分享:
分享到微信朋友圈
X
临床研究
磁敏感加权成像及3D-ASL在各级脑胶质瘤分级中的价值
杜常月 苗娜 齐旭红 董卫敏 于洋 温智勇

Cite this article as: Du CY, Miao N, Qi XH, et al. The value of SWI and 3D-ASL in grading of gliomas. Chin J Magn Reson Imaging, 2019, 10(9): 645-649.本文引用格式:杜常月,苗娜,齐旭红,等.磁敏感加权成像及3D-ASL在各级脑胶质瘤分级中的价值.磁共振成像, 2019, 10(9): 645-649. DOI:10.12015/issn.1674-8034.2019.09.002.


[摘要] 目的 评价磁敏感加权成像(susceptibility weighted imaging,SWI)及三维动脉自旋标记(three-dimensional arterial spin labeling,3D-ASL)成像在脑胶质瘤分级中的价值。材料与方法 纳入92例脑胶质瘤患者(Ⅱ级35例,Ⅲ级13例,Ⅳ级44例),于术前完成SWI及3D-ASL扫描,术后经过组织病理证实。通过后处理,得到肿瘤内的敏感性信号强度(intratumoral susceptibility signal intensity,ITSS)、肿瘤区域最大脑血流量值(maximum cerebral blood flow,CBFmax)、r1 (CBFmax/健侧脑白质区CBF1)、r2 (CBFmax/健侧脑灰质区CBF2)及r3(CBFmax/对侧镜像区正常脑组织CBF3),然后进行统计学分析。ITSS采用非参数Mann-Whitney U检验,3D-ASL各参数值采用单因素方差ANOVA分析,P<0.05表示差异有统计学意义。利用受试者工作特性曲线(receiver operator characteristic curve,ROC曲线)评估SWI及3D-ASL对胶质瘤分级的诊断效能。结果 ITSS在鉴别(Ⅱ与Ⅲ)、(Ⅱ与Ⅳ)、(Ⅲ与Ⅳ)中均有统计学差异,肿瘤级别越高,ITSS值越大(P <0.05 )。而CBFmax、r1、r2及r3仅在(Ⅱ与Ⅳ)组中,具有统计学意义(P < 0.05)。联合SWI及3D-ASL对胶质瘤分级,得到的ROC曲线下面积(the area under the curve,AUC)、敏感性和特异性均最大。结论 联合SWI及3D-ASL对胶质瘤分级的诊断效能大于单独应用某一种技术,其中SWI比3D-ASL诊断效能高一些。
[Abstract] Objective: To evaluate the value of susceptibility weighted imaging and three-dimensional arterial spin labeling in identification of gliomas.Materials and Methods: Ninety-two patients with glioma (35 Ⅱ, 13 Ⅲ and 44 Ⅳ) were enrolled. All cases underwent SWI and 3D-ASL scans before operations and were confirmed by postoperative pathology. Intratumoral susceptibility signal intensity (ITSS), the maximal cerebral blood flow value (CBFmax), r1 (CBFmax/unaffected contralateral white matter area CBF1), r2 (CBFmax/unaffected contralateral gray matter area CBF2), r3 (CBFmax/contralateral mirror area normal brain tissue CBF3) were obtained by post-processing. Then did statistical analysis. The value of the ITSS was analyzed by non-parametric Mann-Whitney U test. The values of the 3D-ASL parameters were analyzed by one-way ANOVA. P<0.05 was indicated as the statistically significant difference. Receiver operating characteristic (ROC) curve analysis was used to evaluate the performance of ITSS and 3D-ASL in discriminating between various grades of tumors.Results: The differences of ITSS in (Ⅱ vs. Ⅲ), (Ⅱ vs. Ⅳ) and (Ⅲ vs. Ⅳ) were statistically significant, and higher grades of gliomas showed higher ITSS scores (P<0.05). But the CBFmax, r1, r2 and r3 were statistically significant just in the group of (Ⅱ vs. Ⅳ)(P<0.05). The area under the curve (AUC), sensitivity and specificity of the combination of SWI and 3D-ASL were biggest.Conclusions: By combing SWI and 3D-ASL, the diagnostic efficacy of grading gliomas was greatest than that of a single technique, and SWI was more effective than 3D-ASL.
[关键词] 神经胶质瘤;肿瘤分级;脑肿瘤;磁共振成像
[Keywords] glioma;neoplasm grading;brain neoplasms;magnetic resonance imaging

杜常月 首都医科大学电力教学医院放射科,北京 100073

苗娜 首都医科大学电力教学医院放射科,北京 100073

齐旭红 首都医科大学电力教学医院放射科,北京 100073

董卫敏 首都医科大学电力教学医院放射科,北京 100073

于洋 首都医科大学电力教学医院放射科,北京 100073

温智勇* 首都医科大学电力教学医院放射科,北京 100073

通信作者:温智勇,E-mail:wenzhiyong3329@163.com

利益冲突:无。


基金项目: 国家电网公司科技项目 编号:O2017017
收稿日期:2019-01-08
接受日期:2019-06-26
中图分类号:R445.2; R730.264 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2019.09.002
本文引用格式:杜常月,苗娜,齐旭红,等.磁敏感加权成像及3D-ASL在各级脑胶质瘤分级中的价值.磁共振成像, 2019, 10(9): 645-649. DOI:10.12015/issn.1674-8034.2019.09.002.

       胶质瘤占恶性脑肿瘤的81%,有显著的死亡率和发病率[1]。近年来,影像学的发展为其提供了更多的信息。然而,各级之间是否存在影像差异,通过哪些影像手段进行级别区分,具体怎么区分等问题仍未完全清楚;且病理级别影响患者的生存率及预后。磁敏感加权成像(susceptibility weighted imaging,SWI)及三维动脉自旋标记(three-dimensional arterial spin labeling,3D-ASL)成像可以反映肿瘤的微血管、微出血及血流灌注。本研究主要探讨SWI及3D-ASL对鉴别各级胶质瘤的价值。

1 材料与方法

1.1 病例资料

       回顾性分析2016年5月至2018年3月期间,到我院就诊并经术后病理证实的脑胶质瘤患者92例:Ⅱ级35例平均年龄为(41.89±12.76)岁;Ⅲ级13例,平均年龄为(40.92±12.51)岁;Ⅳ级44例,平均年龄为(54.41± 10.97)岁。所有患者检查前均签署了知情同意书,均未接受过任何放化疗,于术前完成了头颅MRI平扫、SWI及3D-ASL序列扫描,并进行了头颅MRI增强扫描;所得图像较清晰。肿瘤实体部分太小、运动伪影太重影响检测的患者未纳入其中。

1.2 仪器与方法

       采用GE Discovery 750W 3.0 T磁共振扫描仪及24通道头颅表面线圈,进行MRI检查,扫描序列包括:(1)头颅MRI平扫:轴位T1WI (TR 2087.4 ms,TE 24.0 ms)、轴位T2WI (TR 5281.0 ms,TE 104.0 ms)、轴位T2 FLAIR(TR 9000.0 ms ,TE 95.0 ms),视野24 cm×24 cm,层厚5.0 mm,层间距1.5 mm。(2) SWI采用Ax SWAN序列(TR 38.3 ms,TE 22.9 ms),FA 15° ,视野24.0 cm×21.6 cm,矩阵352×288,层厚2.0 mm,无层间距,NEX为0.69。(3) 3D-ASL扫描:采用基于FSE的3D Spiral全脑采集,带宽62.5 KHz,矩阵512×512,NEX为3 ,Post Lable Delay 1525.0 ms,TR 4683.0 ms,TE 10.7 ms,层厚4.0 mm,无间隔,层数40,扫描时间4 min 32 s,扫描范围包括颅底至颅顶的全脑范围。(4)头颅T1WI序列的增强扫描(轴位、矢状位及冠状位)。

1.3 数据分析

       将图像载入GE ADW 4.6工作站进行后处理,测量并记录各参数值。在SWI MinIP图上的肿瘤所在区域,半定量评估肿瘤内的敏感性信号强度(intratumoral susceptibility signal intensity,ITSS)[2],其中微出血为类圆形直径<5 mm低信号灶,肿瘤范围内连续出现的迂曲低信号为病理血管。可为以下几个等级[2]:0分为没有ITSS;1分为1~5个点状或细线性ITSS;2分为6~10个点状或细线性ITSS;3分为11个或更多的点状或细线性ITSS。利用钙化在相位图上表现为高信号,可以剔除钙化的影响。评分采用双盲法,由2名有经验的影像诊断医师独立分别对各组进行一次ITSS评分,如果2名医师的结果不一致,则以第三名高级职称的影像诊断医师结果为准。

       对脑血流量灌注图与轴位T1增强图进行融合,由2名影像硕士研究生在有经验的医师指导下,于肿瘤灌注最明显的层面(伪彩图上实性部分色彩最鲜艳的部分)设置3个感兴趣区(region of interest,ROI),得到肿瘤最大脑血流量值(maximum cerebral blood flow ,CBFmax) ,ROI大小在50 mm2左右,取这3个ROI的平均值作为最终数值。同样的方法,获取同层面健侧脑白质区血流量CBF1、健侧脑灰质区血流量CBF2、对侧镜像区正常脑组织CBF3。通过计算,得出相对参数r1 (CBFmax/CBF1)、r2 (CBFmax/CBF2)及r3 (CBFmax/CBF3)。为避免误差,ROI的选择均在肿瘤实质区域,尽可能避开囊变、坏死、钙化及周围水肿。测量完成后由1名副主任医师进行审核;如果2名医师的结果不一致,则以第三名高级职称的影像诊断医师结果为准。

1.4 统计学方法

       应用SPSS 24.0统计软件进行分析,ITSS采用非参数Mann-Whitney U检验,3D-ASL各参数值采用单因素方差ANOVA分析,P<0.05表示差异有统计学意义。利用受试者工作特性曲线(receiver operator characteristic curve ,ROC)评估两种技术对胶质瘤分级的诊断效能。

2 结果

       Ⅱ、Ⅲ、Ⅳ级脑胶质瘤的常规增强扫描、3D-ASL和SWI序列图像详见图1图2图3。各参数统计分析结果详见表1表2。利用ROC曲线分析SWI及3D-ASL在各组比较中的曲线下面积(the area under the curve,AUC),详见图4。根据Youden指数确定各参数的最佳诊断界值、诊断敏感性、特异性(表3)。

图1  男,32岁。左侧额叶少突胶质细胞瘤(WHO Ⅱ)。A:T1WI增强图;B:3D-ASL CBF图,肿瘤实质区可见斑片状低灌注;C:SWI MinIP图,ITSS为1;D:病理图片(HE ×200)
图2  女,53岁。右侧颞叶间变性少突星形细胞瘤(WHO Ⅲ)。A:T1WI增强图;B :3D-ASL CBF图,肿瘤实质区可见高灌注;C:SWI MinIP图,ITSS为3;D:病理图片(HE ×200)
图3  女,50岁。左侧额叶胶质母细胞瘤(WHO Ⅳ)。A:T1WI增强图;B :3D-ASL CBF图,肿瘤实质区可见高灌注;C:SWI MinIP图,ITSS为3;D:病理图片(HE ×200)
Fig. 1  Thirty-two years old man, a histologically verified grade Ⅱ oligodendroglioma in the left frontal lobe. A: Contrast enhancement on gadolinium-enhanced T1-weighted image. B: Tumor parenchyma showed patchy low perfusion on 3D-ASL CBF image. C: The ITSS was 1 on SWI MinIP image. D: The image of pathology (HE ×200).
Fig. 2  Fifty-three years old woman, a histologically verified grade Ⅲ anaplastic astrocytoma in the right temporal lobe. A: Contrast enhancement on gadolinium-enhanced T1-weighted image. B: Tumor parenchyma showed high perfusion on 3D-ASL CBF image. C: The ITSS was 3 on SWI MinIP image. D: The image of pathology (HE ×200).
Fig. 3  Fifty years old woman, a histologically verified grade Ⅳ glioblastoma in the left frontal lobe. A: Contrast enhancement on gadolinium-enhanced T1-weighted image. B: Tumor parenchyma showed high perfusion on 3D-ASL CBF image. C: The ITSS was 3 on SWI MinIP image. D: The image of pathology (HE ×200).
图4  A:SWI、3D-ASL及两种技术联合在WHO Ⅱ与WHO Ⅲ胶质瘤比较中的ROC曲线;B:SWI、3D-ASL及两种技术联合在WHO Ⅱ与WHO Ⅳ胶质瘤比较中的ROC曲线;C:SWI、3D-ASL及两种技术联合在WHO Ⅲ与WHO Ⅳ胶质瘤比较中的ROC曲线
Fig. 4  A: ROC curves of SWI, 3D-ASL and combining two techniques in the comparison of WHO Ⅱ vs. WHO Ⅲ glioma. B: ROC curves of SWI, 3D-ASL and combining two techniques in the comparison of WHO Ⅱ vs. WHO Ⅳ glioma. C: ROC curves of SWI, 3D-ASL and combining two techniques in the comparison of WHO Ⅲ vs. WHO Ⅳ glioma.
表1  3D-ASL参数统计分析(±s)
Tab. 1  Statistical analysis of 3D-ASL parameters (±s)
表2  ITSS值统计分析(例)
Tab. 2  Statistical analysis of ITSS values (n)
表3  SWI及3D-ASL的ROC曲线分析结果
Tab. 3  Results of ROC curve analysis of SWI and 3D-ASL

3 讨论

       血管生成的程度是评估良恶性肿瘤、确定脑肿瘤侵袭性的重要标志[3]。不同级别胶质瘤的新生血管程度不一致,血供和缺氧情况也有所差异,这就会造成灌注及出血差异。所以,定量研究和评价胶质瘤区域的血管生成及灌注情况,理论上可以对肿瘤进行分级鉴别。SWI对新生血管(静脉血和脱氧血红蛋白)、出血和钙化的检测非常敏感,是检测胶质瘤内部结构特征不可或缺的工具[4]。有研究表明,SWI可用于胶质瘤分级[5,6]。而ASL可以反映肿瘤的血供情况,可以作为评估脑肿瘤的工具[7]。以往大多数研究只是针对磁共振单个技术。但是,不同成像方式的组合可以提高诊断准确性、相互补充信息。目前,将SWI与其他技术结合起来对胶质瘤分级的研究不是很多[6],而且对胶质瘤进行细化分级的研究也很少。笔者采用SWI和3D-ASL两种技术,同时反映了肿瘤的微观血管结构和肿瘤中的血供情况,对Ⅱ、Ⅲ和Ⅳ级胶质瘤进行分级研究。

       本研究结果显示:ITSS在鉴别(Ⅱ级与Ⅲ级比较)、(Ⅱ级与Ⅳ级比较)、(Ⅲ级与Ⅳ级比较)中差异均有统计学意义(P<0.05)。表现为级别越高,ITSS评分值越高。这与以往的研究部分类似[8,9]。分析原因可能是:(1)肿瘤级别越高,其内新生血管越多,这些新生血管由于生长迅速,多不成熟,容易引起破裂出血[10]。(2)高级别胶质瘤内瘤细胞生长迅速,需氧量增加,容易引起缺氧,导致血管内脱氧血红蛋白增加,表现为低信号。但是,与以往大多数研究[2]不同的是,本研究中有2例Ⅱ级胶质瘤中ITSS值为3。分析原因可能是,部分Ⅱ级胶质瘤新生血管比较迂曲、密集,且血管发育不成熟,引起了缺氧,导致脱氧血红蛋白的产生。

       而CBFmax、r1、r2及r3仅在(Ⅱ级比Ⅳ级)组中,具有统计学意义(P<0.05)。分析原因可能是:(1) Ⅳ级胶质瘤中微血管密度比Ⅱ级更大(研究表明,ASL测量的CBF与脑胶质瘤组织中的微血管密度呈正相关[11,12]),灌注更为显著,体现出更高的TBFmax值及r值(r1、r2、r3)。这与国内外报道部分相似[13,14,15]。关于这一点,WHO胶质瘤分级标准中也提到,Ⅳ级胶质瘤微血管增生情况更为显著。以往也有文献报道,血管内皮生长因子(vascular endothelial growth factor,VEGF)在高级别胶质瘤中的表达相对较高,可诱导不成熟的肿瘤血管增生[16]。(2) Ⅱ级属于低级别,而Ⅲ级为高级别。3D-ASL各参数不能鉴别二者,而SWI可以鉴别,说明3D-ASL可能相对不稳定,SWI具有更高的鉴别意义。(3) Ⅲ级中可能已经存在一部分新生血管,血管密度已经有所增加;或者是Ⅲ级和Ⅳ级均会造成血脑屏障破坏,导致灌注增加。从而导致3D-ASL无法区分Ⅲ级和Ⅳ级。此外,本研究中在低级别胶质瘤中出现3例高灌注,以往有研究认为,低级别肿瘤的血流量高估,可能是瘤内血管分流或少突胶质细胞瘤1p19q杂合性联合缺失所致[17]。Ⅲ级中出现1例低灌注,Ⅳ级出现3例低灌注。分析原因可能是:部分高级别胶质瘤局部新生血管迂曲;或者局部血流缓慢;使灌注信息延迟。

       在各参数均有统计学意义的(Ⅱ级比Ⅳ级)组中,SWI的AUC值(0.964)、敏感性(97.7%)和特异性(94.3%)均比3D-ASL大。而且,3D-ASL在各组中的AUC值、敏感性和特异性也不是很高。关于这一点,有研究表明,ASL由于对运动非常敏感,易出现大量伪影,运动伪影可能会使信号强度不准确,导致数据值偏高或偏低[18]。这进一步提示3D-ASL参数不够稳定。同时,本研究结果显示,利用SWI可以将高级别中的Ⅲ级和Ⅳ级区分开,这对临床有很大的价值。

       本研究的不足之处:(1) SWI的评分是半定量评分,带有一定的主观成分,难免有偏倚。而这也直接影响统计分析的结果。因此,如何客观、精确地进行SWI定量分析仍是急需解决的问题,也是目前研究的软肋。(2) Ⅲ级的样本相对于Ⅱ级和Ⅳ样本量较少,仍需后期扩大Ⅲ级样本量。

       综上,通过对比及联合SWI、3D-ASL两种技术,发现两种技术可以用于各级胶质瘤之间的鉴别。而且,SWI在胶质瘤分级中比3D-ASL要准确一点。但是,联合两种技术的诊断效能均大于单独应用某一种技术,具有更高的诊断效能。

[1]
Ostrom QT, Bauchet L, Davis FG, et al. The epidemiology of glioma in adults: a "state of the science" review. Neuro Oncol, 2014, 16(7): 896-913.
[2]
Park MJ, Kim HS, Jahng GH, et al. Semi-quantitative assessment of intratumoral susceptibility signals using non-contrast-enhanced high-field high-resolution susceptibility-weighted imaging in patients with gliomas: comparison with MR perfusion imaging. AJNR Am J Neuroradiol, 2009, 30(7): 1402-1408.
[3]
Tietze A, Mouridsen K, Lassen-Ramshad Y, et al. Perfusion MRI derived indices of microvascular shunting and flow control correlate with tumor grade and outcome in patients with cerebral glioma. PloS One, 2015, 10(4): e0123044.
[4]
Hsu CC, Watkins TW, Kwan GN, et al. Susceptibility-weighed imaging of glioma: update on current imaging status and future directions. J Neuroimaging, 2016, 26(4): 383-390.
[5]
Dileva A, Göd S, Grabner G, et al. Three-dimensional susceptibility-weighted imaging at 7 T using fractal-based quantitative analysis to grade gliomas. Neuroradiology, 2013, 55(1): 35-40.
[6]
Xu JX, Xu H, Zhang W, et al. Contribution of susceptibility- and diffusion-weighted magnetic resonance imaging for grading gliomas. Exp Ther Med, 2018, 15(6): 5113-5118.
[7]
Cebeci H, Aydin O, Ozturk-Isik E, et al. Assesment of perfusion in glial tumors with arterial spin labeling;comparison with dynamic susceptibility contrast method. Eur J Radiol, 2014, 83(10): 1914-1919.
[8]
Wang XC, Zhang H, Tan Y, et al. Combined value of susceptibility-weighted and perfusion-weighted imaging in assessing WHO grade for brain astrocytomas. J Magn Reson Imaging, 2014, 39(6): 1569-1574.
[9]
Li XG, Zhu YS, Kang HY, et al. Glioma grading by microvascular permeability parameters derived from dynamic contrast-enhanced MRI and intratumoral susceptibility signal on susceptibility weighted imaging. Cancer Imaging, 2015, 15(1): 4.
[10]
Zhan RT, He H, Wang ML, et al. The diagnostic value of susceptibility weighted imaging for the semiquantitative assessment of pathological vascularity in grading cerebral glioma. J Pract Radiol, 2014, 30(12): 1958-1961.
詹茸婷,和鸿,王明磊,等.磁敏感加权成像血管结构半定量评分法对颅内胶质瘤分级的诊断价值.实用放射学杂志, 2014, 30(12): 1958-1961.
[11]
Di NN, Pang HP, Dang XF, et al. Perfusion imaging of brain gliomas using arterial spin labeling: correlation with histopathological vascular density in MRI-guided biopsies. Neuroradiology, 2017, 59(1): 51-59.
[12]
Dangouloff-Ros V, Deroulers C, Foissac F, et al. Arterial spin labeling to predict brain tumor grading in children: correlations between histopathologic vascular density and perfusion MR imaging. Radiology, 2016, 281(2): 553-566.
[13]
Ata ES, Turgut M, Eraslan C, et al. Comparison between dynamic susceptibility contrast magnetic resonance imaging and arterial spin labeling techniques in distinguishing malignant from benign brain tumors. Eur J Radiol, 2016, 85(9): 1545-1553.
[14]
Shen N, Zhao L, Jiang J, et al. Intravoxel incoherent motion diffusion-weighted imaging analysis of diffusion and microperfusion in grading gliomas and comparison with arterial spin labeling for evaluation of tumor perfusion. J Magn Reson Imaging, 2016, 44(3): 620-632.
[15]
Kong L, Chen H, Yang Y, et al. A meta-analysis of arterial spin labelling perfusion values for the prediction of glioma grade. Clin Radiol, 2017, 72(3): 255-261.
[16]
Bai Y, Lin Y, Zhang W, et al. Noninvasive amide proton transfer magnetic resonance imaging in evaluating the grading and cellularity of gliomas. Oncotarget, 2017, 8(4): 5834-5842.
[17]
Whitmore RG, Krejza J, Kapoor GS, et al. Prediction of oligodendroglial tumor subtype and grade using perfusion weighted magnetic resonance imaging. J Neurosurg, 2007, 107(3): 600-609.
[18]
Deibler AR, Pollock JM, Kraft RA, et al. Arerial spin-labeling in routine clinical practice, part 1: technique and artifacts. AJNR Am J Neuroradiol, 2008, 29(7): 1228-1234.

上一篇 IVIM对脑小血管病患者脑内微结构特性的研究
下一篇 采用静息态功能磁共振研究先天性重度感音 神经性耳聋患儿相关脑区的ALFF值
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2