分享:
分享到微信朋友圈
X
临床研究
双心室心肌应变分析在缺血性和非缺血性扩张型心肌病的临床应用
曹慧晓 徐怡 祝因苏 朱晓梅 刘王琰 唐立钧

Cite this article as: Cao HX, Xu Y, Zhu YS, et al. Clinical application of bi-ventricular strains in ischemic cardiomyopathy and non-ischemic dilated cardiomyopathy. Chin J Magn Reson Imaging, 2019, 10(9): 667-673.本文引用格式:曹慧晓,徐怡,祝因苏,等.双心室心肌应变分析在缺血性和非缺血性扩张型心肌病的临床应用.磁共振成像, 2019, 10(9): 667-673. DOI:10.12015/issn.1674-8034.2019.09.006.


[摘要] 目的 利用磁共振特征追踪技术(magnetic resonance feature-tracking ,MR-FT)定量评估缺血性心肌病(ischemic cardiomyopathy,ICM)及非缺血性扩张型心肌病(ischemic cardiomyopathy,NIDCM)患者在双心室的整体及局部功能上的不同。材料与方法 收集NIDCM组25例和ICM组14例。所有患者均接受心脏磁共振检查并有延迟强化(late gadolinium enhancement,LGE)。采用MR-FT技术,获得两组患者的双室心功能及心肌应变参数。以上参数选择独立样本t检验或者Wilcoxon秩和检验。对不同参数采用Pearson线性相关分析及逻辑回归分析。对右室采用受试者操作特性(receiver operating characteristic ,ROC)曲线分析其对区分两组的诊断性能。结果 与ICM组相比,NIDCM组双室射血分数均下降,左室整体径向、环向、纵向应变、右室整体纵向、右室游离壁及室间隔纵向应变均降低(P<0.01)。所有患者左室整体环向、纵向应变与左室射血分数有相关性(P<0.001)。ICM组左室整体径向应变与左室射血分数有相关性(P<0.01)。所有患者LGE阳性节段较阴性节段的径向、环向、纵向应变峰值均降低[ICM:(32.77±27.40)%和(52.22±29.16)%,(-26.16±14.90)%和(-31.43±12.80)%,(-18.29±9.80%)和(-23.54±11.70)%,P<0.001 ;NIDCM:(14.99±20.47)%和(22.36±21.92)%,(-11.53±7.77)%和(-14.70±8.31)%,(-11.85±7.20)%和(-13.94±7.99)%,P<0.001]。与ICM组相比,NIDCM组所有LGE阴性节段径向、环向、纵向应变峰值均降低[(14.99±20.47)%和(32.77±27.40)%,(-11.53±7.77)%和(-26.16±14.90)% ,(-11.85±7.20)%和(-18.29±9.80)%,P<0.01]。结论 MR-FT能从整体和局部两方面评估NIDCM和ICM的双心室心功能,尤其在右心室方面分析两种疾病的不同,为临床诊断及治疗提供更多依据。
[Abstract] Objective: The purpose of this study was to evaluate if cardiac magnetic resonance feature-tracking (MR-FT) could be applied to detect the differences of both ventricular function between ischemic cardiomyopathy (ICM) and non-ischemic dilated cardiomyopathy (NIDCM).Materials and Methods: Twenty-five subjects with NIDCM and 14 subjects with ICM underwent cardiac magnetic resonance imaging and late gadolinium enhancement (LGE). Cardiac function including global and segmental strains of both ventricles was analyzed using feature tracking technology to obtain myocardial 3D strain parameter values in all directions. Analysis of Mann-Whitney U-test or t-test were used for above parameters. For those significant different parameters, Pearson linear correlation analysis and Logistic regression analysis was carried out. For RVEF and RV LS, receiver operating characteristic (ROC) curve was used to analyze their diagnostic performance in distinguishing NIDCM from ICM.Results: Compared with ICM, both ventricular ejection fractions significantly decreased (P<0.001) and all global strain indicators of LV significantly decreased in the NIDCM (P<0.01). Left ventricular ejection fraction (LVEF) in NIDCM was correlated with both circumferential strain (r=-0.849, P<0.001) and longitudinal strain (r=-0.759, P<0.001) significantly. LVEF in ICM was correlated with radial strain (r=0.735, P<0.01), circumferential strain (r=-0.746, P<0.01) and longitudinal strain (r=-0.708, P<0.01) significantly. The peak values of radial strain, circumferential strain and longitudinal strain of LGE-positive myocardial segments in two groups were lower than those in LGE-negative ones [ICM: (32.77±27.40)% vs (52.22±29.16)%, (-26.16±14.90)% vs (-31.43±12.80)%, (-18.29±9.80%) vs (-23.54±11.70)%, P<0.001. NIDCM: (14.99±20.47)% vs (22.36±21.92)%, (-11.53±7.77)% vs (-14.70±8.31)%, (-11.85±7.20)% vs (-13.94±7.99)%, P<0.001]. The peak values of radial strain, circumferential strain and longitudinal strain of LGE-negative myocardial segments in NIDCM were lower than ICM [(14.99±20.47)% vs (32.77±27.40)%, (-11.53±7.77)% vs (-26.16±14.90)%, (-11.85±7.20)% vs (-18.29±9.80)%, P<0.01].Conclusions: MR-FT can evaluate the bi-ventricular function of NIDCM and ICM from both global and local aspects, especially in the right ventricle, so as to provide more evidence for clinical diagnosis and treatment.
[关键词] 非缺血性扩张型心肌病;缺血性心肌病;磁共振成像
[Keywords] non-ischemic dilated cardiomyopathy;ischemic cardiomyopathy;magnetic resonance imaging

曹慧晓 南京医科大学第一附属医院核医学科,南京 210029

徐怡 南京医科大学第一附属医院放射科,南京 210029

祝因苏 南京医科大学第一附属医院放射科,南京 210029

朱晓梅 南京医科大学第一附属医院放射科,南京 210029

刘王琰 南京医科大学第一附属医院放射科,南京 210029

唐立钧 南京医科大学第一附属医院核医学科,南京 210029

通信作者:唐立钧,E-mail:tanglijun@njmu.edu.cn

利益冲突:无。


基金项目: 江苏省医学重点人才基金项目 编号:ZDRCB2016003
收稿日期:2019-01-14
接受日期:2019-05-22
中图分类号:R445.2; R542.2 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2019.09.006
本文引用格式:曹慧晓,徐怡,祝因苏,等.双心室心肌应变分析在缺血性和非缺血性扩张型心肌病的临床应用.磁共振成像, 2019, 10(9): 667-673. DOI:10.12015/issn.1674-8034.2019.09.006.

       非缺血性扩张型心肌病(non-ischemic dilated cardiomyopathy ,NIDCM)是指在没有任何异常负荷情况或者无冠状动脉疾病前提下引起左心室或(和)右心室扩张,伴收缩功能障碍的一组不可逆性心肌病[1,2]。NIDCM目前成为第二大导致左室收缩功能障碍的心肌病。进展性心力衰竭和心源性猝死是NIDCM患者的常见结局[3,4]。缺血性心肌病(ischemic cardiomyopathy ,ICM)是指由于缺血引起的心肌损伤导致心脏正常泵血能力下降的疾病。当长时间缺血时,ICM可以导致心室扩张,最终导致充血性心力衰竭。由于这两种疾病在临床表现上相似,且部分患者无典型心肌梗死的病史,导致两者很难鉴别。

       目前心肌应变成为评价心肌收缩功能的早期变化的灵敏指标,临床上能够用心肌应变来评估NIDCM及ICM患者心肌形态学变化和心室机械运动功能的变化。随着对心血管疾病的认识,右心室重塑的重要性在多种疾病的研究数量有所增加[5]。心脏磁共振被认为是评估右心室功能的"金标准"[5]。心脏核磁共振特征追踪技术(magnetic resonance feature-tracking,MR-FT)现被认为是一种新颖的跟踪心肌组织立体运动的量化技术,可通过追踪心肌纤维组织的运动及方向,从而评价心肌各个方向的应变,客观反映心脏整体和局部的功能[6]。本研究旨在通过运用MR-FT技术对NIDCM及ICM进行双室心功能及心肌应变定量分析,总结两种疾病在整体与局部心室功能的不同点,从而为临床诊断及治疗提供更多依据。

1 材料与方法

1.1 研究对象

       选取2017年3月至2018年1月间在本院行心脏磁共振(cardiac magnetic resonance imaging,CMR)检查并有心肌延迟强化(late gadolinium enhancement,LGE)的患者39例作为研究对象。根据临床表现和LGE特征,分为NIDCM组(25例,其中男21例,女4例),ICM组(14例,其中男13例,女1例)。NIDCM诊断依据[7]:(1) CMR显示左室扩张伴有左心室舒张末期容积增加(>97 ml/m2);(2)收缩功能减退且LVEF<35%;(3)冠状动脉造影显示无冠状动脉病变或LGE显示心内膜下无心肌梗死先兆。NIDCM组患者均有充血性心力衰竭,并在临床症状稳定状态下进行检查(纽约心脏协会(NYHA)功能分类<Ⅲ)。ICM的诊断基于临床症状、实验室检查、冠状动脉造影、心电图、冠脉CTA、CMR等。入组患者在检查前均签署知情同意书。

1.2 检查方法

       3.0 T磁共振(MAGNETOM Skyra,Siemens Healthineers,Erlangen,Germany),体部18通道相控阵线圈,联合心电门控技术。电影图像使用稳态进动快速成像(steady state free precession,SSFP)序列,采集包括三个长轴位(两腔心、三腔心、四腔心)及一个短轴位。短轴电影扫描范围包括从基底部至心尖部,必须包全左心室,一般采集8~10层,能够逐层、全方位显示左心室壁各节段心肌运动情况。

       主要序列的扫描参数:(1)于吸气末采集图像获得各切面的SSFP电影序列:TR 45.64 ms ,TE 1.43 ms ,视野(FOV) 380 mm×380 mm,采集矩阵256×256 ,FA 47° ,层厚8 mm。该序列应用于左室短轴及三个长轴位电影扫描。(2)钆对比延迟增强扫描序列:TR 578 ms,TE 2.02 ms,TI 300~320 ms,FOV 380 mm×380 mm,采集矩阵256×256,FA 20° ,层厚8 mm。扫描范围同电影序列。

1.3 图像分析与后处理

       图像分析采用后处理Medis软件(Medis,Leiden,the Netherlands)进行各定量值的测量。左室心肌节段经2名放射科医师根据美国心脏病协会的17节段分法[8]进行独立测量。由于在短轴位上心尖帽不利于观察,而且测量误差较大,故本研究分析时排除第17节段。

       (1)双心室心功能分析:心脏体积和功能参数是基于在收缩末期和舒张末期手动轮廓的左室心内膜和心外膜边界(乳头肌除外)得到的。所有参数根据体表面积(body surface area,BSA)来标准化。参数包括左室射血分数(left ventricular ejection fraction,LVEF)、左室舒张末期心室容积(left ventricular end-diastolic volume,LVEDV)、左室收缩末期心室容积(left ventricular end-systolic volume,LVESV)、左室每搏排出量(left ventricular stroke volume,LVSV)、每分心输出量(cardiac output,CO)、右室射血分数(right ventricular ejection fraction,RVEF)、右室舒张末期心室容积(right ventricular end-diastolic volume,RVEDV)、右室收缩末期心室容积(right ventricular end-systolic volume,RVESV)及右室排出量(right ventricular stroke volume,RVSV)。(2)心肌应变分析:在左心室短轴位收缩和舒张末期勾画心内膜及心外膜,通过启动软件的特征追踪动能,自动跟踪心内膜及心外膜的位移来量化左心室心肌的运动情况。与左室不同,右室心肌应变分析是基于四腔心层面,由软件进行特征追踪动能,反映心肌整体及节段应变功能。主要参数包括左室整体径向应变(global radial strain,GRS)、环向应变(global circumferential strain,GCS)、纵向应变(global longitudinal strain,GLS),左室各节段的径向应变峰值(peak radial strain,PSR)、环向应变峰值(peak circumferential strain,PSC)、纵向应变峰值(peak longitudinal strain,PSL),右室整体纵向应变(right ventricular longitudinal strain,RVLS)、右室游离壁纵向应变(right ventricular free wall longitudinal strain,RV free wall LS)、右室室间隔纵向应变(right ventricular septum longitudinal strain,RV septum LS)以及各个参数的应变曲线和牛眼图(图1图2)。

图1  NIDCM组,男74岁。A:左室乳头肌水平室间隔中层强化;B:心肌环向应变参数牛眼图;C:心肌径向应变参数牛眼图;D:心肌纵向应变参数牛眼图
图2  ICM组,女,71岁。A:基底部前侧壁基底段透壁强化;B:心肌环向应变参数牛眼图;C:心肌径向应变参数牛眼图;D:心肌纵向应变参数牛眼图
Fig. 1  A 74-year-old male patient with NIDCM. A: Mid: a linear enhancement rim at the level of the left interventricular septum. B: GCS of the bull's-eye map. C: GRS of the bull's-eye map. D: GLS of the bull's-eye map.
Fig. 2  A 71-year-old female patient with ICM. A: Basal: anteroseptal and inferoseptal shows transmural enhancement. B: GCS of the bull's-eye map. C: GRS of the bull's-eye map. D: GLS of the bull's-eye map.

1.4 统计方法

       本研究所有数据均采用SPSS 22.0(SPSS,Chicago ,IL ,USA)软件进行分析。有序变量均用均数±标准差(±s)表示;分类变量用频数和百分数表示。两组间比较采用Shapiro-Wilk检验并根据是否满足正态分布选择独立样本t检验或者Wilcoxon秩和检验。采用Pearson线性相关分析,将两组的LVEF分别与GRS、GCS、GLS以及GRS、GCS、GLS相互之间进行相关性检验,对有显著差异的参数进行线性回归分析。对于RVEF及RV LS采用受试者操作特性(receiver operating characteristic,ROC)曲线分析其对区分NIDCM及ICM的诊断性能。P<0.05视为差异具有统计学意义,P<0.01认为差异具有显著统计学意义。

2 结果

2.1 基本资料

       25例NIDCM组和14例ICM组的基本资料见表1。与ICM组相比,NIDCM组LVEF显著减低(P<0.001),LVEDV、LVESV、RVEDV及RVESV均增加(P< 0.05),RVEF轻度增高但无统计学意义(P=0.86)。

表1  NIDCM组与ICM组的临床资料比较
Tab. 1  Comparison of clinical data between NIDCM group and ICM group

2.2 双心室整体心肌应变

2.2.1 左室整体心肌应变及其与LVEF的关系

       左室整体心肌应变分析中,GRS为正值且数值最大,GCS和GLS均为负值。与ICM组相比,NIDCM组GCS、GLS数值均明显减少(P<0.01)。NIDCM组GRS有轻度降低,但均无统计学意义(P>0.05) (表2)。

       NIDCM组及ICM组左室GRS、GCS、GLS与LVEF的相关性见图3图4。NIDCM组左室GCS、GLS均与LVEF呈负相关性(r=-0.849,P<0.001;r=-0.759 ,P<0.001),GRS与LVEF相关性无统计学意义(P >0.05)。NIDCM组左室GCS与GLS呈正相关(r=0.689 ,P<0.01),GCS、GLS与GRS相关性均无统计学意义(P>0.05)。ICM组左室GRS、GCS、GLS与LVEF均有显著的相关性,GRS与LVEF呈正相关性(r=0.735 ,P< 0.01),GCS、GLS均与LVEF呈负相关性(r=-0.746 ,P<0.01 ;r=-0.708,P<0.01)。ICM组左室GCS、GLS与GRS呈负相关(r=-0.676,P<0.01;r=-0.569 ,P<0.01),GCS与GLS相关性无统计学意义(P>0.05)。

图3  NIDCM组整体应变值与LVEF之间的关系。A:NIDCM组GCS与LVEF成相关性(r=-0.849,P<0.001);B:NIDCM组GLS与LVEF成相关性(r= -0.759,P<0.001);C:NIDCM组GCS与GLS成线性相关(r=0.689,P<0.01)
Fig. 3  There is a linear relationship between strain parameters and LVEF in NIDCM. A: GCS and LVEF was correlated in NIDCM group (r=-0.849, P<0.001). B:GLS and LVEF was correlated in NIDCM group (r=-0.759; P<0.001). C: GCS and GLS was correlated in NIDCM group (r=0.689, P<0.01).
图4  ICM组整体应变值与LVEF之间的关系。A:ICM组GRS与LVEF有相关性(r=0.735 ,P< 0.001);B:ICM组GCS与LVEF有相关性(r= -0.746,P<0.001);C:ICM组GLS与LVEF有相关性(r=-0.708,P<0.001);D:ICM组GCS与GRS之间互相相关(r=-0.676,P<0.01) E:ICM组GLS与GRS之间互相相关(r=-0.569,P< 0.01)
Fig. 4  There is a linear relationship between strain parameters and LVEF in ICM. A: GRS and LVEF was correlated in ICM group (r=0.735, P< 0.001). B: GCS and LVEF was correlated in ICM group (r=-0.746, P<0.001). C: GLS and LVEF was correlated in ICM group (r=-0.708, P<0.001). D: GCS and GRS was correlated in ICM group (r=-0.676, P<0.01). E: GLS and GRS was correlated in ICM group (r=-0.569, P<0.01).
表2  NIDCM组与ICM组整体应变差异分析
Tab. 2  Analysis of strain parameters in NIDCM group and DCM group

2.2.2 右室心肌应变

       NIDCM组中22例(88%)患者RVEF是正常的(RVEF>45%),仅3例RVEF降低(RVEF<45%);ICM组中12例(85.7%)患者RVEF是正常的(RVEF>45%),仅2例RVEF降低(RVEF <45%)。与ICM组相比,NIDCM组RV LS、RV free wall LS、RV septum LS均显著降低(P <0.01)(表3)。ROC曲线分析显示与RVEF(AUC=0.504)相比,RV LS有较好的诊断效能,其最佳诊断截点-30.8,AUC=0.801,敏感度和特异度分别为57.14%、92.00% (图5)。

图5  右室整体纵向应变和右室射血分数ROC曲线图
Fig. 5  RV LS and RVEF ROC curves.
表3  NIDCM组与ICM组右室心肌应变差异分析
Tab. 3  Analysis of right-ventricular strain parameters in NIDCM group and DCM group

2.3 左室LGE阳性节段与阴性节段

       ICM组共分析224节段心肌,其中67节段(29.91%)有延迟强化;NIDCM组共分析400节段心肌,其中80节段(20%)有延迟强化。所有患者的所有LGE阳性节段较阴性节段PSR、PSC、PSL均降低(P<0.01)。与ICM组相比,NIDCM组所有LGE阴性节段的PSR、PSC、PSL均明显降低(P<0.001)(图6)。

图6  NIDCM组与ICM组的左室LGE阳性节段与LGE阴性节段差异。A:PRS的LGE阳性节段与阴性节段差异分析。B:PCS的LGE阳性节段与阴性节段差异分析。C:PLS的LGE阳性节段与阴性节段差异分析。**表示P<0.01,***表示P<0.001
Fig. 6  Differences between LGE-positive and LGE-negative segments of left ventricle in NIDCM and ICM groups. A: Difference analysis of LGE-positive segments and LCE-negative segments in PRS. B: Difference analysis of LGE-positive segments and LCE-negative segments in PCS. C: Difference analysis of LGE-positive segments and LCE-negative segments in PLS. **represents P<0.01, ***represents P<0.001.

3 讨论

       心肌应变是指心肌在心动周期中发生的形变[9],在每个心动周期,心脏都进行着复杂的非线性形变,转变为应变张量可分为径向应变、环向应变、纵向应变[10]。这些参数可准确、客观地反映心肌功能的变化[11]。目前由于NIDCM和ICM在临床表现上有重叠且缺乏相对特异性,两者很难鉴别。自从2009年引入MR-FT以来,这项技术已经应用到越来越多的疾病研究中[12]。由于MR-FT不需要额外的图像采集,而且涉及快速后处理,因此它很有可能成为评估心肌应变的首选方法[13]。既往文献报道[14],MR-FT在临床上有一定的可行性,并且未来可以取代传统方法成为定量评估左右心室的新方法。在这项研究中,我们不仅研究两种疾病双心室整体的心肌应变而且还研究了局部节段的应变参数。

3.1 双心室心功能及心肌应变参数分析

       目前LVEF被认为是评价左室心功能一个重要的指标,但是单一的LVEF不能代表完整的心功能[15]。本研究显示,与ICM组相比,NIDCM组LVEF显著减低,甚至可低至20%以下,这与大多数报道相符[16]。但我们发现在ICM组中部分患者(2/12,16.67%)LVEF显著降低,LVEDV和LVESV也增大,所以对于这部分病人仅凭借常规心功能参数很难与NIDCM区分。在这项研究中,两组左室整体心肌应变均与LVEF具有显著线性相关,表明左室整体心肌应变可以用来评估左室的整体功能。因此我们猜测右室的心肌应变是否也能评估右室的功能。在研究中我们发现NIDCM组RVEDV、RVESV及RVSV较ICM组显著增加,RVEF有轻度降低但无统计学差异(P=0.86),说明右室功能障碍在NIDCM中比ICM更常见,且与左室功能障碍更为相似,这与既往文献相一致[17]。Gulati等[18]研究发现右室功能的评估对于特发性的NIDCM非常重要,但这些研究都是通过研究RVEF来反映右室功能障碍。在本研究中,NIDCM组中多数患者(80%)RVEF尚正常,整体RVEF也显示正常,但NIDCM组RVLS显著低于ICM组,似乎表明RV LS比RVEF对于诊断右室功能障碍更加敏感。本研究结果显示RVEF对于区分NIDCM及ICM的诊断价值不大(AUC=0.504),远不及RV LS。Pattynama等[19]研究发现在肺心病的患者中RV LS比RVEF更有诊断价值。

3.2 左室延迟强化的节段心肌应变分析

       对比剂延迟增强扫描对显示心肌纤维化尤为敏感,NIDCM表现为心室肌壁内的线条状增强,且通常见于室间隔[20]。既往文献报道钆对比延迟增强扫描技术是目前检测梗死心肌的金标准[21],提示心肌梗死区的细胞外细胞间质扩张,钆对比剂排出时间延长,在LCE上呈现高信号。ICM表现为以心内膜下并延展至全层为主的线条状强化,分布符合冠状动脉供血区域的节段特征[22]。本研究39例患者均符合NIDCM及ICM的延迟强化特征。

       本研究结论得出所有患者的所有LGE阳性节段较阴性节段PSR、PSC、PSL均降低,证明LGE对心肌损伤的发现尤为敏感。与ICM组比,NIDCM组所有LGE阴性节段PSR、PSC、PSL均明显降低,说明NIDCM的左室心肌均受损,体现了NIDCM左室弥漫性病变的病理基础[23]。NIDCM组中所有LGE阳性心肌节段PSR、PSC、PSL均低于阴性节段,表明NIDCM组左室不同室壁受损程度不均匀。Henn等[24]和McCrohon[25]认为在一些NIDCM患者中,室间隔中层的延迟强化,与尸检病理看到的中层纤维化相一致。ICM组中所有LGE阳性心肌节段PSR、PSC、PSL均低于阴性节段,说明ICM组的梗死心肌相对于正常心肌来说,已累及到心外膜,与既往研究结论一致[26]。既往文献报道,对于ICM,延迟强化范围与病理上心肌梗死范围一致,可逆性心肌损伤并未出现延迟强化[27]。其中,LCE阳性节段的PSL降低最为明显,推测PSL对心肌缺血诊断相对较敏感。

3.3 本研究局限性

       本研究中左室心肌应变分析数据的标准差较大,以往文献中存在着类似情况[28]。NIDCM组中数据的标准差比ICM组大,这正是因为NIDCM病人的心肌运动紊乱,在收缩及舒张期心室壁运动的不一致,导致数值差别过多。

       本研究存在着一定的局限性,本组样本量较少。其次,我们只研究了NIDCM及ICM的双心室收缩功能,未做舒张功能的研究。除此之外,MR-FT是一项新兴技术,多个软件并存,虽然能得出相似的结果,但是数值并未完全统一,缺少统一的标准。

3.4 结论

       综上所述,MR-FT技术能够从整体和局部两方面评估NIDCM和ICM的双心室心功能,尤其在右心室方面分析两种疾病的不同,为临床诊断及治疗提供更多依据。

[1]
Elliott P, Andersson B, Arbustini E, et al. Classification of the cardiomyopathies: a position statement from the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J, 2008, 29(2): 270-276.
[2]
Sahli Costabal F, Choy JS, Sack KL, et al. Multiscale characterization of heart failure. Acta Biomaterialia, 2019, 86: 66-76.
[3]
Kanzaki H, Nakatani S, Yamada N, et al. Impaired systolic torsion in dilated cardiomyopathy: reversal of apical rotation at mid-systole characterized with magnetic resonance tagging method. Basic Res Cardiol, 2006, 101(6): 465-470.
[4]
Felker GM, Thompson RE, Hare JM, et al. Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N Engl J Med, 2000, 342(15): 1077-1084.
[5]
Tadic M, Pieske-Kraigher E, Cuspidi C, et al. Right ventricular strain in heart failure: Clinical perspective. Archives of Cardiovascular Diseases, 2017, 110(10): 562-571.
[6]
Wang TT, Tang LJ. Methods of quantitatively analyzing myocardial strain and stain rate. Int J Med Radiol, 2017, 40(3): 277-281.
王婷婷,唐立钧.心肌应变及应变率定量分析方法研究.国际医学放射学杂志, 2017, 40(3): 277-281.
[7]
Elliott P. Cardiomyopathy. Diagnosis and management of dilated cardiomyopathy. Heart, 2000, 84(1): 106-112.
[8]
Cerqueira MD, Weissman NJ, Dilsizian V, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Int J Cardiovasc Imaging, 2002, 18(1): 539-542.
[9]
Mirsky I, Parmley WW. Assessment of passive elastic stiffness for isolated heart muscle and the intact heart. Circ Res, 1973, 33(2): 233-243.
[10]
Liu HF, Ren YQ, Hu HJ. Quantitative method of three-dimensional strain of myocardium by magnetic resonance and its clinical application. Chin J Med Imaging, 2012, (4): 317-320.
刘华锋,任宇婧,胡红杰.利用磁共振定量心肌三维应变的方法及临床应用.中国医学影像学杂志, 2012, (4): 317-320.
[11]
Yu SS, Yu YH, Tang XP, et al. Cardiac MR feature tracking in detection of left ventricular myocardial strain in hypertrophic cardiomyopathy. Chin J Med Imaging Technol, 2017, 33(8): 1129-1133.
喻思思,俞瑶涵,唐雪培,等. MR特征追踪技术定量评估肥厚型心肌病心肌应变.中国医药影像技术, 2017, 33(8): 1129-1133.
[12]
Maceira AM, Tuset-Sanchis L, Lopez-Garrido M, et al. Feasibility and reproducibility of feature-tracking-based strain and strain rate measures of the left ventricle in different diseases and genders. J Magn Reson Imaging, 2018, 47(5): 1415-1425.
[13]
Buss SJ, Breuninger K, Lehrke S, et al. Assessment of myocardial deformation with cardiac magnetic resonance strain imaging improves risk stratification in patients with dilated cardiomyopathy. Eur Heart J Cardiovasc Imaging, 2015,16(3): 307-315.
[14]
Yang LT, Yamashita E, Nagata Y, et al. Prognostic value of biventricular mechanical parameters assessed using cardiac magnetic resonance feature-tracking analysis to predict future cardiac events. J Magn Reson Imaging, 2017, 45(4): 1034-1045.
[15]
Wandt B. Long-axis contraction of the ventricles: a modern approach, but described already by Leonardo da Vinci. J Am Soc Echocardiogr, 2000, 13(7): 699-706.
[16]
Rakar S, Sinagra G, Di Lenarda A, et al. Epidemiology of dilated cardiomyopathy. A prospective post-mortem study of 5252 necropsies. The Heart Muscle Disease Study Group. Eur Heart J, 1997, 18(1): 117-123.
[17]
Juilliere Y, Barbier G, Feldmann L, et al. Additional predictive value of both left and right ventricular ejection fractions on long-term survival in idiopathic dilated cardiomyopathy. Eur Heart J, 1997, 18(2): 276-280.
[18]
Gulati A, Ismail TF, Jabbour A, et al. The prevalence and prognostic significance of right ventricular systolic dysfunction in nonischemic dilated cardiomyopathy. Circulation, 2013, 128(15): 1623-1633.
[19]
Pattynama PM, Willems LN, Smit AH, et al. Early diagnosis of cor pulmonale with MR imaging of the right ventricle. Radiology, 1992, 182(2): 375-379.
[20]
Francone M. Role of cardiac magnetic resonance in the evaluation of dilated cardiomyopathy: diagnostic contribution and prognostic significance. ISRN Radiol, 2014, 2014: 365404.
[21]
Carlsson M, Arheden H, Higgins CB, et al. Magnetic resonance imaging as a potential gold standard for infarct quantification. J Electrocardiol, 2008, 41(6):614-620.
[22]
Zhao SH. Cardiovascular magnetic resonance imaging. Beijing: People's Military Medical Press, 2011: 92.
赵世华.心血管病磁共振诊断学.北京:人民军医出版社, 2011: 92.
[23]
Jefferies JL, Towbin JA. Dilated cardiomyopathy. Lancet, 2010, 375(9716): 752-762.
[24]
Henn MC, Lawrance CP, Kar J, et al. Dilated cardiomyopathy: normalized multiparametric myocardial strain predicts contractile recovery. Ann Thorac Surg, 2015, 100(4): 1284-1291.
[25]
McCrohon JA. Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance. Circulation, 2003,108(1): 54-59.
[26]
Duo GS, Liu T, Dai X. Clinical evaluation of cardiac magnetic resonance tissue tracking technology for coronary heart disease patients with myocardial infarction. Chin J Magn Reson Imaging, 2018, 9(5): 346-353.
多国帅,刘婷,戴旭.心脏磁共振组织追踪技术评估冠心病心肌梗死的诊断价值.磁共振成像, 2018, 9(5): 346-353.
[27]
Hou J. Sun Y. Xiao JR. et al. A joint assessment in myocardial ischemia by cardiac magnetic resonance and biomarkers. Chin J Magn Reson Imaging. 2019, 10(1): 48-52.
侯洁,孙玉,肖俊睿,等.心脏磁共振及实验室检查联合评估心肌缺血.磁共振成像, 2019, 10(1): 48-52.
[28]
Taylor RJ, Moody WE, Umar F, et al. Myocardial strain measurement with feature-tracking cardiovascular magnetic resonance: normal values. Eur Heart J Cardiovasc Imaging, 2015, 16(8): 871-881.

上一篇 DRD2 TaqIA不同基因型海洛因成瘾者抑制性 控制网络的fMRI研究
下一篇 磁共振扩散加权成像鉴别诊断胆囊良恶性 病变的Meta分析
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2