): 669-673.
[31]
Renovanz M, Hickmann AK, Henkel C, et al. Navigated versus non-navigated intraoperative ultrasound: is there any impact on the extent of resection of high-grade gliomas? A retrospective clinical analysis. J Neurol Surg A Cent Eur Neurosurg, 2014, 75(3): 224-230.
[32]
Cai LJ. The application value of fluorescein sodium combined with contrast enhanced ultrasound in resection of contrast enhancing gliomas. Changchun: Jilin University, 2016: 1-43.
蔡龙杰. 黄荧光联合超声造影在核磁强化的胶质瘤手术中的应用价值. 长春: 吉林大学, 2016: 1-43.
[33]
Woydt M, Krone A, Becker G, et al. Correlation of intra-operative ultrasound with histopathologic findings after tumour resection in supratentorial gliomas. A method to improve gross total tumour resection. Acta Neurochir (Wien), 1996, 138(12): 1391-1398.
[34]
Becker G, Hofmann E, Woydt M, et al. Postoperative neuroimaging of high-grade gliomas: comparison of transcranial sonography, magnetic resonance imaging, and computed tomography. 1999, 44(3): 469-777.
[35]
Chacko AG, Kumar NK, Chacko G, et al. Intraoperative ultrasound in determining the extent of resection of parenchymal brain tumours: a comparative study with computed tomography and histopathology. Acta Neurochir (Wien), 2003, 145(9): 743-748.
[36]
Cho JM, Kim EH, Oh MC, et al. Concurrent use of 5-aminolevuinic acid fluorescence and intraoperative MRI for maximal brain tumor resection. Neurooncol, 2010, 12: iv129-iv130.
[37]
Hirschl RA, Wilson J, Miller B, et al. The predictive value of low-field strength magnetic resonance imaging for intraoperative residual tumor detection. clinical article. J Neurosurg, 2009, 111(2): 252-257.
[38]
Mcgirt MJ, Mukherjee D, Chaichana KL, et al. Association of surgically acquired motor and language deficits on overall survival after resection of glioblastoma multiforme. Neurosurgery, 2009, 65(3): 463-469.
[39]
Lu CY, Chen XL, Chen XL, et al. Clinical application of 3.0 T intraoperative magnetic resonance combined with multimodal neuronavigation in resection of cerebral eloquent area glioma. Medicine (Baltimore), 2018, 97(34): e11702.
[40]
Nimsky C, Ganslandt O, Hofmann B, et al. Limited benefit of intraoperative low-field magnetic resonance imaging in craniopharyngioma surgery. Neurosurgery, 2003, 53(1): 72-80.
[41]
Mahboob S, McPhillips R, Qiu Z, et al. Intraoperative ultrasound-guided resection of gliomas: a Meta-analysis and review of the literature. World Neurosurg, 2016, 92: 255-263.
[42]
Prada F, Solbiati L, Martegani A, et al. Intraoperative ultrasound (IOUS) in neurosurgery. Switzerland: Springer International Publishing, 2016, 1: 41-58.
[43]
Eljamel S. 5-ALA fluorescence image guided resection of glioblastoma multiforme: a Meta-analysis of the literature. Int J Mol Sci, 2015, 16(5): 10443-10456.
[44]
Stummer W, Pichlmeier U, Meinel T, et al. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol, 2006, 7(5): 392-401.
[45]
Stummer W, Novotny A, Stepp H, et al. Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg, 2000, 93(6): 1003-1013.
[46]
Li CH, Han L, Tian Y. Advances in clinical application of fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma. World J Complex Med, 2015, (1): 85-90.
李朝晖,韩亮,田宇. 5-ALA荧光引导技术在脑胶质瘤手术中的临床应用进展. 世界复合医学, 2015, (1): 85-90.
[47]
Coburger J, Hagel V, Wirtz CR, et al. Surgery for glioblastoma: impact of the combined use of 5-aminolevulinic acid and intraoperative MRI on extent of resection and survival. Plos One, 2015, 10(6): e0131872.
[48]
Barbosa BJ, Mariano ED, Batista CM, et al. Intraoperative assistive technologies and extent of resection in glioma surgery: a systematic review of prospective controlled studies. Neurosurg Rev, 2015, 38(2): 226-227.

上一篇 脑型肝豆状核变性脑皮层及皮层下核团体积的磁共振研究
下一篇 非特异性肉芽肿性小叶性乳腺炎的MRI诊断
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2