分享:
分享到微信朋友圈
X
基础研究
定量DCE-MRI和QCT评价兔糖尿病模型骨髓微血管渗透性和骨小梁改变的相关性
陈翩翩 查云飞

Cite this article as: Chen PP, Zha YF. Quantitative DCE-MRI and QCT were used to evaluate the bone marrow microvascular permeability and trabecular changes in diabetic rabbit models induced by alloxan. Chin J Magn Reson Imaging, 2019, 10(7): 540-545.本文引用格式:陈翩翩,查云飞.定量DCE-MRI和QCT评价兔糖尿病模型骨髓微血管渗透性和骨小梁改变的相关性.磁共振成像, 2019, 10(7): 540-545. DOI:10.12015/issn.1674-8034.2019.07.012.


[摘要] 目的 采用动态对比增强磁共振成像(dynamic contrast enhanced MRI ,DCE-MRI)与定量计算机断层扫描(quantitative computed tomography,QCT)定量评价四氧嘧啶诱导兔糖尿病模型骨髓微血管渗透性和骨小梁改变。材料与方法 24只3.0 kg左右雄性日本大耳白兔随机分为糖尿病组(14只)和对照组(10只)。造模成功后各时间点(0、4、8、12、16周)对所有兔腰椎行矢状位FSE-T1WI、FSE-T2WI、DCE-MRI检查与CT成像。通过拟合药代动力学模型获得腰椎骨髓DCE-MRI定量渗透参数,包括容量转移常数(volume transfer constant,Ktrans)、速率常数(efflux rate constant,Kep)和容积分数(extracellular extravascular volume fraction,Ve)。同时用QCT软件测量腰椎骨密度(bone mineral density,BMD)。16周取腰椎体标本行苏木精-伊红染色法(hematoxylineosin staining,HE)计算骨小梁形态计量学参数,包括骨小梁数量(Tb.N)、骨小梁面积(Tb.Ar)。结果 不同时间点渗透参数Kep、Ve在对照组差异分别具有统计学意义(P均<0.001),而在糖尿病组差异均无统计学意义(P值均>0.05)。对照组腰椎Kep在第4周到12周呈下降趋势,Ve在第4周到12周呈上升趋势,第16周下降。不同时间点BMD在对照组及糖尿病组差异均不具有统计学意义(P>0.05)。第16周糖尿病组腰椎HE染色显示骨小梁数量、面积减小。糖尿病组骨小梁面积、骨小梁数低于对照组(t=12.472 ;t=4.961 ;P<0.001)。Pearson相关分析结果显示Tb.N与Ktrans、Kep、Ve均无相关性(r值分别为0.135、0.093、-0.118;P>0.05),Tb.Ar与Ktrans、Kep、Ve均无相关性(r值分别为0.233、-0.008、-0.095;P>0.05)。BMD与Ktrans、Kep、Ve均无相关性(r值分别为0.497、0.513、-0.310;P>0.05)。结论 四氧嘧啶兔糖尿病早期腰椎骨髓微血管渗透性参数变化与骨密度和骨小梁形态计量学参数无相关性,QCT测量的骨髓BMD变化晚于骨小梁形态计量学的变化。
[Abstract] Objective: To quantitatively evaluate the bone marrow microvascular permeability and trabecular changes induced by alloxan in diabetic rabbit model via dynamic contrast enhanced MRI (DCE-MRI) and quantitative CT (QCT).Materials and Methods: Eighteen rabbits were randomly divided into the diabetes group (n=14) and the control group (n=10). Fse-T1WI, Fse-T1WI, DCE-MRI examination and CT imaging were performed at each time point (0, 4, 8, 12 and 16 weeks) after the model had been established successfully. DCE-MRI quantitative perfusion parameters of lumbar bone marrow were obtained by fitting the pharmacokinetic model, including volume transfer constant (Ktrans), efflux rate constant (Kep) and extracellular extravascular volume fraction (Ve). QCT software was applied to measure Lumbar vertebral density (BMD). Lumbar vertebral specimens were collected at week 16 for HE staining to calculate the morphometric parameters of bone trabeculae, including the number of bone trabeculae (Tb.N) and the area of bone trabeculae (Tb.Ar).Results: Osmotic parameters Kep and Ve at different time points indicated statistically significant differences in the control group (P<0.001), which was not significant different in the diabetes group (P>0.05). In the control group, the Kep of lumbar spine showed a descending trend from week 4 to week 12, while Ve displayed an rising trend from week 4 to week 12 and declined from week 16. There was no significant difference in BMD between the control group and the diabetes group at different time points (P>0.05).The results of HE staining exhibited that the number and area of bone trabeculae were decreased in the diabetic group at week 16. The trabecular bone area and trabecular bone count was lower than that of the control group (t=12.472, t=4.961, P<0.001). Pearson correlation analysis results showed that there was no correlation between Tb.N and Ktrans, Kep and Ve (r values: 0.135, 0.093 and -0.118), as well as Tb.Ar and Ktrans, Kep and Ve (r values: 0.233, -0.008 and -0.0.095, P>0.05). No significant correlation was observed between BMD with Ktrans, Kep and Ve (r values:0.497, 0.513 and-0.310, P>0.05).Conclusions: The changes of bone marrow microvascular permeability parameters of the lumbar spine in diabetes mellitus rabbits induced by alloxan in the early stage of disease were not correlated with bone mineral density and trabecular morphometrics parameters, and the differences of bone marrow BMD measured by QCT were later than those of bone trabecular morphometrics.
[关键词] 骨髓;微血管;糖尿病;腰椎;磁共振成像;体层摄影术,X线;动物,实验
[Keywords] bone marrow;microvessels;diabetes mellitus;lumbar vertebrae;magnetic resonance imaging;tomography, x-ray;animals, laboratory

陈翩翩 武汉大学人民医院放射科,武汉 430060

查云飞* 武汉大学人民医院放射科,武汉 430060;医学信息分析及肿瘤诊疗湖北省重点实验室

通信作者:查云飞,Email:zhayunfei999@126.com

利益冲突:无。


基金项目: 国家自然科学基金面上项目 编号:81871332 医学信息分析及肿瘤诊疗湖北省重点实验室开放课题资助项目 编号:PJS140011708
收稿日期:2019-01-28
接受日期:2019-05-22
中图分类号:R445.2; R551.3 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2019.07.012
本文引用格式:陈翩翩,查云飞.定量DCE-MRI和QCT评价兔糖尿病模型骨髓微血管渗透性和骨小梁改变的相关性.磁共振成像, 2019, 10(7): 540-545. DOI:10.12015/issn.1674-8034.2019.07.012.

       糖尿病骨髓脂肪生成增加、骨髓微血管病变等导致的骨髓和多器官功能障碍已引起广泛关注[1]。糖尿病病人患骨折、退变及骨质疏松等骨病的风险明显增加,且治疗效果往往比同类疾病的非糖尿病患者更差[2,3],显示骨髓组织是糖尿病另一个重要的靶器官[4,5]。最新研究结果显示骨髓微血管改变是糖尿病骨髓病变的重要特征[6]。Hu等[7]的实验研究结果显示动态对比增强磁共振成像(dynamic contrast enhanced MRI ,DCE-MRI)灌注参数可以反映糖尿病早期骨髓通透性的改变,DCE-MRI技术可以用评估脊柱骨髓微血管病变。定量计算机断层扫描(quantitative computed tomography ,QCT) QCT采用的是三维体积CT数据,测量的是真正的体积骨密度[8],与其他投影技术(DXA等)测量的面积骨密度相比,QCT在糖尿病骨病评价中有其独特的优势。

       糖尿病骨髓微血管病变、骨密度、骨结构、骨转换及骨折风险评估的复杂关系尚待深入研究[2,9,10]。本研究旨在应用定量DCE-MR和QCT评价四氧嘧啶诱导兔糖尿病椎体骨髓微血管渗透性参数与骨密度和骨小梁形态计量学参数的相关性,探索QCT能否反映早期兔糖尿病腰椎骨小梁微结构改变。

1 材料与方法

1.1 兔糖尿病模型的建立

       本实验经武汉大学人民医院伦理委员会审查通过,由武汉大学动物实验中心提供健康成年雄性日本大耳白兔24只,空腹体重2.8~3.1 kg,平均(3.0±0.1) kg。所有兔适应性饲养1周后进行造模,造模前均禁食不禁水12 h,测量空腹血糖,血糖值均<6.0 mmol/L[(5.5±0.3) mmol/L]。随机将兔分为实验组14只、对照组10只。将四氧嘧啶(Sigma公司)用0.9%的生理盐水配制成5%的溶液,按照100 mg/kg的剂量快速由耳缘静脉注入实验组兔体内,对照组则注入同等剂量的生理盐水,之后自由进食、进水。48 h后,用血糖仪(三诺安信血糖仪)测量外周血糖浓度。单次外周血糖测量值≥14 mmol/L或者两次测量值≥11 mmol/L被认定为造模成功[11]。对于48 h后血糖值仍正常的实验组兔,则补加50 mg/kg的四氧嘧啶溶液,直至血糖达到上述标准。随后4周内每周进行血糖水平监测。4周以后两组兔血糖水平趋于稳定。此后每隔4周行MRI检查前测量其血糖值。

1.2 影像学检查

1.2.1 MRI检查方法

       在造模成功后0、4、8、12、16周,对实验兔经耳缘静脉注射3%戊巴比妥钠溶液(1.3 ml/kg)进行麻醉。麻醉后将兔仰卧位足先进固定于8通道膝关节专用相控阵线圈,采用3.0 T超导MR机(Discovery MR750 Plus,GE Healthcare)对实验兔腰椎行矢状位FSE-T1WI、FSE-T2WI及DCE-MRI检查。矢状位FSE-T1WI扫描参数:TR 300 ms,TE Min Full,层厚3 mm,层间距0 mm,FOV 160 mm×160 mm,矩阵320×288。矢状位FSE-T2WI扫描参数:TR 2500 ms ,TE 120 ms,层厚3 mm,层间距0 mm,FOV 160 mm×160 mm,矩阵320×320。

       DCE-MRI序列:扫描参数:采用肝脏快速容积采集(liver acquisition volume acceleration,LAVA)序列及阵列空间敏感编码技术(array spatial sensitivity encoding technique,ASSET)。首先行多反转角LAVA序列扫描(TR 3.5 ms,TE 1.6 ms,层厚3 mm,FOV 200 mm×160 mm,矩阵192×192,Chem SAT:Special,反转角为9°及12° ),每个多反转角序列扫描一个时相(8 s)。随后行动态增强LAVA序列扫描(TR 3.5 ms ,TE 1.0 ms,层厚3.0 mm,FOV 200 mm×160 mm,矩阵192×192,反转角10° ),连续无间隔同层扫描420帧动态图像,总计扫描35个时相。在基线扫描2个动态时相之后通过美国MeoRao双筒高压注射器经兔耳缘静脉团注对比剂,对比剂采用欧乃影(钆双胺,GE Healthcare,Ireland),注射剂量为0.2 mmol/kg ,流率为1.0 ml/s,随后同样流率注射0.9%生理盐水5 ml冲管。

1.2.2 CT检查方法

       QCT扫描:麻醉后将兔取常规仰卧位并使下肢伸直,在腰部底下加垫固体体模(V.4.0),利用GE Bright Speed 16排螺旋CT对腰4~7椎体进行螺旋扫描。扫描过程中需要使扫描线与椎体上下缘平行,扫描参数:管电压120 kv,管电流250 mAs,床高179 cm,螺距0.531 ,SFOV=Large body,矩阵512×512,层厚5 mm,标准算法重建。

1.2.3 DCE-MRI及QCT图像后处理及参数测定

       将DCE-MRI原始数据导入Omni-Kinetics (GE Healthcare)软件进行分析。首先对35期动态增强图像进行3D非刚性运动校正(3D non-rigid registration) ,以降低呼吸运动伪影,然后导入两个反转角(9°和12° ) LAVA序列图像,用于T1 mapping的计算,再将校正后的35期增强图像导入,选择腹主动脉内的对比剂时间浓度曲线作为腰椎的动脉输入函数(arterial input function,AIF),药代动力学模型选择扩展Tofts模型。在图像的每一层面手动勾画感兴趣区域(region of interest,ROI),避开椎间盘、椎基静脉丛、骨岛,采用merge功能将每个层面ROI图像融合为三维感兴趣区域(VOI),软件自动计算出容量转移常数(Ktrans)、速率常数(Kep)、血管外细胞外间隙(extravascular extracellular space ,EES)容积分数(Ve) (均取mean值),重复测量三次,取各参数平均值为最终结果(图1)。

       将CT图像上传至Mindways Pro后处理软件测量兔腰4~7椎骨密度值(bone mineral density,BMD),ROI不包括骨岛、椎静脉孔、病损区域等(图2)。

图1  为第16周对照组增强T1WI图及基于该图像后处理获得的Ktrans、Kep、Ve及Vp图,红色区域为手动勾画出的腰椎ROI
图2  QCT后处理勾画ROI区域
Fig. 1  Enhanced T1WI images of the control group and Ktrans, Kep, Ve and Vp images obtained based on the image post-processing at week 16, the red areas are the lumbar rois manually outlined.
Fig. 2  ROI area delineated by QCT post-processing.

1.3 腰椎组织病理学检查及骨小梁形态计量学

       在第16周完成检查后,所有实验兔采取空气栓塞法处死,取腰7椎体采用通用型组织固定液(4%多聚甲醛的缓冲溶液,pH为中性)固定,脱钙、石蜡包埋,选取腰椎体最大横断面作4 μm厚薄切片,行HE染色。在光学显微镜(OLYMPUS BX51)高倍镜下(×40)选取4个独立的相同面积区域进行观察并拍片。应用ImagePro Plus 6 (Media Cybermetic,Inc. USA)软件对图像进行分析,测量HE染色切片中骨小梁结构参数,包括骨小梁数量(Tb.N)、骨小梁面积(Tb.Ar)(图3)。

图3  Image Pro plus软件标记并勾画需要测量的骨小梁轮廓
图4~7  分别为糖尿病组、对照组腰椎Ktrans、Kep、Ve和BMD随时间变化趋势图。对照组腰椎Kep呈先下降后回升趋势,Ve呈先上升后回降趋势
图8,9  分别为第16周糖尿病组、对照组腰椎(HE ×40),糖尿病组腰椎骨小梁分布稀疏,面积较小(箭;图8);对照组兔腰椎骨小梁数多,面积较大(箭;图9)
Fig. 3  The trabecular bone contour to be measured is marked and sketched by the Image Pro plus software.
Fig. 4—7  Shows the trend of lumbar Ktrans, Kep, Ve and BMD changes over time in the diabetes group and the control group, respectively. In the control group, the Kep of lumbar spine first decreased and then increased, and the Ve first increased and then decreased.
Fig. 8,9  Shows HE staining of lumbar vertebrae in the diabetes group at week 16 and the control group (HE ×40), respectively. Lumbar vertebral trabeculae in the diabetes group are sparsely distributed with small area (arrow. Fig.8). The lumbar vertebral trabeculae of rabbits in the control group were large in number and area (arrow. Fig. 9) .

1.4 统计学方法

       采用SPSS 24.0统计学软件,采用Pearson相关性分析第16周糖尿病组兔腰椎骨髓微血管渗透性参数与骨密度和骨小梁形态计量学参数的相关性;采用重复测量方差分析各组腰椎骨髓渗透性参数及BMD随时间变化的趋势,采用两独立样本t检验比较两组间腰椎骨髓微血管渗透性参数、骨密度、骨小梁形态计量学参数的差异,检验水准α=0.05,P<0.05认为差异具有统计学意义。

2 结果

       实验过程中糖尿病组兔因麻醉、身体健康状况差死亡4只,剩余10只。对照组因麻醉因素意外死亡2只,剩余8只。糖尿病组、对照组不同时间点腰椎渗透参数及BMD服从正态分布,球形检验结果P>0.05,因此采用重复测量的方差分析。不同时间点渗透参数Kep、Ve在对照组差异分别具有统计学意义(P<0.001),而在糖尿病组差异均无统计学意义(P>0.05)。对照组不同时间点渗透参数差异进一步两两比较采用LSD检验。对照组腰椎Kep在第4周到12周呈下降趋势,第16周有所回升,但仍旧低于第0周水平,Ve在第4周到12周呈上升趋势,第16周下降,但仍旧高于第0周水平(P<0.05)。(表1图4图5图6)。不同时间点BMD在对照组及糖尿病组差异均不具有统计学意义(P >0.05)(表1图7)。

       第16周糖尿病组腰椎HE染色显示骨小梁数量、面积减小(图8图9)。糖尿病组骨小梁计数、骨小梁面积低于对照组(t=12.472;t=4.961;P<0.001)。Pearson相关分析结果显示Tb.N与Ktrans、Kep、Ve均无相关性(r值分别为0.135、0.093、-0.118;P>0.05),Tb.Ar与Ktrans、Kep、Ve均无相关性(r值分别为0.233、-0.008、-0.095;P>0.05)。

       BMD与Ktrans、Kep、Ve均无相关性(r值分别为0.497、0.513、-0.310;P>0.05)。

表1  糖尿病组、对照组各时间点兔腰椎DCE-MRI渗透性参数和BMD值比较(±s)
Tab. 1  Comparison of DCE-MRI permeability parameters and BMD values of lumbar spine between diabetic group and control group at different time points (±s)

3 讨论

       本研究首次采用DCE-MRI定量渗透性参数结合QCT的BMD评估四氧嘧啶诱导兔糖尿病骨髓微循环及骨密度的变化,研究结果显示实验组16周腰椎骨髓微血管DCE-MRI渗透性参数与骨面积、骨小梁数及相对骨小梁面积参数及BMD之间均无相关性,实验组BMD值在0~16周均未出现有统计学意义的变化,而骨小梁形态计量学在16周时已出现明显变化。

       无论是T1 DM还是T2 DM,早期糖尿病骨髓微血管病变的病理生理机制尚未阐明[12,13]。糖尿病引起的骨代谢紊乱主要包括骨量减少和骨质疏松。糖尿病合并骨髓微血管病变时,将会加重骨的代谢障碍。对那些已患有原发性骨质疏松的病人,再患有糖尿病将会使骨代谢障碍的病情加重[14]。Oikawa等[13]首次显示T1 DM大鼠的股骨、胫骨骨髓微血管病变,包括:骨髓脂肪细胞堆积以及骨量减少;微血管通透性增高、血流量减少;小动脉、毛细血管网及骨髓窦状隙减少。Hu等[7]的研究结果显示四氧嘧啶(ALX)诱导的兔糖尿病模型成功12周后,兔椎体骨髓微血管通透性及脂肪含量明显增加,骨髓微血管密度减低,骨髓成骨细胞微环境破坏。目前T2 DM相关骨组织形态计量学的研究主要集中于骨代谢而非骨结构[15],T2 DM患者的骨组织结构与健康对照组相比,具有明显多孔的皮质和具有高骨小梁vBMD和厚度[16,17],无骨结构性质的变化[18,19,20]。本实验结果显示实验组16周四氧嘧啶诱导兔糖尿病腰椎骨髓微血管DCE-MRI渗透性参数与骨面积、骨小梁数及相对骨小梁面积参数及BMD之间均无相关性。Rakic等[21]的研究显示T2DM患者BMD与糖尿病病程无相关性;产生这个结果的原因,可能是因为糖尿病对骨骼系统的损害为骨强度的改变,而BMD只能反映骨强度的一个方面,BMD也许不能全面反映这种损害[22]。从本次实验结果中笔者推测糖尿病早期骨髓微血管渗透性改变与BMD及骨小梁指标的变化不存在相关性,但是不能因此排除糖尿病病程与骨密度减低严重程度的相关性。确认骨髓微血管病变是糖尿病骨病的中心因素还是糖尿病骨病的诱因,对临床预测糖尿病骨病风险及其防治具有重要参考价值,需要在微血管病发展之前就开始长期的前瞻性研究,同时进行大规模的流行病学研究,以便更好地了解骨髓微血管病与BMD改变和骨折风险之间的关系。

       Ramiya等[23]研究结果显示从成年非肥胖糖尿病小鼠的胰腺导管上皮细胞分离出细胞,并在体外培养形成了胰岛样结构移植到小鼠的肾囊或皮下组织后,可以逆转该小鼠胰岛素依赖的糖尿病。本实验第4周到第16周骨髓Kep水平下降,Ve水平上升可能是由于胰腺的自我修复能力所致。另外,有明确证据表明高血糖与微血管疾病之间具有因果关系[24,25]以及调节血糖控制在防止微血管疾病中的重要性[26]。本次实验过程中血糖监测结果显示第4周以后部分糖尿病兔血糖水平呈下降趋势,这也是实验过程中糖尿病兔模型渗透性参数变化趋势的原因之一。

       本实验结果显示兔糖尿病组腰椎BMD呈下降趋势,但在16周不同时间点的差异均不具有统计学意义,这在Register等[20]的研究结果也可得到证实。而第16周时糖尿病组与对照组腰椎骨小梁形态计量学参数的差异具有明显统计学意义,并且BMD与骨小梁指标之间无明确的相关性。笔者推测QCT测量的腰椎BMD的变化并不能完全准确地反映组织学上骨小梁形态计量学的变化。通过微有限元分析(micro-FEA)估计的骨强度显示,与对照组相比,2型糖尿病患者骨强度较低,与桡骨远端皮质孔隙率增加有关[27,28]。此外,与没有骨折的2型糖尿病患者相比,有骨折的2型糖尿病患者的骨皮质疏松和小梁异质性更明显[29]。最近HR PQCT研究结果发现这种皮质缺损仅出现在糖尿病微血管并发症患者身上[30]。与无骨折的2型糖尿病患者相比,有骨折的2型糖尿病患者中皮质和骨膜层的皮质空隙率更高,这表明这些皮质亚室可能对2型糖尿病引起的毒性更敏感,并可能反映微血管疾病[31]。本次实验中,QCT测量BMD时勾画的ROI避开了皮质区域,这可能是导致BMD下降趋势不明显的一个重要原因。未来的研究应更多地从评价骨脆性的结构决定因素(微观结构、材料性质)入手来评价QCT测量糖尿病兔模型腰椎BMD的准确性及可重复性。

       本研究存在一些不足。首先,本次实验对象是动物模型,研究时长仅为16周,与临床糖尿病患者慢性代谢性疾病自然病程存在差异,本次实验结果只能说明糖尿病早期骨髓微血管渗透性改变与BMD的变化不存在相关性,而二者之间的完整时序变化规律仍有待进一步研究;其次,本实验所有兔腰椎QCT检查实验周期内多次进行DCE-MRI检查,未能评价静脉注射钆剂对腰椎QCT测量结果的影响;最后,本实验未能在实验全程对骨小梁标本结果进行连续多期观察,在后续开展的研究中有待进一步完善。

       综上所述,四氧嘧啶兔糖尿病早期腰椎骨髓微血管渗透性参数变化与骨密度和骨小梁形态计量学参数无相关性,QCT测量的骨髓BMD变化晚于骨小梁形态计量学的变化。

[1]
Fadini G, Ferraro F, Quaini F, et al. Concise review: diabetes, the bone marrow niche, and impaired vascular regeneration. Stem Cells Transl Med, 2014, 3(8): 949-957.
[2]
Shanbhogue V, Hansen S, Frost M, et al. Bone disease in diabetes: another manifestation of microvascular disease? Lancet Diabetes Endocrinol, 2017, 5(10): 827-838.
[3]
Hinton P. Role of reduced insulin-stimulated bone blood flow in the pathogenesis of metabolic insulin resistance and diabetic bone fragility. Med Hypotheses, 2016, 93: 81-86.
[4]
Fadini G. Is bone marrow another target of diabetic complications? Eur J Clin Invest, 2011, 41(4): 457-463.
[5]
Bhatwadekar A, Duan Y, Korah M, et al. Hematopoietic stem/progenitor involvement in retinal microvascular repair during diabetes: implications for bone marrow rejuvenation. Vision Res, 2017, 139: 211-220.
[6]
Fajardo R. Is diabetic skeletal fragility associated with microvascular complications in bone? Curr Osteoporos Rep, 2017, 15(1): 1-8.
[7]
Hu L, Zha Y, Wang L, et al. Quantitative evaluation of vertebral microvascular permeability and fat fraction in alloxan-induced diabetic rabbits. Radiology, 2018, 287(1): 128-136.
[8]
Cheng XG, Yu W. Progress and clinical application of quantitative CT bone density measurement technology. Chin J Med Imaging, 2011, 19(12): 881-883.
程晓光,余卫.定量CT骨密度测量技术的进展与临床应用.中国医学影像学杂志, 2011, 19(12): 881-883.
[9]
Sheu Y, Amati F, Schwartz AV, et al. Vertebral bone marrow fat, bone mineral density and diabetes: the osteoporotic fractures in men (MrOS) study. Bone, 2017, 97: 299-305.
[10]
Napoli N, Chandran M, Pierroz D, et al. Mechanisms of diabetes mellitus-induced bone fragility. Nat Rev Endocrinol, 2017, 13(4): 208-219.
[11]
Liu T, Zhao H, Li J, et al. Rosiglitazone attenuates atrial structural remodeling and atrial fibrillation promotion in alloxan-induced diabetic rabbits. Cardiovasc Ther, 2014, 32(4): 178-183.
[12]
Shanbhogue V, Hansen S, Frost M, et al. Bone disease in diabetes: another manifestation of microvascular disease? Lancet Diabetes Endocrinol, 2017, 5(10): 827-838.
[13]
Oikawa A, Siragusa M, Quaini F, et al. Diabetes mellitus induces bone marrow microangiopathy. Arterioscler Thromb Vasc Biol, 2010, 30(3): 498-508.
[14]
Fadini G. Is bone marrow another target of diabetic complications? Eur J Clin Invest, 2011, 41(4): 457-463.
[15]
Manavalan JS, Cremers S, Dempster DW, et al. Circulating osteogenic precursor cells in type 2 diabetes mellitus. J Clin Endocrinol Metab, 2012, 97(9): 3240-3250.
[16]
Burghardt AJ, Issever AS, Schwartz AV, et al. High-resolution peripheral quantitative computed tomographic imaging of cortical and trabecular bone microarchitecture in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab, 2010, 95(11): 5045-5055.
[17]
Yu EW, Putman MS, Derrico N, et al. Defects in cortical microarchitecture among African-American women with type 2 diabetes. Osteoporos Int, 2015, 26(2): 673-679.
[18]
Shu A, Yin MT, Stein E, et al. Bone structure and turnover in type 2 diabetes mellitus. Osteoporos Int, 2012, 23(2): 635-641.
[19]
Farr JN, Drake MT, Shreyasee A, et al. In vivo assessment of bone quality in postmenopausal women with type 2 diabetes. J Bone Miner Res, 2014, 29(4): 787-795.
[20]
Register TC, Lenchik L, Hsu FC, et al. Type 2 diabetes is not independently associated with spinal trabecular volumetric bone mineral density measured by QCT in the Diabetes Heart Study. Bone, 2006, 39(3): 628-633.
[21]
Rakic V, Davis WA, Chubb SA, et al. Bone mineral density and its determinants in diabetes: the Fremantle Diabetes Study. Diabetologia, 2006, 49(5): 863-871.
[22]
Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes: a meta-analysis. Osteoporos Int, 2007, 18(4): 427-444.
[23]
Ramiya VK, Maraist M, Arfors KE, et al. Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. Nat Med, 2000, 6(3): 278-282.
[24]
Listed N. Hypoglycemia in the diabetes control and complications trial. The diabetes control and complications trial research group. Diabetes, 1997, 46(2): 271-286.
[25]
Mattila TK, Anthonius DB. Influence of intensive versus conventional glucose control on microvascular and macrovascular complications in type 1 and 2 diabetes mellitus. Drugs, 2010, 70(17): 2229-2245.
[26]
Rosenqvist U. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The diabetes control and complications trial research group. New England J Med, 1993, 329(3): 977-986.
[27]
Burghardt AJ, Kazakia GJ, Sode M, et al. A longitudinal HR-pQCT study of alendronate treatment in postmenopausal women with low bone density: relations among density, cortical and trabecular microarchitecture, biomechanics, and bone turnover. J Bone Miner Res, 2010, 25(12): 2558-2571.
[28]
Nilsson AG, Sundh D, Johansson L, et al. Type 2 diabetes mellitus is associated with better bone microarchitecture but lower bone material strength and poorer physical function in elderly women: a population-based study. J Bone Miner Res, 2017, 32(5): 1062-1071.
[29]
Patsch JM, Burghardt AJ, Yap SP, et al. Increased cortical porosity in type 2 diabetic postmenopausal women with fragility fractures. J Bone Miner Res, 2013, 28(2): 313-324.
[30]
Tao B, Liu JM, Zhao HY, et al. Differences between measurements of bone mineral densities by quantitative ultrasound and dual-energy X-ray absorptiometry in type 2 diabetic postmenopausal women. J Clin Endocrinol Metab, 2008, 93(5): 1670-1675.
[31]
Heilmeier U, Cheng K, Pasco C, et al. Cortical bone laminar analysis reveals increased midcortical and periosteal porosity in type 2 diabetic postmenopausal women with history of fragility fractures compared to fracture-free diabetics. Osteoporos Int, 2016, 27(9): 2791-2802.

上一篇 多参数磁共振成像在子宫癌肉瘤与低危型子宫内膜癌鉴别诊断中的应用价值
下一篇 磁共振检查噪声对胎儿及婴幼儿听觉功能的影响
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2