分享:
分享到微信朋友圈
X
临床研究
阿尔茨海默病患者APT、SWI与MMSE相关应用研究
张聪 郑阳 王晓明

Cite this article as: Zhang C, Zheng Y, Wang XM. Correlation between MMSE and amido proton transfer, susceptibility-weighted imaging in Alzheimer's disease. Chin J Magn Reson Imaging, 2020, 11(6): 406-410.本文引用格式:张聪,郑阳,王晓明.阿尔茨海默病患者APT、SWI与MMSE相关应用研究.磁共振成像, 2020, 11(6): 406-410. DOI:10.12015/issn.1674-8034.2020.06.002.


[摘要] 目的 评价阿尔茨海默病(Alzheimer's disease,AD)患者脑结构磁共振酰胺质子转移(amide proton transfer,APT)成像、磁敏感加权成像(susceptibility weighted imaging,SWI)相位值与神经心理量表评分的相关性。材料与方法 募集20例AD患者和20名年龄及性别相匹配的正常对照者进行头颅常规序列、SWI和APT成像检查。在横断位APT像及SWI相位图上选取双侧海马、杏仁体、黑质,测量感兴趣区的酰胺质子(3.5 ppm处)不对称磁化转移率(magnetic resonance ratio asymmetry,MTRasym)及相位值。所有受试者均进行简易精神状态量表(mini-mental state examination,MMSE)评估,比较正常对照组和AD组各脑区MTRasym (3.5 ppm)值及相位值的差异。利用Pearson相关性分析所有受试者各脑结构MTRasym (3.5 ppm)值、相位值与MMSE评分的相关性。结果 AD组双侧海马的MTRasym (3.5 ppm)值显著高于正常对照组[右侧:(1.39±0.17)%和(0.88±0.29)%,t=4.444,P=0.000;左侧:(1.42±0.31)%和(0.91±0.36)%,t=3.867,P=0.000]。双侧海马、黑质的相位值AD组比正常对照组相位值减低(P<0.05)。双侧海马的MTRasym (3.5 ppm)值均与MMSE评分呈负相关(右侧:r=-0.618,P=0.004;左侧:r=-0.513,P=0.021),双侧海马(右侧:r=0.446,P=0.049;左侧:r=0.518,P=0.019)及黑质(右侧:r=0.593,P=0.006;左侧:r=0.898,P=0.000)相位值与MMSE评分呈正相关。结论 APT成像及SWI能够检验AD患者在海马及黑质的蛋白含量及铁含量变化,对AD诊断有一定帮助。
[Abstract] Objective: To evaluate the correlation between the phase values of magnetic resonance amido proton transfer (APT) imaging, magnetic sensitivity weighted imaging (SWI) and the scores of neuropsychological scale in patients with Alzheimer's disease (AD).Materials and Methods: Twenty AD patients and 20 age and gender matched normal controls were selected for routine skull sequence, SWI and APT imaging. The asymmetric magnetization transfer ratio (MTRasym) and phase value of amide protons (at 3.5 ppm) in the region of interest were measured by selecting bilateral hippocampus, amygdala and substantia nigra on the APT image and SWI phase map of the transection position. All subjects were assessed with mini mental state examination (MMSE). The difference of MTRasym (3.5 ppm) and phase value between normal control group and AD group was compared. Pearson correlation was used to analyze the correlation between the value of MTRasym (3.5 ppm), phase value and MMSE score.Results: the MTRasym (3.5 ppm) value of bilateral hippocampus in AD group was significantly higher than that in normal control group [right side: (1.39±0.17)% and (0.88±0.29)%, t=4.444, P=0.000; left side: (1.42±0.31)% and (0.91±0.36)%, t=3.867, P=0.000]. The phase value of bilateral hippocampus and substantia nigra in AD group was lower than that in normal control group (P<0.05). The MTRasym (3.5ppm) value of bilateral hippocampus was negatively correlated with MMSE score (r=-0.618 on the right, P=0.004; r=-0.513 on the left, P=0.021), and the phase value of bilateral hippocampus (r=0.446 on the right, P=0.049; r=0.518 on the left, P=0.019 and substantia nigra (r=0.593 on the right, P=0.006; r=0.898 on the left, P=0.000) was positively correlated with MMSE score.Conclusions: APT and SWI imaging can detect the protein content and iron content in hippocampus and substantia nigra of AD patients sensitively, which is helpful for AD diagnosis.
[关键词] 阿尔茨海默病;酰胺质子转移;磁敏感加权成像;海马;黑质;杏仁体
[Keywords] Alzheimer's disease;amide proton transfer;susceptibility-weighted imaging;hippocampus;substantia nigra;amygdaloid body

张聪 中国医科大学附属盛京医院放射科,沈阳 110004

郑阳 中国医科大学附属盛京医院放射科,沈阳 110004

王晓明* 中国医科大学附属盛京医院放射科,沈阳 110004

通信作者:王晓明,E-mail:wangxm024@163.com

利益冲突:无。


基金项目: 国家自然科学基金 编号:81471720 辽宁省教育厅重点实验室基础研究项目 编号:LZ2014039 盛京自由研究者基金 编号:201402
收稿日期:2019-12-23
接受日期:2020-04-15
中图分类号:R445.2; R749.16 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2020.06.002
本文引用格式:张聪,郑阳,王晓明.阿尔茨海默病患者APT、SWI与MMSE相关应用研究.磁共振成像, 2020, 11(6): 406-410. DOI:10.12015/issn.1674-8034.2020.06.002.

       敏感加权成像(susceptibility-weighted imaging,SWI)是一种高空间薄层分辨率三维梯度回波T2*衍生序列,可定量测量磁化率值,敏感显示血液成分、非铁血红素铁及钙化[1]。酰胺质子转移(amide proton transfer,APT)成像是近年来发展起来的无创探测体内病理生理改变及代谢状态的MR技术,其核心是检测体内游离小分子蛋白及多肽链上的酰胺质子转移的转移速率[2]。阿尔茨海默病(Alzheimer’s disease,AD)主要致病假说是Aβ蛋白大量沉积及老年斑形成,同时金属离子铁可促进Aβ蛋白沉积及加速老年斑形成[3]。由于APT成像对蛋白质浓度敏感,基于此,本研究采用SWI及APT技术检测AD患者与正常老年人之间的脑内差异,探讨APT成像值及相位值与简易精神状态量表的相关性。

1 材料与方法

1.1 一般资料

       2017年11月至2019年10月,本研究包括24例AD患者和21例正常对照者(2例AD患者因不能配合正常扫描排除组外,2例因图像质量未能达到相应标准排除组外;1例正常对照组因严重高血压病史排除组外)。AD组:男10例,女10例;平均年龄(71.0±7.60)岁,所有患者均来自我院神经内科门诊,经临床及影像诊断为AD患者。正常对照组(NC):男7例,女13例;平均年龄(70.4±5.90)岁,来自同一时期我院不以神经系统疾病就诊的老年人。AD患者纳入标准:均符合精神障碍诊断和统计手册(第4版)以及美国国立神经疾病语言障碍和卒中研究所制定的符合AD的诊断标准(MMSE评分在8~20);排除标准:(1)严重内科疾病;(2)神经及精神疾病病史;(3)常规T1WI、T2WI序列扫描存在明显异常。正常对照组无明显认知功能障碍,所有受试者均进行了简易精神状态量表(mimi-mental state examination,MMSE)评估,受试者文化程度均处于小学水平以上。参与本研究的所有患者和健康对照者均已签署知情同意书。本研究经过我院伦理委员会批准(批号:2018PS16K)。

1.2 MR检查方法

       采用Philips 3.0 T Achieva磁共振成像系统和头部8通道线圈进行MRI横断位扫描。扫描序列:T1W FSE序列,TR 80 ms,TE 2.0 ms,FOV 230 mm×230 mm,矩阵512×512,层厚6.5 mm;T2W FSE序列,TR 3000 ms,TE 115 ms,FOV 230 mm×230 mm,矩阵512×512,层厚6.5 mm;SWI序列扫描,TR 51 ms,TE 9.8 ms,FOV 230 mm×230 mm,矩阵384×384,层厚6.5 mm,最后行APT成像扫描,具体扫描参数:TR 3000 ms,TE 7.5 ms,快速自旋回波因子54,饱和时间0.8 s,饱和率2 μT,位移±3.5 ppm,FOV 230 mm× 230 mm,矩阵125×100,层厚6 mm。

1.3 图像后处理采用

       Philips EDW 4.0工作站,对扫描所得相位信息与磁矩图进行多次叠加,得到后处理校正相位图及重建SWI图像。选择ROI时,由3名放射科医师对照T1WI图像(见图1A),以大脑镰为对称,根据不同脑结构的体积在解剖显示清晰截面利用圆形测量工具在相位图中共同手动测量3次双侧海马、黑质、杏仁体的相位值,取平均值,由公式-X×π/4096计算得到校正相位值,如图1B

       APT的图像分析采用基于交互式数据语言(interactive data language,IDL)软件。在APT图上按选择相位图类似方法选择双侧海马、黑质、杏仁体作为ROI进行勾画,同一部位测量3次,取平均值,具体勾画方法见图1C。各脑结构的APT信号强度通过测量酰胺质子的不对称磁化转移率(magnetic resonance ratio asymmetry,MTRasym)来获得。即MTRasym (3.5 ppm)的计算公式如下:

       MTRasym (3.5 ppm)=MTR (+3.5 ppm)-MTR(-3.5 ppm)=Ssat(-3.5 ppm)/S0-Ssat (+3.5 ppm)/S0。

图1  正常T1序列(A)、相位图(B)、APT(C)中1、2代表双侧杏仁体,3、4双侧海马,5、6代表双侧黑质
Fig. 1  Normal T1 sequence (A), phase diagram (B), APT (C), 1,2 for bilateral amygdala, 3,4 for bilateral hippocampus, 5,6 for bilateral substantia nigra.

1.4 统计学方法

       采用SPSS 23.0统计学软件进行统计学分析。采用单样本K-S检验行正态性分析,数据均服从正态分布,正常对照者和AD患者各脑结构的MTRasym (3.5 ppm)值、相位值、平均年龄、MMSE评分均以±s表示;经方差同质性检验,数据均符合方差齐性。AD组和对照组相位值及MTRasym (3.5 ppm)值比较采用两独立样本t检验。对AD组各核团MTRasym (3.5 ppm)值及相位值与MMSE进行Pearson相关分析,P<0.05为差异有统计学意义。

2 结果

2.1 正常对照组和AD组各脑结构的APT及相位值的定量分析

       表1显示,AD组双侧海马及黑质的相位值差异有统计学意义(P<0.05),AD组比正常对照组相位值减低;双侧杏仁体相位值AD组与对照组相位值差异无统计学意义(P>0.05)。表2显示,与正常对照组比较,AD组的双侧海马MTRasym (3.5 ppm)值明显增高,且不对称磁化率差异具有统计学意义(P<0.05):AD组右侧海马的MTRasym (3.5 ppm)增高56%,左侧海马的MTRasym (3.5 ppm)增高57%。不过双侧杏仁体及黑质的MTRasym (3.5 ppm)值差异并无统计学意义。

表1  AD组与对照组相位值比较(×10-3 mrad,±s)
Tab. 1  Comparison of phase values between AD group and control group (×10-3 mrad,±s)
表2  AD组与对照组MTRasym (3.5 ppm)值比较(%)
Tab. 2  Comparison of MTRasym (3.5 ppm) values between AD group and control group (%)

2.2 各脑结构的MTRasym (3.5 ppm)值及相位值与MMSE的相关性分析

       在AD组中,双侧海马的MTRasym (3.5 ppm)值均与MMSE评分呈负相关,双侧海马及黑质相位值与MMSE评分呈正相关,双侧杏仁体及黑质MTRasym (3.5 ppm)值及双侧杏仁体相位值与MMSE评分无显著相关性(图2图3)。

图2  A~ D分别为AD组双侧海马、黑质的相位值与简易智力状况评分呈正相关,相关系数分别为0.446 (P=0.049)、0.518 (P=0.019)、0.593 (P=0.006)、0.898 (P=0.000);E~F分别为AD组双侧杏仁体相位值与简易智力状况评分无显著相关性,相关系数分别为0.269 (P=0.252)、0.05 (P=0.835)
图3  A、B为AD组双侧海马的MTRasym (3.5 ppm)值均与简易智力状况评分呈负相关,相关系数分别为-0.618 (P=0.004)、-0.513 (P=0.021);C~ F为AD组双侧杏仁体与黑质MTRasym (3.5 ppm)值均与简易智力状况评分无显著相关性,相关系数分别为-0.019 (P=0.936)、0.059 (P=0.804)、0.120 (P=0.614)、-0.095 (P=0.690)
Fig. 2  A—D showed that the phase values of bilateral hippocampus and substantia nigra in AD group were positively correlated with the scores of simple intelligence, and the correlation coefficients were 0.446 (P=0.049), 0.518 (P=0.019), 0.593 (P=0.006), 0.898 (P=0.000); there was no significant correlation between the phase value of amygdala and the score of simple intelligence in AD group. The correlation coefficients were 0.269 (P=0.252) and 0.05 (P=0.835), respectively.
Fig. 3  A, B showed that the MTRasym (3.5 ppm) values of both hippocampus in AD group were negatively correlated with the scores of simple intelligence, and the correlation coefficients were-0.618 (P=0.004), -0.513 (P=0.021); C—F showed that the MTRasym (3.5 ppm) values of both amygdala and substantia nigra in AD group were not significantly correlated with the scores of simple intelligence, and the correlation coefficients were-0.019 (P=0.936), 0.059 (P=0.804), 0.120 (P=0.614), -0.095 (P=0.690)

3 讨论

       APT成像基于化学交换饱和转移(chemical exchange saturation transfer,CEST)技术,无创探测组织中游离蛋白质和多肽上的酰胺质子与自由水质子交换速率来间接反映活体细胞内可溶性小分子蛋白质和多肽的浓度[4]。SWI利用组织间磁化率差异,敏感显示具有磁性变化物质,广泛应用于探测非血红素铁及钙化,在脑出血、血管畸形及神经退行性疾病的作用尤为突出[5]。AD主要的致病假说为Aβ蛋白大量沉积及神经原纤维缠结形成[6],近年来金属离子假说在AD发病过程中逐渐得到认可,Ana等[7]首先提出脑内铁沉积相关神经系统退行性变这一观点,Arvanitakis等[8]研究表明黑质铁沉积总量与认知障碍密切相关。本研究结果表明双侧海马、黑质的相位值在AD组和对照组存在统计学意义,AD组双侧海马MTRasym (3.5 ppm)值明显增高,差异有统计学意义。AD患者脑内铁离子异常沉积,氧化应激产生的自由基会引起溶酶体破裂和细胞内物质的渗漏,从而加速神经元损伤[7]。因此,海马及黑质的相位值在AD组与对照组间存在差异。铁离子浓度与斑块形成概率呈正比,蛋白含量增高,铁离子浓度随之提高,加速位于细胞内的游离小分子蛋白或多肽沉积过程,如Tau蛋白、Aβ寡聚体[9,10,11,12]。神经原纤维缠结为Tau蛋白过度磷酸化和糖基化形成,金属离子可加速Tau蛋白磷酸化过程,干扰突触前膜释放作用,影响突触间传递功能[13,14],Tau蛋白存在两种可溶性小分子蛋白:C-Tau和ADP-Tau。可溶性的Aβ寡聚体聚集可诱发Tau蛋白磷酸化、加速神经元的凋亡[15],AD患者中游离小分子蛋白增多,可能是造成酰胺质子转移率增加的原因。

       本研究的受试者主要接受了AD患者目前常用且最具影响的认知功能筛查工具MMSE的评估,其特点为简单易操作。在确保文化水平相近情况下,MMSE评分与患者病情严重程度呈负相关[16]。双侧海马、双侧黑质相位值与简易智力状况评分呈正相关,与Du等[17]、Moon等[18]实验结果相符,计算可得铁离子与相位值呈反比,即脑内铁含量与病情严重程度呈正相关。AD组患者双侧海马MTRasym (3.5 ppm)值与MMSE评分呈显著负相关。AD患者脑内铁离子异常过多沉积,加速游离蛋白及多肽形成,进一步使MTRasym (3.5 ppm)值增高。AD患者神经纤维缠结及游离蛋白多出现于大脑记忆功能相关区域,如海马[19],因而对脑内金属离子沉积及蛋白增多较为敏感,与Wang等[20]研究结果相符。黑质是脑内合成多巴胺的主要核团,且与帕金森病发病联系较为紧密[21],不能单纯判断由AD造成的蛋白含量增多,因此猜测APT信号值没有明显变化。本研究中,与AD密切相关的杏仁体[22]的相位值及APT信号强度差异无统计学意义,张毅等[23]研究表明AD组患者杏仁体体积虽较正常对照组减小,但差异无统计学意义,与近年来杏仁体研究结果不符合,猜测可能与测量方法相关,然而具体原因有待进一步讨论。因此,对海马区域进行SWI及APT功能扫描,可以有望帮助无法进行量表测量的患者诊断AD疾病情况。

       本次研究存在一些不足之处:首先,由于本研究的样本量还比较小,没有完全排除选取研究对象因素的影响,如患者因脑血管畸形或微小血管病变所致认知状态改变,而图像无明显异常,且研究为单中心样本,存在一定程度选择偏倚,并且难对AD组病情严重情况进行分级研究。其次,由于APT图像的分辨率所限导致部分层面显示欠清,在准确勾画微小脑结构边界时存在一些有待改进的问题。

       综上所述,SWI、APT能无创探测AD患者脑内铁沉积及游离蛋白改变情况,对临床的诊断工作起到了指导意义。

[1]
Dogan M, Koc G, Doganay S, et al. Evaluation of symmetrical increased echogenicity of bilateral caudothalamic grooves detected on cranial ultrasonography by comparing with susceptibility-weighted imaging. Radiol Med, 2018, 123(6): 434-440.
[2]
Zhou J, Payen J, Wilson D, et al. Using the amide proton signals of intracellular proteins and peptides to detect PH effects in MRI. Nat Med, 2003, 9(8): 1085-1090.
[3]
Cristóvão J, Santos R, Gomes C. Metals and neuronal metal binding proteins implicated in Alzheimer’s disease. Oxid Med Cell Longev, 2016, 2016: 9812178.
[4]
Zhou J, Zhu H, Lim M, et al. Three-dimensional amide proton transfer MR imaging of gliomas: Initial experience and comparison with gadolinium enhancement. J Magn Reson Imaging, 2013, 38(5): 1119-1128.
[5]
Grabner G, Kiesel B, Wöhrer A, et al. Local image variance of 7 Tesla SWI is a new technique for preoperative characterization of diffusely infiltrating gliomas: correlation with tumour grade and IDH1 mutational status. Eur Radiol, 2017, 27(4): 1556-1567.
[6]
James S, Churches Q, de Jonge M, et al. Iron, copper, and zinc concentration in Aβ plaques in the APP/PS1 mouse model of Alzheimer’s disease correlates with metal levels in the surrounding neuropil. ACS Chem Neurosci, 2017, 8(3): 629-637.
[7]
Ana M, Naftali R. Appraising the role of iron in brain aging and cognition: Promises and limitations of MRI methods. Neuropsychol Rev, 2015, 25(3): 272-287.
[8]
Arvanitakis Z, Fleischman D, Arfanakis K, et al. Association of white matter hyperintensities and gray matter volume with cognition in older individuals without cognitive impairment. Brain Struct Funct, 2016, 221(4): 2135-2146.
[9]
Koss D, Jones G, Cranston A, et al. Soluble pre-fibrillar tau and β-amyloid species emerge in early human Alzheimer’s disease and track disease progression and cognitive decline. Acta Neuropathol, 2016, 132(6): 875-895.
[10]
Köpke E, Tung Y, Shaikh S, et al. Microtubule-associated protein tau: Abnormal phosphorylation of non-paired helical filament pool in Alzheimer disease. J Biol Chem, 1993, 268(32): 24374-24384.
[11]
Xu G, Ran Y, Fromholt S, et al. Murine Aβ over-production produces diffuse and compact Alzheimer-type amyloid deposits. Acta Neuropathol Commun, 2015, 3(4): 72-87.
[12]
LaClair K, Donde A, Ling J, et al. Depletion of TDP-43 decreases fibril and plaque β-amyloid and exacerbates neurodegeneration in an Alzheimer’s mouse model. Acta Neuropathol, 2016, 132(6): 859-873.
[13]
Butterfield D, Swomley A, Sultana R. Amyloid β-peptide (1-42)-induced oxidative stress in Alzheimer disease: importance in disease pathogenesis and progression. Antioxid Redox Signal, 2013, 19(8): 823-835.
[14]
Jacqueline R, Edward D. Chronic traumatic encephalopathy-integration of canonical traumatic brain injury secondary injury mechanisms with tau pathology. Prog Neurobiol, 2017, 158(11): 15-44.
[15]
More S, Vince R. Hyperspectral imaging signatures detect amyloidopathy in Alzheimer’s mouse retina well before onset of cognitive decline. ACS Chem Neurosci, 2015, 6(2): 306-315.
[16]
Gao L, Jiang Z, Cai Z, et al. Brain iron deposition analysis using susceptibility weighted imaging and its association with body iron level in patients with mild cognitive impairment. Mol Med Rep, 2017, 16(6): 8209-8215.
[17]
Du L, Zhao Z, Cui A, et al. Increased iron deposition on brain quantitative susceptibility mapping correlates with decreased cognitive function in Alzheimer’s disease. ACS Chem Neurosci, 2018, 9(7): 1849-1857.
[18]
Moon Y, Han S, Moon W, et al. Patterns of brain iron accumulation in vascular dementia and Alzheimer’s dementia using quantitative susceptibility mapping imaging. J Alzheimers Dis, 2016, 51(3): 737-745.
[19]
Walker K. Inflammation and neurodegeneration: chronicity matters. Aging, 2018, 11(1): 3-4.
[20]
Wang R, Li S, Chen M. Amide proton transfer magnetic resonance imaging of Alzheimer’s disease at 3.0 Tesla: a preliminary study. Chin Med J, 2015, 128(5): 615-619.
[21]
Murakami Y, Kakeda S, Watanabe K, et al. Usefulness of quantitative susceptibility mapping for the diagnosis of Parkinson disease. AJNR Am J Neuroradiol, 2015, 36(6): 1102-1108.
[22]
Kumar A, Singh S, Singh A, et al. Diffusion tensor imaging based white matter changes and antioxidant enzymes status for early identification of mild cognitive impairment. Int J Neurosci, 2019, 129(3): 209-216.
[23]
Zhang Y, Zhang SL. Study on brain linearity and volume measurement in MRI of Alzheimer’s disease. Shanxi Med J, 2005, 34(1): 41-42.
张毅,张生林.阿尔茨海默病的磁共振成像脑线性与体积测量的研究.山西医药杂志, 2005, 34(1): 41-42.

上一篇 磁共振增强三维双激发平衡式自由稳态进动序列对垂体大腺瘤与颅神经海绵窦段关系的评价
下一篇 静息态功能磁共振成像对长期慈悲冥想者脑结构和脑功能的研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2