分享:
分享到微信朋友圈
X
临床研究
MRI评估直肠癌新辅助治疗完全缓解的Meta分析
李戟玭 毛蕾 周雪婷 马文莉 谢转红 王祥

Cite this article as: Li JP, Mao L, Zhou XT, et al. Magnetic resonance imaging as a tool to predict pathological complete response of rectal cancer after neoadjuvant chemoradiotherapy: a Meta-analysis. Chin J Magn Reson Imaging, 2020, 11(11): 1010-1018.本文引用格式:李戟玭,毛蕾,周雪婷,等. MRI评估直肠癌新辅助治疗完全缓解的Meta分析.磁共振成像, 2020, 11(11): 1010-1018. DOI:10.12015/issn.1674-8034.2020.11.011.


[摘要] 目的 系统评价MRI诊断直肠癌新辅助治疗后病理完全缓解的价值。材料与方法 计算机检索PubMed、The Cochrane Library、EMbase、中国知网(CNKI)、万方数据库(WanFang Data)和中国生物医学数据库(CBM),搜集MRI评估直肠癌新辅助治疗后疗效的研究,检索时限均从建库至2020年6月。由2名研究者独立筛选文献、提取资料,并使用QUADAS-2评价偏倚风险,采用RevMan 5.3和Stata 12.0软件进行Meta分析,计算合并后的敏感度(sensitivity,Sen)、特异度(specificity,Spe)、阳性似然比(positive likelihood ratio,PLR)、阴性似然比(negative likelihood ratio,NLR)、诊断比值比(diagnostic odds ratio,DOR)等性能指标,绘制森林图、受试者工作特征曲线(summary receiver-operating characteristic curves,SROC曲线)并计算SROC曲线下面积(AUC)。结果 共纳入35个诊断性试验,包含2674例患者。MRI诊断病理完全缓解的Sen合并、Spe合并分别为[0.75,95% CI (0.70,0.80)]、[0.86,95% CI (0.82,0.89)]。亚组分析结果显示:DKI-MRI诊断病理完全缓解的敏感度最高[0.84,95% CI (0.73,0.91)]。T2WI联合DCE诊断病理完全缓解特异度最高[0.96,95% CI (0.89,0.99)],相较于其他序列T2WI联合DWI的DOR、AUC最高,分别为[47.56,95% CI (23.64,95.72)]、[0.94,95% CI (0.92,0.96)]。间接比较结果显示:在不同序列中,T2WI联合DWI诊断病理完全缓解的价值最高。1.5 T和3.0 T磁场强度诊断效能相似。结论 T2WI联合DWI诊断直肠癌新辅助治疗后病理完全缓解的价值最高,而目前不同磁场场强的诊断效能相似,需更多研究证实。
[Abstract] Objective: The aim of this study was to evaluate the predictive effect of MRI on the pathological complete response (pCR) of rectal cancer after neoadjuvant chemoradiotherapy.Materials and Methods: Comprehensive computer-based search was performed (last updated in June 2020), and the eligible studies were selected. Pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio (DOR) and the area under the hierarchical summary receiver-operating characteristic curves (AUC) were calculated to estimate the diagnostic accuracy of MRI. Methodological quality was assessed using the quality assessment of diagnostic accuracy studies (QUADAS-2) tool.Results: Thirty five studies with 2674 patients were included and analyzed. The results showed that pooled sensitivity, specificity of MRI were [0.75, 95% CI (0.70, 0.80)] and [0.86, 95% CI (0.82, 0.89)], respectively. Among the different sequences, diffusional kurtosis imaging had the highest sensitivity with the odds ratio (OR) of 0.84 (95% CI: 0.73, 0.91). T2-weighted imaging with dynamic contrast enhanced had the highest specificity than other sequences [0.96, 95% CI (0.89, 0.99)]. In addition, T2-weighted imaging with diffusion weighted imaging was associated with the highest DOR [47.56, 95% CI (23.64, 95.72)] and AUC [0.94, 95% CI (0.92, 0.96)]. The indirect comparison also showed T2-weighted imaging with diffusion weighted imaging was the best sequence to diagnose pCR. 1.5 T and 3.0 T were similar in sensitivity, specificity and AUC results.Conclusions: T2-weighted imaging with diffusion weighted imaging is superior to other sequences of MRI, and is the optimal choice for the diagnosis of the pCR of rectal cancer. Besides, there is no difference in the prediction effect of different magnetic intensities.
[关键词] 直肠癌;磁共振成像;病理学完全缓解;疗效评估;Meta分析;间接比较;诊断性试验
[Keywords] Rectal neoplasms;magnetic resonance imaging;pathological complete response;treatment evaluation;Meta-analysis;indirect comparison;diagnostic test

李戟玭 兰州大学第二临床医学院,兰州 730000

毛蕾 兰州大学第二临床医学院,兰州 730000

周雪婷 兰州大学第二临床医学院,兰州 730000

马文莉 兰州大学第二临床医学院,兰州 730000

谢转红 兰州大学第二临床医学院,兰州 730000

王祥* 兰州大学第二医院消化科,兰州 730030

通信作者:王祥,E-mail:wangxiang@lzu.edu.cn

利益冲突:无。


收稿日期:2020-05-22
接受日期:2020-09-28
中图分类号:R445.2; R735.37 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2020.11.011
本文引用格式:李戟玭,毛蕾,周雪婷,等. MRI评估直肠癌新辅助治疗完全缓解的Meta分析.磁共振成像, 2020, 11(11): 1010-1018. DOI:10.12015/issn.1674-8034.2020.11.011.

       直肠癌是常见的消化道恶性肿瘤之一,严重影响人类的健康和生活。尽管在近20年内发病率有所下降,但是直肠癌的发病率和死亡率仍然很高[1]。在整体恶性肿瘤中直肠癌的发病率和死亡率分别居全球癌症发病和死亡的第8位和第9位[2]。在国内结直肠癌的发病率和死亡率分别为第2位和第4位[3]。将近有三分之一的结直肠癌位于直肠[4],而直肠癌早期往往临床症状不明显,患者不易察觉,进展期随着肿瘤增大可有排便习惯改变、血便、消瘦、腹泻、便秘等症状。每年全球有超过100 000例被诊断患有直肠癌,70%是局部晚期直肠癌[5]。目前局部晚期直肠癌仍以手术治疗为主,全直肠系膜切除术(total mesorectal excision,TME)为标准外科治疗方法,新辅助放化疗(neoadjuvant chemoradiotherapy,nCRT)联合全直肠系膜切除术是局部晚期直肠癌的标准治疗方法[6,7]。接受新辅助放化疗后,直肠癌患者的病理反应状态与肿瘤局部复发、远端转移密切相关,是影响直肠癌患者治疗后无复发生存时间与总体生存时间的主要因素[8,9]。局部晚期直肠癌患者在接受新辅助放化疗后肿瘤完全消退被定义为病理完全缓解(pathological complete response,pCR)[10]。约有15%~25%直肠癌患者在接受新辅助治疗后可实现病理完全缓解[11],对于新辅助治疗后达到病理完全缓解的直肠癌患者而言,根治性手术可能会导致术后并发症,例如术后感染,泌尿和性功能障碍等,而对生存并无益处[12]。研究表明新辅助治疗后病理完全缓解的直肠癌患者不进行根治性手术而采用严格的随访和观察策略(watch-and-wait)是可行的[10, 13]。因此术前对新辅助治疗后肿瘤反应的准确评估有助于确定进一步治疗方案[11]

       2016年欧洲胃肠道和腹部放射学会(European Society of Gastrointestinal and Abdominal Radiology,ESGAR)推荐将盆腔磁共振成像列为所有直肠癌患者术前分期判断的常规检查手段[14]。盆腔磁共振成像能够清楚的显现直肠壁各层组织及周围脂肪间隙,通过三维重建形成各个断面的整体成像,包括直肠系膜的软组织和筋膜,有利于判定环周切缘,其敏感度为100%,特异度为88%[15,16],并且高场强的磁共振成像能够更快采集图像,并有更高的空间分辨率及信噪比,能够改善直肠壁的可见性[17],进而为治疗方案的选择提供依据。

       为了评价磁共振成像诊断直肠癌新辅助治疗后病理完全缓解的价值,本研究采用Meta分析方法进行系统性评价,同时,采用间接比较的方法分析不同序列以及1.5 T和3.0 T不同磁场强度的MRI诊断病理完全缓解的差异,以期为直肠癌的临床诊断及治疗提供一定依据。

1 材料与方法

1.1 纳入与排除标准

       (1)研究类型:国内外公开发表的关于MRI诊断直肠癌病理完全缓解的诊断性研究。(2)研究对象:明确诊断为非黏液型直肠癌的患者,患者年龄、种族、国别不限。(3)诊断标准:MRI为待评价试验,术后病理为金标准。(4)测量的结局指标:合并的敏感度(sensitivity ,Sen)、特异度(specificity,Spe)、阳性似然比(positive likelihood ratio,PLR)、阴性似然比(negative likelihood ratio,NLR)、诊断比值比(diagnosis odds ratios,DOR)、汇总受试者工作特征曲线(SROC曲线)并计算曲线下面积(AUC)。(5)排除标准:未报告病理完全缓解的研究;参照诊断方法不是金标准;研究数据不完整不能提取数据信息:真阳性(TP)、假阳性(FP)、假阴性(FN)、真阴性(TN) ;研究计划书、社论等文献类型;重复的研究;无法获取全文的研究。

1.2 文献检索策略

       计算机检索PubMed,EMBASE,The Cochrane Library、中国知网(CNKI)、万方(Wanfang Data)和中国生物医学文献数据库(Chinese Biomedicine Literature Database,CBM),搜集MRI诊断直肠癌病理反应的相关文献,检索时间均由建库至2019年4月,更新检索时间至2020年6月。采用自由词检索与主题词检索相结合的方法,所有检索策略均通过多次预检索后确定。英文检索词包括:rectal cancer,Magnetic Resonance Imaging,Sensitivity AND Specificity,中文检索词包括:直肠癌、直肠恶性肿瘤、磁共振成像、敏感度和特异度。同时对纳入文章的参考文献进行手动检索。

1.3 文献筛选和资料提取

       由2名研究者根据纳入及排除标准独立筛选文献、提取资料并交叉核对,如遇分歧,则讨论解决或交由第三名研究者协助判断。对于缺乏资料的文献,尽量与原作者取得联系予以补充。采用Office Excel 2016设计资料提取表。资料提取的主要内容包括:(1)一般信息:第一作者、国家、发表年份、研究类型;(2)纳入研究的信息:研究对象的年龄、数量、性别比例、MRI的特征以及金标准的特征;(3)诊断试验的数据信息:真阳性(TP)、假阳性(FP)、假阴性(FN)、真阴性(TN)。

1.4 纳入研究的偏倚风险评价

       由2名研究者采用The Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2)工具评价纳入研究的偏倚风险[18],并交叉核对,意见不一致时通过讨论解决,讨论未果则由第三名研究人员协助判断。主要评价内容包括4个领域:病例的选择,待评价试验,金标准,病例流程和进展情况。所有组成部分在偏倚风险方面都会被评估,前3部分也会在临床适用性方面被评估。每一条标准以"是"(低度偏倚或适用性好)、"否"(高度偏倚或适用性差)和"不清楚"(缺乏相关信息或偏倚情况不确定)评价。

1.5 统计分析

       各研究结果间的异质性采用χ2检验进行分析(检验水准为α=0.05),并结合I2定量判断异质性的大小。若各研究结果间存在统计学异质性,在排除明显的临床异质性后,采用随机效应模型进行Meta分析;若各研究结果间无明显统计学异质性,则采用固定效应模型进行Meta分析。在排除阈值效应引起的异质性后按照可能产生异质性的因素进行亚组或者Meta回归分析。采用RevMan 5.3和Stata 12.0软件计算其合并的Sen、Spe、PLR、NLR、DOR,并绘制SROC曲线,计算AUC。根据AUC值的大小评价诊断性试验的价值,AUC为0.7~0.9时表示诊断准确性中等,AUC> 0.9时表示诊断准确性较高。以样本含量与效应量DOR作Deek's漏斗图(Deek's funnel plot asymmetry test)检测是否存在发表偏倚。

2 结果

2.1 文献筛选流程及结果

       初检共获得相关文献3962篇,导入Endnote X8软件筛除886篇重复文献,通过阅读剩余3076篇文献的题目和摘要后获得可能相关文献56篇,进一步阅读全文最终纳入35个诊断试验[5, 19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52]。文献筛选流程及结果见图1

图1  文献筛选流程图
Fig. 1  Flow diagram of the literature selection for the meta-analysis.

2.2 纳入文献的基本特征和偏倚风险评价结果

       纳入研究的基本特征见表1。偏倚风险评价结果见表2

表1  纳入研究的基本特征
Tab. 1  Some characteristics of included studies
表2  纳入研究的偏倚风险评价结果
Tab. 2  The methodological quality of each included study

2.3 Meta分析结果

2.3.1 合并效应量

       随机效应模型Meta分析结果显示Sen合并、Spe合并、PLR合并、NLR合并、和DOR分别为[0.75,95% CI (0.70,0.80)],[0.86,95% CI (0.82,0.89)],[5.21,95% CI (4.20,6.45)],[0.29,95% CI (0.24,0.35)],[17.84,95% CI (13.31,23.92)]。

2.3.2 亚组分析

       根据MRI序列不同,分为T2WI、DWI、DCE、DKI、T2WI+DWI,T2WI+DCE。不同序列的亚组分析结果见表3。结果显示:DKI序列的敏感度最高[0.84,95% CI (0.73,0.91)],T2WI+DCE的特异度最高[0.96,95% CI (0.89,0.99)]。不同序列的AUC分别为:T2WI [0.85,95% CI (0.82,0.88)],DWI [0.81,95% CI (0.77,0.84)],DCE [0.80,95% CI (0.76,0.83)],DKI [0.84,95% CI (0.80,0.87)],T2WI+DWI [0.94,95% CI (0.92 ,0.96)]。

       根据MRI不同磁场强度,分为1.5 T和3.0 T,亚组分析结果显示(表3):1.5 T组的Sen合并、Spe合并、DOR合并分别为[0.71,95% CI (0.61,0.79)]、[0.87,95% CI (0.82,0.91)]、[16.62,95% CI (10.74,25.72)],3.0 T组的Sen合并、Spe合并、DOR合并分别为[0.77,95% CI(0.71,0.82)]、[0.84,95% CI (0.79,0.88)]、[18.31,95% CI (12.42,27.01)]。两组的AUC相同[0.88,95% CI (0.84 ,0.90)]。

表3  不同序列及场强的亚组分析结果
Tab. 3  Sensitivity, specificity, PLR, NLR and DOR of different sequences or intensities

2.3.3 不同MRI序列及磁场强度的间接比较

       不同MRI序列及磁场强度的敏感度、特异度及AUC间接比较结果见图2。通过间接比较可以得出:(1) T2WI与其他序列进行间接比较,T2WI诊断pCR的敏感度较其他序列低(P>0.05),特异度较DWI和DKI高,但是较DCE、T2WI+DWI、T2WI+DCE低(P>0.05)。T2WI诊断pCR的AUC值低于T2WI联合DWI (P>0.05)。(2) DWI与其他序列进行间接比较,DWI诊断pCR的敏感度高于T2WI+DCE,低于其他序列(P>0.05)。但是,DWI的特异度高于DKI低于其他序列(P>0.05),DOR均低于其他序列(P >0.05)。(3) DCE与DKI、T2WI+DWI、T2WI+DCE进行间接比较,DCE诊断pCR的敏感度低于DKI,但是高于其余两组(P>0.05)。然而,DCE的特异度高于DKI,但是低于其余两组(P>0.05),AUC低于DKI和T2WI+DWI。(4) DKI与T2WI+DWI、T2WI+DCE进行间接比较,DKI的敏感度高于其余两组(P>0.05),但是其特异度及ACU值均低于其余序列(P>0.05)。(5) T2WI+DWI与T2WI+DCE进行间接比较,前者的敏感度高于后者,而两者诊断pCR的特异度相等(P>0.05)。(6) 1.5 T与3.0 T磁场强度之间的间接比较,前者的敏感度低于后者(P>0.05),但是前者特异度较高(P=0.05),而两种磁场强度的AUC值相等。不同MRI序列及磁场强度的PLR、NLR及DOR的间接比较结果见图3。通过绘制不同MRI序列及磁场强度的HSROC曲线可见图4,不同序列中T2WI+DWI诊断准确性高于其他序列,而1.5 T与3.0 T的诊断价值相当。

图2  不同序列及磁场强度敏感度(A)、特异度(B)及AUC (C)的间接比较结果
Fig. 2  The indirect comparison of different sequences and intensities about sensitivity (A), specificity (B) and AUC (C).
图3  不同序列及磁场强度阳性似然比(A)、阴性似然比(B)及诊断比值比(C)的间接比较结果
Fig. 3  The indirect comparison of different sequences and intensities about positive likelihood ratio (A), negative likelihood ratio (B), diagnostic odds ratio (C).
图4  不同序列(A)和磁场强度(B) MRI诊断直肠癌新辅助治疗后的病理完全缓解的HSROC曲线
图5  MRI诊断直肠癌新辅助治疗后病理完全缓解的发表偏倚评价结果
Fig. 4  Summary hierarchical summary receiver operating characteristic for different MRI sequences (A) and magnetic intensities (B).
Fig. 5  Publication bias of MRI using Deek's test funnel plot.

2.4 发表偏倚

       对纳入研究进行Deek's检验,结果如图5所示,散点分布于回归线两侧,倾斜系数P=0.122,提示发表偏倚存在的可能性较小。

3 讨论

3.1 研究结果分析

       早期预测直肠癌新辅助治疗后的疗效反应,有助于临床医生进行个体化治疗,避免过度治疗,降低复发及转移率的同时保留器官功能。完全病理反应为直肠癌患者新辅助治疗后经病理证实手术切缘无残存的肿瘤细胞[53]。本研究评价了不同类型和强度磁共振成像诊断直肠癌新辅助治疗后病理完全缓解的准确性,Meta分析结果显示MRI诊断完全病理反应的Sen合并及Spe合并分别为[0.75,95% CI (0.70,0.80)]和[0.86,95% CI (0.82,0.89)]。相比于之前研究,Wu等[54]研究显示磁共振成像诊断完全病理反应的敏感度及特异度分别为[0.78,95% CI (0.65,0.87)]、[0.81,95% CI (0.72,0.87)],而de Jong等[55]研究显示磁共振成像诊断完全病理反应的敏感度高于特异度,分别为[0.95,95% CI(0.87,0.98)]、[0.31,95% CI (0.14,0.56)],与de Jong等[55]研究结果不同的原因可能是研究对象存在差异,相比于de Jong等[55]的研究,本研究纳入的直肠癌患者人数较多(2674例与790例),约为de Jong等[55]的研究3.38倍(2674例与790例)。

3.2 不同MRI序列评估疗效的特点

       本研究对不同序列及磁场强度进行亚组分析和间接比较,结果显示T2WI联合DWI诊断完全病理反应的价值最高,优于单独使用T2WI或DWI。与Wu等[54]研究结果相同,Wu等研究显示T2WI联合DWI诊断晚期直肠癌新辅助治疗后病理反应的能力优于单独使用T2WI。DWI为功能磁共振成像,除了显示肿瘤的形态学特征,也能显现肿瘤的生物学特性。DWI以水分子在细胞内外的自由扩散为基础,水分子在生物组织中的扩散率取决于许多因素,包括温度、组织细胞密度、细胞外组织情况、细胞膜的完整性和液体的黏度[56]。表面扩散系数(apparent diffusion coefficient,ADC)是评估水分子在组织内扩散的定量参数,与组织细胞密度呈负相关[57]。肿瘤细胞限制水分子的扩散,随着肿瘤生长,肿瘤细胞密度增大,并且细胞外组织的结构被破坏,导致ADC值下降[58]。放化疗会使肿瘤细胞坏死,并伴有不同程度的纤维化、水肿和炎症,从而ADC值增加[59]。结合DWI-MRI非侵入性检测活体组织内水分子运动的特征,联合使用T2WI及DWI有助于提高诊断价值,更准确地识别新辅助治疗后完全缓解。

       不同序列亚组分析结果显示,DKI-MRI预测病理学完全缓解的敏感度最高。2005年,Jensen等[60]首次提出DKI模型,其初始目的是为定量弥散偏离高斯分布的程度。传统的DWI模型基于水分子高斯分布,而真实的生物组织中水分子弥散为非高斯分布,水分子的弥散受周围环境的限制程度越大,弥散的非高斯性越显著[61]。吴清武等[62]研究表明DKI是预测直肠癌新辅助治疗早期疗效的有效手段。并且在肿瘤检出和分级方面,DKI的诊断效能优于DWI[63,64,65]。不同序列中,T2WI联合DCE的特异度最高,DCE可对组织的血流灌注及微血管渗透状态进行定性与定量分析。容积转移常数(volume transfer constant,Ktrans)是对比剂自血管内扩散至血管外的速率常数,较高的治疗前Ktrans值及较低的治疗后Ktrans值提示新辅助治疗效果较好,这可能由于较高的Ktrans值提示肿瘤组织内血管密度大,渗透性高,而较低的Ktrans值提示治疗后肿瘤组织内血管密度减低,肿瘤组织纤维化[66]

       随着检查技术的不断更新,近年来关于影像组学预测新辅助治疗后肿瘤反应的临床研究逐渐增多,因为影像组学能从MR图像中提取海量的影像定量特征,挖掘大量肉眼不能识别的信息,从而得到全面的肿瘤表征信息,达到精准医疗的目的[66,67]。在精准医学的临床实践中,基于MRI的影像组学预测直肠癌新辅助治疗后肿瘤反应的临床应用前景十分广阔。

3.3 不同MRI场强评估疗效的特点

       本研究对不同磁场强度进行亚组分析显示,1.5 T强度诊断病理学完全缓解的特异度高于3.0 T,但其敏感度低于3.0 T,然而计算不同场强的AUC值,结果显示两者相同。Wu等[54]也比较了不同磁场强度的诊断效能,发现3.0 T的敏感度高于1.5 T,特异度低于1.5 T,研究结果与本研究相同。因此,不同磁场强度可能会影响磁共振成像预测新辅助治疗后反应。但是目前关于不同场强诊断肿瘤新辅助治疗后疗效的研究数量较少,有待更多高质量研究进一步明确。

3.4 异质性分析及局限性

       本研究系统检索了常用英文及中文数据库,使用Meta分析及间接比较的方法评价了磁共振成像诊断直肠癌新辅助治疗后病理学完全缓解的价值,但本文存在以下局限性:(1)纳入研究的异质性显著,可能原因为原始研究对于病理学完全缓解的定义存在差异,大部分纳入研究定义病理学完全缓解为原发病灶处无残存肿瘤细胞,而部分研究则涉及转移淋巴结肿瘤细胞消失。并且使用不同成像技术亦会影响再分期的效果,此外大多数研究并未对试验进行样本量估计。(2)大多数研究未报告诊断试验检测至金标准检测的间隔时间。部分研究报告了新辅助治疗结束至再评估的间隔时间。(3)黏液腺癌是直肠腺癌中较为特殊的一类,肿瘤内部含有黏液湖或黏液成分。黏液成分在T2WI图像上表现为略高于或明显高于肿瘤组织的信号,并且在新辅助治疗前后无明显变化,这一特点可能影响对肿瘤治疗反应的评估,因此本文纳入非黏液腺癌的直肠癌患者。

       综上所述,磁共振成像在评估直肠癌新辅助治疗疗效具有较高的价值,并且通过亚组分析及间接比较得出,T2WI联合DWI的诊断效能最高,而不同磁场强度的诊断价值无差异,但需更多高质量研究进一步明确。

[1]
Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA Cancer J Clin, 2017, 67(1): 730. DOI: 10.3322/caac.21387
[2]
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018, 68(6): 394-424. DOI: 10.3322/caac.21492
[3]
Wang N, Liu S, Yang L, et al. Interpretation on the report of Global Cancer Statistics 2018. Zhong Liu Zong He Zhi Liao Dian Zi Za Zhi, 2019, 5(1): 87-97.
王宁,刘硕,杨雷,等. 2018全球癌症统计报告解读.肿瘤综合治疗电子杂志, 2019, 5(1): 87-97.
[4]
Siegel RL, Miller KD, Fedewa SA, et al. Colorectal Cancer Statistics, 2017. CA Cancer J Clin, 2017, 67(3): 177-193. DOI: 10.3322/caac.21395
[5]
Liu Z, Zhang XY, Shi YJ, et al. Radiomics analysis for evaluation of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Clin Cancer Res, 2017, 23(23): 7253-7262. DOI: 10.1158/1078-0432.CCR-17-1038
[6]
van de Velde CJ, Boelens PG, Borras JM, et al. Eurecca colorectal: multidisciplinary management: European consensus conference colon & rectum. Eur J Cancer, 2014, 50(1): 1e1-1e34. DOI: 10.1016/j.ejca.2013.06.048
[7]
Kim MB, Hong TS, Wo JY. Treatment of stage Ii-Iii rectal cancer patients. Curr Oncol Rep, 2014, 16(1): 362. DOI: 10.1007/s11912-013-0362-0
[8]
Cortazar P, Zhang L, Untch M, et al. Pathological complete response and long-term clinical benefit in breast cancer: the ctneobc pooled analysis. Lancet, 2014, 384(9938): 164-172. DOI: 10.1016/S0140-6736(13)62422-8
[9]
Maas M, Nelemans PJ, Valentini V, et al. Long-term outcome in patients with a pathological complete response after chemoradiation for rectal cancer: a pooled analysis of individual patient data. Lancet Oncol, 2010,11(9): 835-844. DOI: 10.1016/S1470-2045(10)70172-8
[10]
Sao Juliao GP, Habr-Gama A, Vailati BB, et al. New strategies in rectal cancer. Surg Clin North Am, 2017, 97(3): 587-604. DOI: 10.1016/j.suc.2017.01.008
[11]
O'Neill BD, Brown G, Heald RJ, et al. Non-operative treatment after neoadjuvant chemoradiotherapy for rectal cancer. Lancet Oncol, 2007, 8(7): 625-633. DOI: 10.1016/S1470-2045(07)70202-4
[12]
Liu S, Zhong GX, Zhou WX, et al. Can endorectal ultrasound, MRI, and mucosa integrity accurately predict the complete response for mid-low rectal cancer after preoperative chemoradiation? A prospective observational study from a single medical center. Dis Colon Rectum, 2018, 61(8): 903-910. DOI: 10.1097/DCR.0000000000001135
[13]
Maas M, Beets-Tan RG, Lambregts DM, et al. Wait-and-see policy for clinical complete responders after chemoradiation for rectal cancer. J Clin Oncol, 2011, 29(35):4 633-4640. DOI: 10.1200/JCO.2011.37.7176.
[14]
Beets-Tan RG, Lambregts DM, Maas M, et al. Magnetic resonance imaging for clinical management of rectal cancer: updated recommendations from the 2016 European society of gastrointestinal and abdominal radiology (ESGAR) consensus meeting. Eur Radiol, 2018, 28(4): 1465-1475. DOI: 10.1007/s00330-017-5026-2
[15]
Beets-Tan RG, Lambregts DM, Maas M, et al. Magnetic resonance imaging for the clinical management of rectal cancer patients: recommendations from the 2012 European society of gastrointestinal and abdominal radiology (Esgar) consensus meeting. Eur Radiol, 2013, 23(9): 2522-2531. DOI: 10.1007/s00330-013-2864-4
[16]
KSAR Study Group for Rectal Cancer. Essential items for structured reporting of rectal cancer MRI: 2016 consensus recommendation from the Korean society of abdominal radiology. Korean J Radiol, 2017, 18(1): 132-151. DOI: 10.3348/kjr.2017.18.1.132
[17]
Jhaveri KS, Hosseini-Nik H. MRI of rectal cancer: an overview and update on recent advances. AJR Am J Roentgenol, 2015, 205(1): W42-55. DOI: 10.2214/AJR.14.14201
[18]
Whiting PF, Rutjes AW, Westwood ME, et al. Quadas-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med, 2011, 155(8): 529-536. DOI: 10.7326/0003-4819-155-8-201110180-00009
[19]
Bassaneze T, Goncalves JE, Faria JF, et al. Quantitative aspects of diffusion-weighted magnetic resonance imaging in rectal cancer response to neoadjuvant therapy. Radiol Oncol, 2017, 51(3): 270-276. DOI: 10.1515/raon-2017-0025
[20]
Blazic IM, Lilic GB, Gajic MM. Quantitative assessment of rectal cancer response to neoadjuvant combined chemotherapy and radiation therapy: comparison of three methods of positioning region of interest for ADC measurements at diffusion-weighted MR imaging. Radiology, 2017, 282(2): 418-428. DOI: 10.1148/radiol.2016151908
[21]
Xu Q, Xu Y, Sun H, et al. Quantitative intravoxel incoherent motion parameters derived from whole-tumor volume for assessing pathological complete response to neoadjuvant chemotherapy in locally advanced rectal cancer. J Magn Reson Imaging, 2018, 48(1): 248-258. DOI: 10.1002/jmri.25931
[22]
Curvo-Semedo L, Lambregts DM, Maas M, et al. Rectal cancer: assessment of complete response to preoperative combined radiation therapy with chemotherapy--conventional MR volumetry versus diffusion-weighted MR imaging. Radiology, 2011, 260(3): 734-743. DOI: 10.1148/radiol.11102467
[23]
Kluza E, Rozeboom ED, Maas M, et al. T2 weighted signal intensity evolution may predict pathological complete response after treatment for rectal cancer. Eur Radiol, 2013, 23(1): 253-261. DOI: 10.1007/s00330-012-2578-z
[24]
Hu F, Tang W, Sun Y, et al. The value of diffusion kurtosis imaging in assessing pathological complete response to neoadjuvant chemoradiation therapy in rectal cancer: a comparison with conventional diffusion-weighted imaging. Oncotarget, 2017, 8(43): 75597-75606. DOI: 10.18632/oncotarget.17491
[25]
Lambrecht M, Vandecaveye V, De Keyzer F, et al. Value of diffusion-weighted magnetic resonance imaging for prediction and early assessment of response to neoadjuvant radiochemotherapy in rectal cancer: preliminary results. Int J Radiat Oncol Biol Phys, 2012, 82(2): 863-870. DOI: 10.1016/j.ijrobp.2010.12.063
[26]
Hu FX, Tong T, Peng WJ, et al. Diffusion kurtosis imaging: assessment of pathological complete response to neoadjuvant chemoradiation therapy in rectal cancer. Oncoradiology, 2017,26(1):49-57.
胡飞翔,童彤,彭卫军.弥散峰度成像评价及预测直肠癌新辅助放化疗后病理完全缓解的价值.肿瘤影像学, 2017, 26(01): 49-57.
[27]
Chen YG, Chen MQ, Guo YY, et al. Apparent diffusion coefficient predicts pathology complete response of rectal cancer treated with neoadjuvant chemoradiotherapy. PLoS One, 2016, 11(4): e0153944. DOI: 10.1371/journal.pone.0153944
[28]
Zhu HB, Zhang XY, Zhou XH, et al. Assessment of pathological complete response to preoperative chemoradiotherapy by means of multiple mathematical models of diffusion-weighted MRI in locally advanced rectal cancer: a prospective single-center study. J Magn Reson Imaging, 2017,46(1):175-183. DOI: 10.1002/jmri.25567
[29]
Sathyakumar K, Chandramohan A, Masih D, et al. Best MRI predictors of complete response to neoadjuvant chemoradiation in locally advanced rectal cancer. Br J Radiol, 2016, 89(1060): 20150328. DOI: 10.1259/bjr.20150328
[30]
Intven M, Monninkhof EM, Reerink O, et al. Combined T2W volumetry, DW-MRI and DCE-MRI for response assessment after neo-adjuvant chemoradiation in locally advanced rectal cancer. Acta Oncol, 2015, 54(10): 1729-1736. DOI: 10.3109/0284186X.2015.1037010
[31]
Lambregts DM, Vandecaveye V, Barbaro B, et al. Diffusion-weighted mri for selection of complete responders after chemoradiation for locally advanced rectal cancer: a multicenter study. Ann Surg Oncol, 2011, 18(8): 2224-2231. DOI: 10.1245/s10434-011-1607-5
[32]
Intven M, Reerink O, Philippens ME. Diffusion-weighted mri in locally advanced rectal cancer: pathological response prediction after neoadjuvant radiochemotherapy. Strahlenther Onkol, 2013, 189(2): 117-122. DOI: 10.1007/s00066-012-0270-5
[33]
Intven M, Reerink O, Philippens ME. Dynamic contrast enhanced MR imaging for rectal cancer response assessment after neo-adjuvant chemoradiation. J Magn Reson Imaging, 2015, 41(6): 1646-1653. DOI: 10.1002/jmri.24718
[34]
Ha HI, Kim AY, Yu CS, et al. Locally advanced rectal cancer: diffusion-weighted MR tumour volumetry and the apparent diffusion coefficient for evaluating complete remission after preoperative chemoradiation therapy. Eur Radiol, 2013, 23(12): 3345-3353. DOI: 10.1007/s00330-013-2936-5
[35]
Sassen S, de Booij M, Sosef M, et al. Locally advanced rectal cancer: is diffusion weighted MRI helpful for the identification of complete responders (Ypt0n0) after neoadjuvant chemoradiation therapy? Eur Radiol, 2013, 23(12): 3440-3449. DOI: 10.1007/s00330-013-2956-1
[36]
Cho SH, Kim GC, Jang YJ, et al. Locally advanced rectal cancer: post-chemoradiotherapy ADC histogram analysis for predicting a complete response. Acta Radiol, 2015, 56(9): 1042-1050. DOI: 10.1177/0284185114550193
[37]
Hu FX, Zhang H, Tang W, et al. Value of apparent diffusion coefficient calculated using conventional diffusion-weighted imaging in assessing the response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Chin General Pract, 2018, 21(6): 658-664
胡飞翔,张换,汤伟,等.常规弥散加权成像表观弥散系数在局部进展期直肠癌新辅助放化疗疗效评价中的应用价值.中国全科医学, 2018, 21(06): 658-664.
[38]
Cao WT, Zhou ZY, Deng YH, et al. Clinical value of MR diffusion weighted imaging in prediction of pathological complete response of rectal cancer after neoadjuvant therapy. Chin J Gastrointest Surg, 2013, 16(12): 1164-1168. DOI: 10.3760/cma.j.issn.1671-0274.2013.12.010
曹务腾,周智洋,邓艳红,等.磁共振扩散加权成像对直肠癌新辅助治疗后病理完全缓解的预测价值.中华胃肠外科杂志, 2013, 16(12): 1164-1168. DOI: 10.3760/cma.j.issn.1671-0274.2013.12.010
[39]
Foti PV, Privitera G, Piana S, et al. Locally advanced rectal cancer: qualitative and quantitative evaluation of diffusion-weighted mr imaging in the response assessment after neoadjuvant chemo-radiotherapy. Eur J Radiol Open, 2016, 3: 145-152. DOI: 10.1016/j.ejro.2016.06.003
[40]
Rengo M, Picchia S, Marzi S, et al. Magnetic resonance tumor regression grade (Mr-Trg) to assess pathological complete response following neoadjuvant radiochemotherapy in locally advanced rectal cancer. Oncotarget, 2017, 8(70): 114746-114755. DOI: 10.18632/oncotarget.21778
[41]
Zhang C, Ye F, Liu Y, et al. Morphologic predictors of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Oncotarget, 2018,9(4): 4862-4874. DOI: 10.18632/oncotarget.23419
[42]
Lambregts DM, Rao SX, Sassen S, et al. MRI and diffusion-weighted MRI volumetry for identification of complete tumor responders after preoperative chemoradiotherapy in patients with rectal cancer: a bi-institutional validation study. Ann Surg, 2015, 262(6): 1034-1039. DOI: 10.1097/SLA.0000000000000909
[43]
Petrillo M, Fusco R, Catalano O, et al. MRI for assessing response to neoadjuvant therapy in locally advanced rectal cancer using DCE-MR and DW-MR data sets: a preliminary report. Biomed Res Int, 2015, 2015: 514740. DOI: 10.1155/2015/514740
[44]
De Cecco CN, Ciolina M, Caruso D, et al. Performance of diffusion-weighted imaging, perfusion imaging, and texture analysis in predicting tumoral response to neoadjuvant chemoradiotherapy in rectal cancer patients studied with 3T MR: initial experience. Abdom Radiol (NY), 2016, 41(9): 1728-1735. DOI: 10.1007/s00261-016-0733-8
[45]
Delli Pizzi A, Cianci R, Genovesi D, et al. Performance of diffusion-weighted magnetic resonance imaging at 3.0T for early assessment of tumor response in locally advanced rectal cancer treated with preoperative chemoradiation therapy. Abdom Radiol (NY), 2018, 43(9): 2221-2230. DOI: 10.1007/s00261-018-1457-8
[46]
Tong T, Sun YQ, Cai SJ, et al. Value of dynamic contrast-enhanced MRI in predicting response to neoadjuvant chemoradiation in locally advanced rectal cancer. Chin J Radiol, 2015, 49(6): 414-418. DOI: 10.3760/cma.j.issn.1005-1201.2015.06.005
童彤,孙轶群,蔡三军,等.动态对比增强MRI预测局部进展期直肠癌新辅助放化疗疗效的价值.中华放射学杂志, 2015, 49(06): 414-418. DOI: 10.3760/cma.j.issn.1005-1201.2015.06.005
[47]
Zhang XY, Li XT, Shi YJ, et al. High resolution MR T2WI combined with DWI in evaluation of pathological complete response after neoadjuvant therapy in rectal cancer. Chin J Interv Imaging Ther, 2017, 14(3): 164-168. DOI: CNKI:SUN:JRYX.0.2017-03-014
张晓燕,李晓婷,史燕杰,等.高分辨率MR T2WI联合DWI评价直肠癌新辅助治疗后病理学完全缓解.中国介入影像与治疗学, 2017, 14(3): 164-168. DOI: CNKI:SUN:JRYX.0.2017-03-014
[48]
Ciolina M, Caruso D, De Santis D, et al. Dynamic contrast-enhanced magnetic resonance imaging in locally advanced rectal cancer: role of perfusion parameters in the assessment of response to treatment. Radiol Med, 2019, 124(5): 331-338. DOI: 10.1007/s11547-018-0978-0
[49]
Ferrari R, Mancini-Terracciano C, Voena C, et al. MR-based artificial intelligence model to assess response to therapy in locally advanced rectal cancer. Eur J Radiol, 2019, 118: 1-9. DOI: 10.1016/j.ejrad.2019.06.013
[50]
Liang CY, Chen MD, Zhao XX, et al. Multiple mathematical models of diffusion-weighted magnetic resonance imaging combined with prognostic factors for assessing the response to neoadjuvant chemotherapy and radiation therapy in locally advanced rectal cancer. Eur J Radiol, 2019, 110: 249-255. DOI: 10.1016/j.ejrad.2018.12.005
[51]
Cui Y, Yang X, Shi Z, et al. Radiomics analysis of multiparametric MRI for prediction of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Eur Radiol, 2019, 29(3): 1211-1220. DOI: 10.1007/s00330-018-5683-9
[52]
Wan LJ, Zhang CD, Zhang HM, et al. The value of MR T2WI signal intensity related parameters for predicting pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Zhonghua Zhong Liu Za Zhi, 2019, 41(11): 837-838. DOI: 10.3760/cma.j.issn.0253-3766.2019.11.007
万丽娟,张翀达,张红梅,等.磁共振T2WI肿瘤相关信号指标预测局部进展期直肠癌新辅助放化疗后病理完全缓解的价值.中华肿瘤杂志, 2019, 41(11): 837-843. DOI: 10.3760/cma.j.issn.0253-3766.2019.11.007
[53]
Hope TA, Gollub MJ, Arya S, et al. Rectal cancer lexicon: consensus statement from the society of abdominal radiology rectal & anal cancer disease-focused panel. Abdom Radiol (NY), 2019, 44(11): 3508-3517. DOI: 10.1007/s00261-019-02170-5
[54]
Wu LM, Zhu J, Hu J, et al. Is There a benefit in using magnetic resonance imaging in the prediction of preoperative neoadjuvant therapy response in locally advanced rectal cancer?. Int J Colorectal Dis, 2013, 28(9): 1225-1238. DOI: 10.1007/s00384-013-1676-y
[55]
de Jong EA, ten Berge JC, Dwarkasing RS, et al. The accuracy of MRI, endorectal ultrasonography, and computed tomography in predicting the response of locally advanced rectal cancer after preoperative therapy: a metaanalysis. Surgery, 2016, 159(3): 688-699. DOI: 10.1016/j.surg.2015.10.019
[56]
Barral M, Eveno C, Hoeffel C, et al. Diffusion-weighted magnetic resonance imaging in colorectal cancer. J Visc Surg, 2016, 153(5): 361-369. DOI: 10.1016/j.jviscsurg.2016.08.004
[57]
Metcalfe P, Liney GP, Holloway L, et al. The potential for an enhanced role for MRI in radiation-therapy treatment planning. Technol Cancer Res Treat, 2013, 12(5): 429-446. DOI: 10.7785/tcrt.2012.500342
[58]
Pham TT, Liney GP, Wong K, et al. Functional mri for quantitative treatment response prediction in locally advanced rectal cancer. Br J Radiol, 2017, 90(1072): 20151078. DOI: 10.1259/bjr.20151078
[59]
Curvo-Semedo L, Lambregts DM, Maas M, et al. Diffusion-weighted mri in rectal cancer: apparent diffusion coefficient as a potential noninvasive marker of tumor aggressiveness. J Magn Reson Imaging, 2012, 35(6): 1365-1371. DOI: 10.1002/jmri.23589
[60]
Jensen JH, Helpern JA, Ramani A, et al. Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med, 2005, 53(6): 1432-1440. DOI: 10.1002/mrm.20508
[61]
Yu J, Xu Q, Song JC, et al. The value of diffusion kurtosis magnetic resonance imaging for assessing treatment response of neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Eur Radiol, 2017, 27(5): 1848-1857. DOI: 10.1007/s00330-016-4529-6
[62]
Wu QW, Yue JY, Chen J, et al. DKI in predicting early curative effect of neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer. Chin J CT MRI, 2019, 17(3): 116-119. DOI: CNKI:SUN:CTMR.0.2019-03-035
吴清武,岳军艳,陈杰,等.扩散峰度成像(DKI)在局部晚期直肠癌患者新辅助放化疗早期疗效预测的临床研究.中国CT和MRI杂志, 2019, 17(3): 116-119. DOI: CNKI:SUN:CTMR.0.2019-03-035
[63]
Sun K, Chen X, Chai W, et al. Breast cancer: diffusion kurtosis MR imaging-diagnostic accuracy and correlation with clinical-pathologic factors. Radiology, 2015, 277(1): 46-55. DOI: 10.1148/radiol.15141625
[64]
Suo S, Chen X, Wu L, et al. Non-gaussian water diffusion kurtosis imaging of prostate cancer. Magn Reson Imaging, 2014, 32(5): 421-427. DOI: 10.1016/j.mri.2014.01.015
[65]
Nogueira L, Brandao S, Matos E, et al. Application of the diffusion kurtosis model for the study of breast lesions. Eur Radiol, 2014, 24(6): 1197-1203. DOI: 10.1007/s00330-014-3146-5
[66]
Wan LJ, Zhang HM. Quantitative assessment of MRI for treatment response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: a review. Chin J Magn Reson Imaging, 2019, 10(8): 625-628. DOI: 10.12015/issn.1674-8034.2019.08.014
万丽娟,张红梅.磁共振定量分析在直肠癌新辅助放化疗疗效评估中的研究进展.磁共振成像, 2019, 10(8): 625-628. DOI: 10.12015/issn.1674-8034.2019.08.014
[67]
Liu SY, Wen L, Hou J, et al. Texture features derived from intravoxel incoherent motion diffusion-weighted imaging for predicting the pathological response to chemoradiotherapy in rectal cancer. Chin J Magn Reson Imaging, 2018, 9(7): 518-524. DOI: 10.12015/issn.1674-8034.2018.07.007
刘思野,文露,侯静,等.治疗前IVIM-DWI参数图纹理特征对直肠癌新辅助放化疗病理反应的预测价值.磁共振成像, 2018, 9(7): 518-524. DOI: 10.12015/issn.1674-8034.2018.07.007

上一篇 直肠癌术前MRI特征与KRAS状态的相关性研究
下一篇 高强度聚焦超声治疗子宫肌瘤疗效的影响因素研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2