分享:
分享到微信朋友圈
X
综述
载化疗药磁性氧化铁纳米颗粒诊疗肿瘤的研究进展
马明忠 高博 和建伟 赵雪梅 周星

Cite this article as: Ma MZ, Gao B, He JW, et al. Research progress in the diagnosis and treatment of tumors by magnetic iron oxide nanoparticles with chemotherapeutics. Chin J Magn Reson Imaging, 2020, 11(6): 474-476.本文引用格式:马明忠,高博,和建伟,等.载化疗药磁性氧化铁纳米颗粒诊疗肿瘤的研究进展.磁共振成像, 2020, 11(6): 474-476. DOI:10.12015/issn.1674-8034.2020.06.019.


[摘要] 磁性纳米粒(nanoparticles,NPs)由于其独特的性质而受到广泛的关注。NPs可以与荧光染料、肿瘤靶向分子或化疗药物等相结合实现肿瘤靶向诊疗一体化。磁性氧化铁纳米颗粒(iron oxide nanoparticles,IONP)具有粒径小、生物安全性高、超顺磁性等优点。IONP除了具有影响T2加权成像(T2 weight imaging,T2WI)外,还具有药载和磁靶向等功能,是目前肿瘤诊疗的研究热点。笔者对IONP成像性能、肿瘤靶向性及载不同化疗药等方面的研究进行综述。
[Abstract] Magnetic oxygen nanoparticles (NPs) have attracted wide attention due to their unique properties. NPs can be combined with fluorescent probes, biological targeting molecules or anti-tumor drugs to achieve the multifunctionality of magnetic nanoparticles, so they have good application prospects in multimodal imaging, targeted diagnosis and treatment of cancer. Magnetic iron oxide nanoparticles (IONP) have the advantages of small particle size, high biological safety, and superparamagnetism. In addition to T2 weight imaging (T2WI) MR imaging, IONP also has drug loading and magnetic targeting functions. It is currently a hot research topic in cancer diagnosis and treatment. This article reviews the research on IONP imaging performance, tumor targeting, and the emphasis on carrying different types of chemotherapy drugs.
[关键词] 氧化铁纳米颗粒;化疗药;磁共振成像;肿瘤
[Keywords] iron oxide nanoparticles;chemotherapy drugs;magnetic resonance imaging;tumor

马明忠 甘肃省人民医院放射科,兰州 730000

高博 甘肃省人民医院放射科,兰州 730000

和建伟 甘肃省人民医院放射科,兰州 730000

赵雪梅 甘肃省人民医院放射科,兰州 730000

周星* 甘肃省人民医院放射科,兰州 730000

通信作者:周星,E-mail :317690434@qq.com

利益冲突:无。


基金项目: 甘肃省自然科学基金 编号:18JR3RA048 甘肃省人民医院院内基金 编号:17GSSY2-7
收稿日期:2020-01-02
接受日期:2020-04-21
中图分类号:R445.2; R73 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2020.06.019
本文引用格式:马明忠,高博,和建伟,等.载化疗药磁性氧化铁纳米颗粒诊疗肿瘤的研究进展.磁共振成像, 2020, 11(6): 474-476. DOI:10.12015/issn.1674-8034.2020.06.019.

       2015年,中国预计新增癌症病例429.2万例,死亡281.4万例,相当于平均每天新增12 000例[1]。手术、放疗、化疗仍是癌症的主要治疗手段,其中化疗是癌症治疗不可缺少的内科手段,能提高患者的生存率[2,3,4,5]。化疗主要是通过化疗药物抑制癌细胞生长及转移,从而促使癌细胞凋亡。然而目前临床常用化疗药物肿瘤靶向性差,杀灭癌细胞的同时也会损伤人体正常细胞,导致药物的不良反应[6]。目前,基于氧化铁(iron oxide,IO)的磁性纳米粒(nanoparticles,NPs)由于粒径小、生物安全性高、表面曲率大、弛豫性能高、超顺磁性、表面易于修饰和功能化等优点而受到广泛的关注,磁性氧化铁纳米颗粒(iron oxide nanoparticles,IONP)与抗肿瘤药物结合实现癌症的靶向诊断与治疗是目前的研究热点[7,8]

1 IONP作为对比剂用于肿瘤诊断

       IONP可作为超顺磁性的T2对比剂[9]。由于NPs在主磁场中会影响周围氢质子的弛豫过程,有效地缩短了T2时间,使T2加权成像(T2 weight imaging,T2WI)变暗,因此超顺磁纳米颗粒作为T2对比剂表现出负增强效果[10,11]。相比于T1加权成像(T1 weighted imaging,T1WI),T2WI在肿瘤图像表现方面更具优势。然而,T2对比剂也存在一定的局限性,如成像时间长、对含气及骨组织成像效果差等。通过将IONP耦联其他分子构建多模态成像探针,可以克服单一成像的局限性,提高成像的敏感性。Sanchez-Cabezas等[12]通过纯化超小型超顺磁性氧化铁纳米颗粒,使得纳米颗粒能够提供显著的T1/T2双重信号增强。Cai等[13]通过把Gd耦联到磁性纳米粒上得到7 nm的螯合物,可作为MRI T1-T2双相对比剂。Dong等[14]合成了具有生物相容性的PEG化GdF:Fe纳米颗粒(PEG-GdF :Fe NPs),作为多功能对比剂,用于高效的T1/T2加权MRI和X射线及CT多模态成像。Santra等[15]使用溶剂扩散法,将近红外荧光染料包裹于IONP内,构建出MRI/光学成像双模态成像功能的对比剂。目前临床上已有氧化铁纳米颗粒对比剂的应用,如Advanced Magnetics公司研发的菲立磁(Feridex)以及先灵公司的铁羧葡胺(Resovist)用于检测和表征微小局灶性肝脏病变。综上,耦连其他分子的氧化铁纳米颗粒可作为多功能对比剂,从而提高微小肿瘤的检出率,是目前多模态成像的研究热点。

2 IONP的肿瘤靶向性

       肿瘤细胞表面会特异性地表达某些标志物,通过配体修饰的IONP可与肿瘤细胞表面的特异性标志物相结合实现肿瘤靶向性。一定尺寸的纳米粒也可以被动靶向肿瘤组织,并且外加磁场也可以促进IONP肿瘤靶向,从而减少对正常组织的毒性,提高肿瘤局部的药物浓度。

2.1 叶酸受体介导IONP

       叶酸受体(folate receptor,FR)在很多肿瘤,如肺癌[16]、乳腺癌[17]、卵巢癌[18]等恶性肿瘤细胞表面表达量很高,然而在正常组织中极少存在。FR已成为多种恶性肿瘤靶向治疗的研究对象[19]。叶酸(folicacid,FA)是一种人体细胞必需的维生素,与FR具有高度亲和性,耦联其他分子的FA不影响与FR的亲和力,并通过细胞内吞作用被特异性地吸收到肿瘤细胞内[20]。FA介导的内吞作用和FR表达的组织分布为恶性肿瘤的主动靶向载药和药物释放提供了理论依据,为增强常规化疗和基因治疗的特异性提供了条件。Santra等[15]在IONP上偶联叶酸分子,构建出具有肿瘤主动靶向性的对比剂。Wang等[21]合成了牛血清白蛋白(bovine serum albumin,BSA)涂覆的γ-Fe2O3纳米颗粒(BSA-SPIO NP)。然后将FA偶联到BSA-SPIO NP上,制备靶向肿瘤的FA-BSA-SPIO NP作为MRI脑肿瘤成像的对比剂。

2.2 高通透性和滞留效应介导的IONP

       高通透性和滞留效应(enhanced permeability and retention effect,EPR)指的是一定尺寸的分子或颗粒容易聚集到肿瘤或炎症组织周围的性质。相较于正常组织,肿瘤中血管丰富、血管壁间隙较宽、淋巴回流缺失,使3~200 nm的NPs具有高通透性和滞留性[22]。EPR效应促进大分子在肿瘤组织中的选择性分布,从而提高疗效,减少副作用[23,24,25]。丁国斌[26]将疏水性Fe3O4纳米粒子与抗肿瘤10-羟基喜树碱(10-Hydroxycamplothecin,HCPT)整合进以PEG-PLGA(聚乙二醇-聚丙交酯乙交酯)共聚物所形成的胶束,构建了一种装载HCPT的磁性纳米载体,通过EPR效应将所装载的药物被动靶向至肿瘤组织,增加药物在肿瘤部位的聚集。

       除了利用叶酸受体等肿瘤特异性标志物主动靶向或者EPR效应被动靶向IONP,还有很多研究通过肿瘤微环境响应靶向IONP至肿瘤组织。Yue等[27]通过构建响应细胞凋亡蛋白酶(Caspase-3)的Fe3O4纳米探针,实现了对肿瘤细胞凋亡的在体MRI显示,可以早期评估肿瘤对化疗的敏感性。基于肿瘤酸性环境,辛朋燕[28]合成了Fe3O4-ZIF-8组装体,在微酸性环境中,Fe3O4-ZIF-8解组装,释放出Fe3O4纳米粒子,导致T2/T1造影转变。IONP的肿瘤靶向性中,主动靶向结合被动靶向是目前肿瘤靶向研究中主要采取的方法,但响应性靶向关键是基于肿瘤微环境的特殊性,发展潜力大。

3 载化疗药的IONP用于肿瘤治疗

       化疗药的主要缺点是靶向性差,在抑制肿瘤细胞的同时对正常人体细胞也有杀伤力[29]。IONP可作为药物载体将化疗药通过主动靶向、被动靶向或者智能响应选择性地运向肿瘤部位。此外,IONP具有磁场靶向性,耦联其他分子或基团可作为多模态对比剂,磁共振可以实时靶向、检测,热疗杀灭肿瘤细胞。因此,载化疗药的IONP是目前肿瘤治疗的研究热点。不同肿瘤首选的化疗药种类不尽相同,基于特定肿瘤治疗研究的IONP应载该肿瘤首选化疗药。

3.1 载抗生素类化疗药物的IONP

       抗生素类药来源于微生物,多数由放线菌产生,通过抑制酶和有丝分裂的作用或改变细胞膜来干扰DNA,此类药物大多数具有骨髓抑制的不良发应[30]。Shen等[31]构建的载阿霉素IONP靶向HepG2肝癌细胞的研究中表明探针对肿瘤组织具有高度的亲和性,能在肿瘤病灶区大量聚集,并且在小鼠肝癌模型中具有显著的抗肿瘤活性,其抑瘤率达到78.5%。Rafiee等[32]通过表柔比星与H3PW12O40官能化的二氧化硅包裹的氧化铁纳米粒子之间的静电相互作用,制得pH响应释放杂化纳米颗粒具有对表柔比星的高药载率(82.6%)。

3.2 载植物碱类化疗药的IONP

       植物类抗癌药都是植物碱或天然产品,通过抑制有丝分裂或酶的作用防止细胞再生必须的蛋白质合成[33,34]。An等[35]组装了含紫杉醇(pachitaxel,PTX)的牛血清白蛋白涂层的超小没食子酸-Fe(III)(GA-Fe@BSA-PTX)纳米颗粒。自组装纳米颗粒具有适当的尺寸(约115 nm),高的水分散性和稳定性以及低的细胞毒性,优异的磁共振成像性能和肿瘤积累率。由于化学和光热作用的结合,GA-Fe@BSA-PTX自组装纳米颗粒对肿瘤表现出良好的治疗效果。

3.3 载抗代谢类化疗药物的IONP

       抗代谢类抗肿瘤药主要干扰细胞遗传物质的合成,用于慢性白血病、卵巢癌和结直肠癌。刘小康[36]以多面体磁性Fe3O4为纳米颗粒核心,通过羧甲基壳聚糖(carboxymethylchitosan,CMC)对Fe304纳米颗粒进行表面包裹,构建载有5-氟尿嘧啶(5-FU)的纳米药物Fe3O4-CMC-5- FU,对胃癌SGC-7901细胞有良好的抑制效应。

       此外,也有很多关于载其他类型抗肿瘤药物的IONP的研究。顺铂(cis-Diamminedichloroplatinum,CDDP)是一种临床常用的广谱抗肿瘤药物,具有抗癌谱广、药效强、与多种化疗药有协同作用、且无交叉耐药等特点,为当前联合化疗中最常用的药物之一[37]。但是小分子顺铂缺乏靶向性,在杀伤肿瘤细胞的同时,对正常细胞也有明显的毒副作用[38],并且低水溶性及体内较快代谢速度等缺点限制了其治疗效果。Liu[39]通过研究CDDP磁性纳米颗粒(MNP-CDDP)和聚乙二醇单甲醚-聚乙烯亚胺[methoxy poly (ethylene glycol) - polyethylenimine,MPEG-PEI]及组织途径抑制因子-2(tissue factor pathway inhibitor-2,TFPI-2)静电吸附构建FA靶向共载TFPI-2及CDDP的磁性纳米复合物(FA-MNP-CDDP/TFPI-2),对鼻咽癌(nasopharyngeal carcinoma,NPC)细胞具有良好的综合抑制效应,并且相较于CDDP,FA-MNP-CDDP/TFPI-2对非靶向组织毒性下降。

4 展望

       在很多细胞及动物实验中,载不同类型化疗药的IONP都有良好的MRI或其他模态成像性能,研发高效多功能对比剂是多模态成像的发展趋势。目前IONP肿瘤靶向研究中主要采取的方法是主动靶向结合被动靶向,但响应性靶性可调控范围广,发展潜力大。安全性是载化疗药IONP发展的主要挑战。虽然目前多数研究表明比起传统化疗药,载化疗药IONP对正常组织细胞的杀伤力明显下降,但临床试验目前不具备条件,需要进一步研究。

[1]
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin, 2016, 66(2): 115-132.
[2]
Gong Y, Wang P, Zhu Z, et al. Benefits of surgery after neoadjuvant intraperitoneal and systemic chemotherapy for gastric cancer patients with peritoneal metastasis: A meta-analysis. J Surg Res, 2020, 245: 234-243.
[3]
Li R, Shinde A, Novak J, et al. Temporal trends of resident experience in external beam radiation therapy cases: Analysis of ACGME case logs from 2007 to 2018. Int J Radiat Oncol Biol Phys, 2020, 106(1): 37-42.
[4]
Murray BS, Dyson PJ. Recent progress in the development of organometallics for the treatment of cancer. Curr Opin Chem Biol, 2019, 56: 28-34.
[5]
Tan WP, Longo TA, Inman BA. Heated intravesical chemotherapy: Biology and clinical utility. Urol Clin North Am, 2020, 47(1): 55-72.
[6]
Garcia-Chias B, Figuero E, Castelo-Fernandez B, et al. Prevalence of oral side effects of chemotherapy and its relationship with periodontal risk: a cross sectional study. Support Care Cancer, 2019, 27(9): 3479-3490.
[7]
Kwon YM, Je JY, Cha SH, et al. Synergistic combination of chemophototherapy based on temozolomide/ICGloaded iron oxide nanoparticles for brain cancer treatment. Oncol Rep, 2019, 42(5): 1709-1724.
[8]
Gong T, Dong Z, Fu Y, et al. Hyaluronic acid modified doxorubicin loaded Fe3O4 nanoparticles effectively inhibit breast cancer metastasis. J Mater Chem B, 2019, 7(38): 5861-5872.
[9]
Dumani DS, Cook JR, Kubelick KP, et al. Photomagnetic prussian blue nanocubes: Synthesis, characterization, and biomedical applications. Nanomedicine, 2020, 24: 102138.
[10]
Lu CY, Ji JS, Zhu XL, et al. T2-weighted magnetic resonance imaging of hepatic tumor guided by SPIO-loaded nanostructured lipid carriers and ferritin reporter genes. ACS Appl Mater Interfaces, 2017, 9(41): 35548-35561.
[11]
Zhang BL, Zhang HY. Application of superparamagnetic iron oxide nanoparticles as contrast agents in brain magnetic resonance imaging. Chin J Magn Reson Imaging, 2011, 2(5): 377-383
张宝林,张辉阳.超顺磁性氧化铁纳米粒子在脑磁共振成像中的应用.磁共振成像, 2011, 2(5): 377-383.
[12]
Sanchez-Cabezas S, Montes-Robles R, Gallo J, et al. Combining magnetic hyperthermia and dual T1/T2 MR imaging using highly versatile iron oxide nanoparticles. Dalton Trans, 2019, 48(12): 3883-3892.
[13]
Cai WW, Wang LJ, Li SJ, et al. Effective tracking of bone mesenchymal stem cellsin vivoby magnetic resonance imaging using melanin-based gadolinium3+nanoparticles. J Biomedical Materials Research Part A, 2017, 105(1): 131-137.
[14]
Dong L, Zhang P, Lei P, et al. PEGylated GdF3:Fe nanoparticles as multimodal T1/T2-weighted MRI and X-ray CT imaging contrast agents. ACS Appl Mater Interfaces, 2017, 9(24): 20426-20434.
[15]
Santra S, Kaittanis C, Grimm J, et al. Drug/dye-loaded, multifunctional iron oxide nanoparticles for combined targeted cancer therapy and dual optical/magnetic resonance imaging. Small, 2009, 5(16): 1862-1868.
[16]
Chang JS, Durda K, Kąklewski K, et al. Serum folate concentration and the incidence of lung cancer. PLoS One, 2017, 12(5): e0177441.
[17]
Vinothini K, Rajendran NK, Ramu A, et al. Folate receptor targeted delivery of paclitaxel to breast cancer cells via folic acid conjugated graphene oxide grafted methyl acrylate nanocarrier. Biomed Pharmacother, 2019, 110: 906-917.
[18]
Hijaz M, Das S, Mert I, et al. Folic acid tagged nanoceria as a novel therapeutic agent in ovarian cancer. BMC Cancer, 2016, 16(1): 220.
[19]
Farran B, Montenegro RC, Kasa P, et al. Folate-conjugated nanovehicles: Strategies for cancer therapy. Materials Science and Engineering: C, 2020, 107: 110341.
[20]
Moazzen S, Dolatkhah R, Tabrizi JS, et al. Folic acid intake and folate status and colorectal cancer risk: A systematic review and meta-analysis. Clinical Nutrition, 2018, 37(6): 1926-1934.
[21]
Wang XQ, Tu M, Tian B, et al. Synthesis of tumor-targeted folate conjugated fluorescent magnetic albumin nanoparticles for enhanced intracellular dual-modal imaging into human brain tumor cells. Anal Biochem, 2016, 512: 8-17.
[22]
Hull LC, Farrell D, Grodzinski P. Highlights of recent developments and trends in cancer nanotechnology research—View from NCI alliance for nanotechnology in cancer. Biotechnology Advances, 2014, 32(4): 666-678.
[23]
Dhaliwal A, Zheng G. Improving accessibility of EPR-insensitive tumor phenotypes using EPR-adaptive strategies: Designing a new perspective in nanomedicine delivery. Theranostics, 2019, 9(26): 8091-8108.
[24]
Park J, Choi Y, Chang H, et al. Alliance with EPR effect: Combined strategies to improve the EPR effect in the tumor microenvironment. Theranostics, 2019, 9(26): 8073-8090.
[25]
Ryan TP, Hoopes PJ, Petryk AA, et al. Imaging and modification of the tumor vascular barrier for improvement in magnetic nanoparticle uptake and hyperthermia treatment efficacy. International Society for Optics and Photonics, 2013(2): 858403.
[26]
Ding GB. Development of a multifunctional magnetic nanoscale drug carrier and study on its antitumor efficacy. Changchun: Jilin University, 2012.
丁国斌.多功能磁性纳米药物载体的构建及其抗肿瘤效应研究.长春:吉林大学, 2012.
[27]
Yue Y, Zhanling D, Junchao Q, et al. Casp3/7-instructed intracellular aggregation of Fe3O4 nanoparticles enhances T2 MR imaging of tumor apoptosis. Nano Letters, 2016, 16(4): 2686-2691.
[28]
Xin PY. Study of responsive Fe3O4-ZIF-8 magnetic resonance imaging contrast agent. Shanghai: Shanghai Normal University, 2019.
辛朋燕.响应型Fe3O4-ZIF-8核磁共振造影剂的研究.上海:上海师范大学, 2019.
[29]
Pal A, Albusairi W, Liu F, et al. Hydrophilic small molecules that harness transthyretin to enhance the safety and efficacy of targeted chemotherapeutic agents. Mol Pharm, 2019, 16(7): 3237-3252.
[30]
Liu W, Chen LQ, Xin X, et al. Recent advances in the drug formulations of anti-tumor antibiotics. Acta Pharmaceutica Sinica, 2018, 53(6): 865-877.
刘薇,陈丽青,辛欣,等.抗肿瘤抗生素药物制剂的研究进展.药学学报, 2018, 53(6): 865-877.
[31]
Shen JM, Li XX, Fan LL, et al. Heterogeneous dimer peptide-conjugated polylysine dendrimer-Fe3O4 composite as a novel nanoscale molecular probe for early diagnosis and therapy in hepatocellular carcinoma. Int J Nanomedicine, 2017, 12(12): 1183-1200.
[32]
Rafiee E, Eavani S. pH-responsive controlled release of epirubicin from Fe@Si-PW hybrid nanoparticles. Mater Sci Eng C Mater Biol Appl, 2014, 39: 340-343.
[33]
Cao MZ, Ji YB, Xin GS, et al. Research progress of alkaloids antitumor drugs of natural plants. Asia-Pacific Traditional Medicine, 2015, 11(7): 59-61.
曹明哲,季宇彬,辛国松,等.天然植物中生物碱类抗肿瘤药物研究进展.亚太传统医药, 2015, 11(7): 59-61.
[34]
Sharifi-Rad J, Ozleyen A, Boyunegmez Tumer T, et al. Natural products and synthetic analogs as a source of antitumor drug. Biomolecules, 2019, 9(11): 679.
[35]
An L, Yan C, Mu X, et al. Paclitaxel-induced ultrasmall gallic acid- Fe@BSA self-assembly with enhanced MRI performance and tumor accumulation for cancer theranostics. ACS Appl Mater Interfaces, 2018, 10(34): 28483-28493.
[36]
Liu XK.TEM investigation of antitumor effect on gastric cancer cells treated by Fe3O4-CMC-5FU. Lanzhou: Lanzhou University, 2013.
刘小康. Fe3O4-CMC-5FU纳米载体药物的制备及其对胃癌细胞抗肿瘤作用的电镜研究.兰州:兰州大学, 2013.
[37]
Li YY, Wang XJ. Molecular mechanisms of chemoresistance and cytotoxicity associated with platinum drugs. Chin J Cell Biology, 2013, 35(7): 1008-1017.
李银燕,王秀君.铂类抗癌药物作用靶点及耐药机制的研究进展.中国细胞生物学学报, 2013, 35(7): 1008-1017.
[38]
Cheng C, Meng Y, Zhang Z, et al. Tumoral acidic pH-responsive cis-diaminodichloroplatinum-incorporated Cy5.5-PEG- g-A-HA nanoparticles for targeting delivery of CDDP against cervical cancer. ACS Appl Mater Interfaces, 2018, 10(32): 26882-26892.
[39]
Liu F. Preparation of folate-targeted magnetic nanocomposites loaded with TFPI-2 plasmid and cisplatin and evaluation of its targeting and inhibitory effect on nasopharyngeal carcinoma HNE-1 cells in vitro. Natl Med J China, 2016, 25(96): 2023-2030.

上一篇 心脏磁共振特征追踪技术及其研究进展
下一篇 宫颈癌影像组学研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2