分享:
分享到微信朋友圈
X
临床研究
无形态学改变的儿童颞叶癫痫3.0 T磁共振2D-CSI 1H-MRS应用
朱凯 曾立红 赵香莲 张晓凡 王志伟 刘鑫春 郝明珠

Cite this article as: Zhu K, Zeng LH, Zhao XL, et al. Application of 3.0 T MRI 2D-CSI 1H-MRS in children with temporal lobe epilepsy without morphological changes. Chin J Magn Reson Imaging, 2020, 11(12): 1097-1103.本文引用格式:朱凯,曾立红,赵香莲,等.无形态学改变的儿童颞叶癫痫3.0 T磁共振2D-CSI 1H-MRS应用.磁共振成像, 2020, 11(12): 1097-1103. DOI:10.12015/issn.1674-8034.2020.12.004.


[摘要] 目的 探讨二维化学位移磁共振多体素氢谱(two-dimensional chemical shift magnetic resonance imaging of hydrogen proton spectroscopy,2D-CSI 1H-MRS)在无形态学改变儿童颞叶癫痫(temporal lobe epilepsy,TLE)患儿海马微观变化的价值。材料与方法 回顾性分析36例患儿和20例健康对照组颞叶海马的波谱数据,分别观察性别、年龄与分布之间的关系;分析观察组单侧、双侧与对照组及观察组单侧的患侧与健侧海马磁共振波谱(MR spectroscopy,MRS)各代谢物信息比较。结果 36例患儿中,男性及发生左侧颞叶的患儿多,但性别及发病部位分布比较差异无明显统计学意义(χ2=1.67,P>0.05);观察组双侧男性发病年龄较女性小(F=12.25,P=0.015);与对照组比较,观察组单侧及双侧N-乙酰天门冬氨酸(N-aectylaspartate,NAA)/肌酸(creatine,Cr)、NAA/胆碱(choline,Cho)、NAA/(Cho+Cr)降低(F=12.22、35.786、6.712;P<0.001),Cho/Cr升高(F=14.712,P<0.001),差异均具有统计学意义(P<0.05);观察组单侧的患侧与健侧比较NAA降低、Cho升高(P=0.034、0.016),差异均具有统计学意义(P<0.05)。结论 2D-CSI 1H-MRS检查发现颞叶微观的异常,细胞分子水平的变化,因此是一种很有前途的评估儿童TLE的工具。
[Abstract] Objective: To explore the value of two-dimensional chemical shift magnetic resonance imaging of hydrogen proton spectroscopy (2D-CSI 1H-MRS) in the micro changes of hippocampus.Materials and Methods: The spectral data of temporal lobe hippocampus in 36 cases of children and 20 cases of healthy control group were retrospectively analyzed to observe the relationship between gender, age and distribution, and to analyze the metabolic information of MRS in unilateral, bilateral and control groups of observation group and unilateral and healthy side of observation group.Results: There were 36 cases with male and left temporal lobe, but there was no significant difference in gender and location distribution (χ2=1.67, P>0.05); the age of onset of bilateral males in the observation group was younger than that of females (F=12.25, P=0.015). NAA/Cr, NAA/Cho, NAA/(Cho+Cr) in the observation group were significantly lower than those in the control group (F=12.22, 35.786, 6.712; P<0.001), Cho/Cr increased in unilateral group (F=14.712, P<0.001), the differences were statistically significant (P<0.05); compared with the uninjured side, NAA decreased and Cho increased in the observation group (P=0.034, 0.016), and the differences were statistically significant (P<0.05).Conclusions: 2D-CSI 1H-MRS examination showed that there were microscopic abnormalities and changes in cellular and molecular levels in temporal lobe. Therefore, it is a promising tool for the evaluation of TLE in children.
[关键词] 磁共振成像;二维化学位移磁共振多体素氢谱;形态学改变;颞叶癫痫;儿童
[Keywords] magnetic resonance imaging;two-dimensional chemical shift magnetic resonance imaging of hydrogen proton spectroscopy;morphological changes;temporal lobe epilepsy;children

朱凯* 哈尔滨市儿童医院,哈尔滨 150010

曾立红 哈尔滨市儿童医院,哈尔滨 150010

赵香莲 哈尔滨市儿童医院,哈尔滨 150010

张晓凡 哈尔滨市儿童医院,哈尔滨 150010

王志伟 哈尔滨市儿童医院,哈尔滨 150010

刘鑫春 哈尔滨市儿童医院,哈尔滨 150010

郝明珠 哈尔滨市儿童医院,哈尔滨 150010

通信作者:朱凯,E-mail:2008mr-zhukai@163.com

利益冲突:无。


基金项目: 黑龙江省卫生计生委科研课题 编号:2017-232
收稿日期:2020-07-08
接受日期:2020-08-21
中图分类号:R445.2; R742.1 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2020.12.004
本文引用格式:朱凯,曾立红,赵香莲,等.无形态学改变的儿童颞叶癫痫3.0 T磁共振2D-CSI 1H-MRS应用.磁共振成像, 2020, 11(12): 1097-1103. DOI:10.12015/issn.1674-8034.2020.12.004.

       儿童颞叶癫痫(temporal lobe epilepsy,TLE)中常规MRI阴性病例占1/3[1],常规MRI无异常信号及形态学改变的患者有必要进行进一步的研究,以定位致痫灶[2],这些患者在动态脑电颞叶常有异常放电波,是否颞叶海马有微观的改变,定位潜在的大脑异常使用氢质子磁共振波谱(1H-magnetic resonance spectroscopy,1H-MRS)成像将是非常有益的方法,能无创性分析海马微观结构及代谢变化,在发生形态结构性改变前,神经元发生病理改变出现相关代谢产物异常时即可发现,是寻找病因的重要的无创性检查方法[3]

1 材料与方法

1.1 一般资料

       回顾性分析2018至2019年经临床病史和动态脑电图显示颞叶异常放电的36例患儿颞叶海马的二维化学位移磁共振多体素氢谱(two-dimensional chemical shift magnetic resonance imaging of hydrogen proton spectroscopy,2D-CSI 1H-MRS)数据,年龄2~14岁,平均年龄(7.52±3.03)岁,其中22例男性,平均年龄(7.45±2.50)岁,14例女性,平均年龄(7.64±2.82)岁;其中左颞异常放电16例,年龄2~14岁,平均年龄(6.75±3.19)岁,10例男性,6例女性;右颞异常放电11例,年龄6~13岁,平均年龄(9.64±2.20)岁,8例男性,3例女性;双颞异常放电9例,年龄2~10岁,平均年龄(6.33±2.45)岁,4例男性,5例女性;对照组20例年龄匹配健康体检者,年龄2~13岁,平均年龄(8.05±3.60)岁,其中男性10例,女性10例。本研究经我院伦理委员会批准。

1.2 纳入及排除标准

       纳入标准:均经动态脑电图检查,确诊颞叶异常放电,发作频率最少1年1次,入组标准年龄大于2岁,常规磁共振检查颞叶海马无异常信号及形态学改变(观察内容双侧海马大小形态是否对称,两侧海马信号是否升高或信号不均匀,双侧颞角有无扩大,是否对称等),患者家属知情同意。

       排除标准:检查过程中不配合的患儿,数据基线不稳,海马硬化的患儿,有其他基础疾病的。

1.3 检查方法

       采用Ingenia 3.0 T磁共振(Philips公司),常规MRI的成像设备被用来显示已知特征描绘颞叶海马,2D-CSI 1H-MRS检查采用点分辨多体素波谱,TR为2000 ms,TE为144 ms,长TE基线稳定易于解释谱线信息,将有更好的光谱质量和精度,多体素波谱轴位定位,海马形态显示清晰,波谱数据准确;层厚10 mm,FOV:100 mm×100 mm;ROI设置于双侧颞叶内侧海马区域[4]。水抑制数据从较大的体素128次重复和较小的体素256次重复中获得。图像分析及评价指标:将1H-MRS在原始工作站中处理,基线校正级代谢物识别和计算,分别获得N-乙酰天门冬氨酸(N-aectylaspartate,NAA)、胆碱(choline,Cho)、肌酸(creatine,Cr),并计算NAA/Cr、NAA/Cho、NAA/(Cho+Cr)、Cho/Cr数值。

1.4 统计学方法

       采用SPSS 23.0软件对数据进行分析,计算指标采用(均数±标准差)表示,计数数据间比较采用卡方检验,计量数据间比较采用单因素方差分析,两组数据比较采用配对t检验,检验水准α=0.05,P<0.05为差异有统计学意义。

2 结果

       36例患儿中,男性占61.1%(22/36),女性占38.9%(14/36),动态脑电图显示观察组单侧中左侧占44.4%(16/36),右侧占30.6%(11/36),观察组双侧占25.0%(9/36),性别与发病部位分布比较差异无明显统计学意义(P>0.05),见表1;观察组双侧男性发病平均年龄(6.25±0.96)岁,较同组女性小,差异有统计学意义(P<0.05),见表2

       2D-CSI 1H-MRS发现观察组单侧、观察组双侧与对照组比较,NAA/Cr、NAA/Cho降低,Cho/Cr升高,差异有统计学意义(P<0.05),见表3;观察组单侧的患侧及观察组单侧的健侧比较NAA减低,Cho升高,差异均具有统计学意义(P<0.05),见表4

       健康对照组海马T1WI、FLAIR、多体素波谱、左侧海马及右侧海马波谱图如图1,左侧颞叶异常放电波谱图如图2,右侧颞叶异常放电波谱图如图3,双侧颞叶异常放电波谱图如图4

图1  健康对照组。A:轴位T1WI;B:冠位FLAIR双侧海马形态、信号未见异常;C:多体素波谱;D:右侧海马波谱图;E:左侧海马波谱图
Fig. 1  Healthy control group. A: Axial T1WI; B: Coronal FLAIR, bilateral hippocampal morphology and signal were normal; C: Multivoxel spectroscopy; D: Right hippocampus spectrum; E: Left hippocampus spectrum.
图2  左侧颞叶异常放电海马波谱图。A:右侧海马;B:左侧海马
Fig. 2  Hippocampal spectrum of abnormal discharge in left temporal lobe. A: Right hippocampus spectrum; B: Left hippocampus spectrum.
图3  右侧颞叶异常放电海马波谱图。A:右侧海马;B:左侧海马
Fig. 3  Hippocampal spectrum of abnormal discharge in right temporal lobe. A: Right hippocampus spectrum; B: Left hippocampus spectrum.
图4  双侧颞叶异常放电海马波谱图。A:右侧海马;B:左侧海马
Fig. 4  Hippocampal spectrum of abnormal discharge in bilateral temporal lobes. A: Right hippocampus spectrum; B: Left hippocampus spectrum.
表1  无形态学改变颞叶癫痫患儿性别与发病部位分布的比较(n/%)
Tab. 1  Comparison of gender and location of temporal lobe epilepsy in children without morphological changes (n/%)
表2  无形态学改变颞叶癫痫患儿性别、年龄与发生部位的关系(岁)
Tab. 2  Relationship between gender, age and location of temporal lobe epilepsy without morphological changes (year)
表3  观察组单侧、双侧及对照组海马1H-MRS各参数比较(±s)
Tab. 3  Comparison of 1H-MRS parameters of unilateral, bilateral and control groups in the observation group (±s)
表4  观察组单侧的患侧与健侧海马1H-MRS各参数比较(±s)
Tab. 4  Comparison of 1H-MRS parameters between unilateral affected and contralateral hippocampus in observation group (±s)

3 讨论

       儿童TLE是一种常见而严重的神经系统疾病,如果治疗不当会产生很多学习困难和社会行为问题。有1/2~2/3的儿童有局灶性TLE发作[5],TLE中内侧TLE最为常见[2],海马体的已知图像特征是内侧TLE的主要预测因素[6],内侧TLE常见的病理改变为海马硬化,其形成的基本机制是海马局部神经元缺失伴随有胶质增生[7],形成异常传导通路造成自身电活动反复激活,最终形成痫样放电。但是部分TLE患儿常规MRI检查并无异常信号及形态学改变,在这些患者中识别致痫灶成为一个重大的临床挑战。无形态学改变的TLE是指常规MRI视觉检查没有致痫性病变[8],根据临床表现、动态脑电显示颞叶异常放电,常规MRI的应用是从形态学上发现癫痫病因,而往往有很多患者在MRI的常规序列检查中并无明确形态学改变,而这样的患者又占30%[9],常规MRI阴性的TLE在临床上可能会阻碍患者的早期诊断和外科干预,导致疾病进展[10]。MRI阴性的TLE患者倾向于在癫痫发作时年龄较晚或者手术前癫痫持续时间较短,与双侧独立放电相比,单侧发作间期癫痫样放电患者的手术效果更好,MRI阴性TLE患者颅内脑电图记录显示癫痫发作完全由内侧颞叶(38%~72%)、外侧颞叶(11%~25%)、同时由内、外侧颞叶(22%~25%)。尽管MRI阴性的TLE在视觉分析上似乎没有明显的致痫性病变,但与健康对照组进行比较时,已经通过定量测量检测到结构改变,海马没有任何体积损失[11]。MRI阴性TLE可能是一种不同于颞叶内侧硬化的综合征。MRI阴性的患者左侧海马一般认知能力和语言流利性较低[12]。MRI阴性组左侧海马功能链接较左侧海马硬化增加[13]。MRI阴性的TLE受试者显示出与MRI阳性的TLE受试者明显不同的连接模式[14],表明两组之间的病理生理学存在潜在差异[15]。这样的患者有TLE的临床表现,动态脑电图记录了颞叶异常放电检出率高[16]。临床医生非常想了解无形态学改变的儿童TLE海马是否有分子水平生化信息的改变。

       1H-MRS帮助解决了这个疑问,波谱能无创性分析脑组织细胞代谢信息,随着高场强、高性能设备的问世,其灵敏度也不断提高,所以应用3.0 T高场强磁共振1H-MRS研究常规MRI无形态学异常的儿童颞叶海马代谢物改变,通过发现神经元的缺失和胶质增生,直接反映神经细胞的代谢变化从而间接证实病灶内组织病理学改变。为TLE患者临床干预治疗和预后随访分析提供了更为有价值的信息,成为近年来应用于TLE研究的新方法。很多文献研究MRI阴性的TLE患者大部分是单体素光谱,感兴趣的体素也位于双侧海马或颞叶[17]。选择不同的回波时间可获得不同的代谢物波谱分布,长T2的代谢产物更具有优势,长回波时间测得波谱图简化,基线稳定,信噪比较高,易于定量。文中采用的2D-CSI 1H-MRS,相对于单体素来说具有优越性,一次扫描中可获得多个感兴趣区的波谱曲线,节省检查时间,得到更全面、更综合的信息,有利于进行比较分析,减少因多次扫描而导致的误差,帮助诊断[18]

       在1H-MRS中能检测到的代谢物包括NAA、Cr、Cho等,NAA是由线粒体产生,主要存在于神经元和前突触细胞中,公认的神经元标志[19]。病变组织或多或少破坏正常神经组织,神经元数量的减少及缺失,必然导致NAA峰降低甚至消失。正常脑组织的Cr波峰相对较低,因其含量在各种生理、病理状态下其总量相对稳定,故常用作内标准作为参比值[20],研究倾向于用NAA/Cr比值作为神经元-神经胶质功能的标志。NAA/Cr改变反映了神经元和胶质细胞的功能障碍,Cr增加反映胶质细胞增生增多,Cho值往往是反映细胞膜转运和细胞增殖的程度[21],颞叶异常放电,导致神经元减少或胶质增生均导致NAA/(Cho+Cr)减少,是反映神经元改变的理想指标[4]。TLE患者癫痫灶侧NAA/Cr、NAA/(Cho+Cr)低于对侧及正常健康者[22,23],与本研究有一致性。颞叶海马在形态学上不易被发现有可能归因于轻度海马硬化前期一种细微表现,海马神经元缺失后胶质细胞增生充填,海马体积变化不明显,而波谱可以探测其代谢产物的异常,只要存在神经元丢失或胶质增生的病理性代谢改变,即使是早期或轻度的病变,便可以引起波谱上NAA、Cho、Cr的变化,从而引起NAA/(Cho+Cr)比值的改变[24]。有研究表明,与健康的对照组定量分析中发现无形态学改变TLE脑结构发生了改变[25]。无形态学改变的TLE,手术病理学可能显示出相对的海马神经元胶质细胞改变[26]。在常规MRI图上,视觉无法发现明确的形态学改变,但是1H-MRS显示NAA降低、Cho增高预示着神经元丧失和胶质增生,其增生代替丧失神经元,从而阻止萎缩。本研究观察组中颞叶单侧及双侧的异常放电,但常规MRI无异常信号及形态改变,预示着海马神经元胶质增生(如表3图2,图3,图4),所以在形态学上暂时还没有改变。文献中报道7例颞叶阴性患者,5例单侧颞叶NAA降低,2例双侧颞叶NAA降低[27],MRI阴性TLE患者的全脑NAA均较低,分别位于同侧颞区、对侧颞区及颞外区,一侧癫痫灶的异常放电经海马联合或前连合传递到对侧海马形成镜影病灶,长时间的发作导致对侧发生癫痫性脑损伤及相应的生物化学改变,但对侧代谢异常的程度较轻[28]。对于儿童来说,因为学习和记忆是基本技能,癫痫儿童在学习和记忆方面表现出缺陷[29],内侧TLE患儿的记忆功能更差,言语记忆在小儿TLE中的影响可能最大[30]。一项关于7~19岁儿童言语记忆的研究显示,儿童的左侧海马和基底节对言语记忆的激活作用,随着年龄的增长而下降[31],右侧海马后回与高度复杂场景的长期记忆有关[32],左侧颞叶与语言有关,右侧颞叶与视觉有关[33,34],本研究中发生观察组单侧的左侧部位居多,占44.4%(16/36),预示着颞叶异常放电的患者多数会发生语言上的改变。MRI正常的TLE患者显示1H-MRS与EEG结合能准确反映颞叶癫痫的病灶位置及严重程度[19]。有研究表明对单侧异常放电模式的MRI正常病例进行早期手术治疗,可以避免长期癫痫发作引起的神经损伤[35],MRI表现正常且仅限于单侧前区的TLE患者,强烈建议手术治疗[36],MRI阴性的TLE患者可能是很好的手术候选者[37]。在MRI阴性TLE中神经元胶质细胞的一系列变化与药物抵抗关系不大,tNAA/tCr的降低是主要的预测因素[38]。对于儿童TLE,可靠的术前指导是必要的,以预测和减少颞叶切除对记忆功能的不利影响。本文观察组患儿动态脑电有左侧、右侧及双侧颞叶异常放电,2D-CSI 1H-MRS显示NAA/Cr、NAA/Cho、NAA/(Cho+Cr)下降,Cho/Cr增高(如表3),观察组单侧的患侧NAA低,Cho高(如表4图2,图3,图4),提示异常放电的颞叶海马有微观的改变。所以2D-CSI 1H-MRS可以给临床以启示,能够无创并定量反映海马生化代谢异常,提早干预治疗,在术前定位中具有重要的价值[39]。儿童TLE与成人不同,术前MRI中潜在致痫病变的存在影响长期癫痫发作的结局[40]。学者研究推断致痫灶中存在很多能够恢复的受损的神经细胞,如果及时治疗可以得到恢复,提示患者有早期或轻度病变时通过相关检查及时发现病变并给予积极治疗,可提高患者生活质量[41]

4 结论

       1H-MRS是有用的非侵袭性的癫痫监测方法并推荐临床常规应用[42],这也是一个优势,因为使用基本的图像特征会更容易解释,但无形态学改变的TLE是复杂的,1H-MRS在复杂性和可解释性之间可以取得平衡。3.0 T 2D-CSI 1H-MRS应用诊断、监测和评估儿童无形态学改变的TLE患儿海马微结构改变,研究发现有助于今后影像医生帮助指导图像评估,用来指导对MRI阴性图像的解释,提高临床对儿童无形态学改变的TLE的早期诊断率,对患儿的康复具有显著的社会效益。

5 展望

       有文献报道在一个MRI阴性的前瞻性队列研究中,用基于体素的形态分析程序方法进行MRI后处理后,对微小异常增生病灶的检出率提高了28%,显示了其在TLE术前评估中的潜在价值[43]。为了提高癫痫病灶的检出率,目前提出了一种新的分析方法即脑电功能磁共振成像,术前评估抗药的局灶性癫痫[44],这将是未来影像关于儿童TLE发展的方向。本文的研究还有不足之处,ROI的选取海马没有分区,海马每个区域的代谢情况是否有差异,势必会影响结果的准确性有待进一步研究。

[1]
Grewal SS, Alvi MA, Perkins WJ, et al. Reassessing the impact of intraoperative electrocorticography on postoperative outcome of patients undergoing standard temporal lobectomy for MRI-negative temporal lobe epilepsy. J Neurosurg, 2019, 132(2): 605-614. DOI: 10.3171/2018.11.JNS182124.
[2]
Karunakaran S, Rollo MJ, Kim K, et al. The interictal mesial temporal lobe epilepsy network. Epilepsia, 2018, 59(1): 244-258. DOI: 10.1111/epi.13959.
[3]
Xu C, Wang EH. Clinical analysis of VEEG combined with MRS in locating epileptic foci in TLE patients. J Huaihai Med, 2018, 36(5): 523-526, 530. DOI: 10.14126/j.cnki.1008-7044.
许畅,汪恩焕.联合应用长程视频脑电图与磁共振波谱技术定位颞叶癫痫致痫灶的临床分析.淮海医药, 2018, 36(5): 523-526, 530. DOI: 10.14126/j.cnki.1008-7044.
[4]
Yang KH, Zheng B, Chen ZP, et al. Technique of 2D 1H-MRS in evaluation of children's hippocampus. Chin Comput Med Imag, 2018, 24(6): 543-547. DOI: 10.19627/j.cnki.cn31-1700/th.2018.06.018.
杨凯华,郑彬,陈志平,等.儿童海马多体素磁共振波谱检查技术探讨.中国医学计算机成像杂志, 2018, 24(6): 543-547. DOI: 10.19627/j.cnki.cn31-1700/th.2018.06.018.
[5]
Wirrell EC, Grossardt BR, Wong-Kisiel LCL, et al. Incidence and classification of new-onset epilepsy and epilepsy syndromes in children in olmsted county, minnesota from 1980 to 2004: a population-based study. Epilepsy Res, 2011, 95(1-2): 110-118. DOI: 10.1016/j.eplepsyres.2011.03.009.
[6]
Meguid NA, Samir H, Bjørklund G, et al. Altered S100 calcium-binding protein B and matrix metallopeptidase 9 as biomarkers of mesial temporal lobe epilepsy with hippocampus sclerosis. J Mol Neurosci, 2018, 66(4): 482-491. DOI: 10.1007/s12031-018-1164-5.
[7]
Yin KJ, Ding YD. Research progress of MRI negative temporal lobe epilepsy. Funct Mol Med Imaging (Electronic Edition), 2019, 8(2): 1659-1665. DOI: 10.3969/j.issn.2095-2252.2019.02.008.
尹克杰,丁亚冬. MRI阴性颞叶癫痫相关研究进展.功能与分子医学影像学(电子版), 2019, 8(2): 1659-1665. DOI: 10.3969/j.issn.2095-2252.2019.02.008.
[8]
Azab SF, Sherief LM, Saleh SH, et al. Childhood temporal lobe epilepsy: Correlation between electroencephalography and magnetic resonance spectroscopy: A case-control study. Ital J Pediatr, 2015, 41(4): 32. DOI: 10.1186/s13052-015-0138-2.
[9]
Tellez-Zenteno JF, Hernández-Ronquillo L. A review of the epidemiology of temporal lobe epilepsy. Epilepsy Res Treat, 2012, 2012: 630853. DOI: 10.1155/2012/630853.
[10]
Mo J, Liu ZY, Sun K, et al. Automated detection of hippocampal sclerosis using clinically empirical and radiomics features. Epilepsia, 2019, 60(12): 2519-2529. DOI: 10.1111/epi.16392.
[11]
Muhlhofer W, Tan YL, Mueller SG, et al. MRI-negative temporal lobe epilepsy-What do we know?. Epilepsia, 2017, 58(5): 727-742. DOI: 10.1111/epi.13699.
[12]
Blackmon K, Barr WB, Morrison C, et al. Cortical gray-white matter blurring and declarative memory impairment in MRI-negative temporal lobe epilepsy. Epilepsy Behav, 2019, 97(8): 34-43. DOI: 10.1016/j.yebeh.2019.05.009.
[13]
Zanão TA, Lopes TM, de Campos BM, et al. Patterns of default mode network in temporal lobe epilepsy with and without hippocampal sclerosis. Epilepsy Behav, 2019, 20(10): 106523. DOI: 10.1016/j.yebeh.2019.106523.
[14]
Bennett OF, Kanber B, Hoskote C,et al. Learning to see the invisible: A data-driven approach to finding the underlying patterns of abnormality in visually normal brain magnetic resonance images in patients with temporal lobe epilepsy. Epilepsia, 2019, 60(12): 2499-2507. DOI: 10.1111/epi.16380.
[15]
Vaughan DN, Rayner G, Tailby C, et al. MRI-negative temporal lobe epilepsy: a network disorder of neocortical connectivity. Neurology, 2016, 87(18): 1934-1942. DOI: 10.1212/WNL.0000000000003289.
[16]
Shi XJ, Zhou YR, Lei L, et al. Diagnostic value of electroencephalogram in temporal lobe epilepsy. J Ningxia Med Univ, 2016, 38(7): 835-837. DOI: 10.16050/j.cnki.issn1674-6309.2016.07.032.
石晓静,周宜蓉,雷蕾,等.脑电图检测在颞叶癫痫中的诊断价值.宁夏医科大学学报, 2016, 38(7): 835-837. DOI: 10.16050/j.cnki.issn1674-6309.2016.07.032.
[17]
Zuo CC, Li W, Zhang PN, et al. Value of single voxel magnetic resonance spectroscopy in the diagnosis of temporal lobe epilepsy without lesions conventional MRI. Acta Academiae Med Qingdao Univ, 2017, 53(3): 272. DOI: 10.13361/j.qdyxy.201703006.
左晨晨,李伟,张丕宁,等.单体素磁共振波谱在无病灶颞叶癫痫诊断中的应用.青岛大学医学院学报, 2017, 53(3): 272. DOI: 10.13361/j.qdyxy.201703006.
[18]
Hardan AY, Minshew NJ, Melhem NM, et al. An MRI and proton spectroscopy study of the thalamus in children with autism. Psychiatry Res, 2008, 163(2): 97-105. DOI: 10.1016/j.pscychresns.2007.12.002.
[19]
Hammen T, Schwarz M, Doelken M, et al. 1H-MRspectroscopy indicates severity markers in temporal lobe epilepsy: corelations between metabolic alterations seizures and epileptic discharges in EEG. Epilepsia, 2007, 48(2): 263-269. DOI: 10.1111/j.1528-1167.2006.00856.x.
[20]
Urrila AS, Hakkarainen A, Heikkine S, et al. Stimulus-induced brain lactate: effeets of aging and prolonged wakefulness. J sleep Res, 2004, 13(2): 111-119. DOI: 10.1111/j.1365-2869.2004.00401.x.
[21]
Levitt JG, O'Neill J, Blanton RE, et al. Proton magnetic resonanee spectrosecopic imaging of the brain in childhood antism. Biol Psychiatry, 2003, 54(12): 1355-1366. DOI: 10.1016/s0006-3223(03)00688-7.
[22]
Zhao CL, Chen ZQ, Qian GN, et al. The diagnostic value of MRI in the localization of intractable temporal lobe epilepsy. Chin J CT and MRI, 2016, 14(3): 32-34. DOI: 10.3969/j.issn.1672-5131.2016.03.010.
赵春雷,陈自谦,钱根年,等. MRI在难治性颞叶癫痫定侧诊断中的价值研究.中国CT和MRI杂志, 2016, 14(3): 32-34. DOI: 10.3969/j.issn.1672-5131.2016.03.010.
[23]
Xu MY, Ergene E, Zagardo M, et al. Proton MR spectroscopy in patients with structural MRI-negative temporal lobe epilepsy. J Neureimaging, 2015, 25(6): 1030-1037. DOI: 10.1111/jon.12263.
[24]
Vaughan DN, Rayner G, Tailby C, et al. MRI-negative temporal lobe epilepsy: A network disorder of neocortical connectivity. Neurology, 2016, 87(18): 1934-1942. DOI: 10.1212/WNL.0000000000003289.
[25]
Helmstaedter C, Petzold I, Bien CG. The cognitive consequence of resecting nonlesional tissues in epilepsy surgery-results from MRI-and histopathology-negative patients with temporal lobe epilepsy. Epilepsia, 2011, 52(8): 1402-1408. DOI: 10.1111/j.1528-1167.2011.03157.x.
[26]
Yang PF, Pei JS, Zhang HJ, et al. Long-term epilepsy surgery outcomes in patients with PET-positive, MRI-negative temporal lobe epilepsy. Epilepsy Behav, 2014, 41(12): 91-97. DOI: 10.1016/j.yebeh.2014.09.054.
[27]
Connelly A, Van Paesschen W, Porter DA, et al. Proton magnetic resonance spectroscopy in MRI-negative temporal lobe epilepsy. Neurology, 1998, 51(1): 61-66. DOI: 10.1212/wnl.51.1.61.
[28]
Mueller SG, Ebel A, Barakos J, et al. Widespread extrahippocampal NAA/(Cr+Cho) abnormalities in TLE with and without mesial temporal sclerosis. J Neurol, 2011, 258(4): 603-612. DOI: 10.1007/s00415-010-5799-6.
[29]
Menlove L, Reilly C. Memory in children with epilepsy: a systematic review. Seizure, 2015, 25(2): 126-135. DOI: 10.1016/j.seizure.2014.10.002.
[30]
Cormack F, Vargha-Khadem F, Wood SJ, et al. Memory in paediatric temporal lobe epilepsy: effects of lesion type and side. Epilepsy Res, 2012, 98(2-3): 255-259. DOI: 10.1016/j.eplepsyres.2011.09.004.
[31]
Hermann BP, Seidenberg M, Haltiner A, et al. Relationship of age at onset, chronologic age, and adequacy of preoperative performance to verbal memory change after anterior temporal lobectomy. Epilepsia, 1995, 36(2): 137-145. DOI: 10.1111/j.1528-1157.1995.tb00972.x.
[32]
Sepeta LN, Berl MM, Gaillard WD. Imaging episodic memory during development and childhood epilepsy. J Neurodev Disord, 2018, 10(1): 40. DOI: 10.1186/s11689-018-9255-8.
[33]
Berl MM, Mayo J, Parks EN, et al. Regional differences in the developmental trajectory of lateralization of the language network. Hum Brain Mapp, 2014, 35(1): 270-284. DOI: 10.1002/hbm.22179.
[34]
Everts R, Lidzba K, Wilke M, et al. Strengthening of laterality of verbal and visuospatial functions during childhood and adolescence. Hum Brain Mapp, 2009, 30(2): 473-483. DOI: 10.1002/hbm.20523.
[35]
Shurtleff HA, Barry D, Firman T, et al. Impact of epilepsy surgery on development of preschool children: identification of a cohort likely to benefit from early intervention. J Neurosurg Pediatr, 2015, 16(4): 383-392. DOI: 10.3171/2015.3.PEDS14359.
[36]
Ma W, Li C, Liu LP, et al. Pre-operative interictal discharge patterns and magnetic resonance imaging findings affect prognosis of temporal lobe epilepsy surgery. Eur Neurol, 2019, 81(3-4): 152-162. DOI: 10.1159/000501002.
[37]
Mariani V, Revay M, D'Orio P, et al. Prognostic factors of postoperative seizure outcome in patients with temporal lobe epilepsy and normal magnetic resonance imaging. J Neurol, 2019, 266(9): 2144-2156. DOI: 10.1007/s00415-019-09394-x.
[38]
Pimentel-Silva LR, Casseb RF, Cordeiro MM, et al. Interactions between in vivo neuronal-glial markers, side of hippocampal sclerosis, and pharmacoresponse in temporal lobe epilepsy. Epilepsia, 2020, 61(5): 1008-1018. DOI: 10.1111/epi.16509.
[39]
Cai PJ, Li HH, Zhou S. Clinical characteristics of children with temporal lobe epilepsy and analysis of the value of MRS localization diagnosis. Mmi Monthly, 2020, 29(3): 413-416.
蔡鹏杰,李辉煌,周实.儿童颞叶癫痫的临床特点及MRS的定位诊断价值分析.现代医用影像学, 2020, 29(3): 413-416.
[40]
Arya R, Mangano FT, Horn PS, et al. Long-term seizure outcomes after pediatric temporal lobectomy: does brain MRI lesion matter?. J Neurosurg Pediatr, 2019, 1-9. published online ahead of print, 2019 DOI: . DOI: 10.3171/2019.4.PEDS18677.
[41]
Campos BAG, Yasuda CL, Castellano G, et al. Proton MRS may predict AED response in patients with TLE. Epilepsia, 2010, 51(5): 783-788. DOI: 10.1111/j.1528-1167.2009.02379.x.
[42]
Fojtiková D, Brázdil M, Skoch A, et al. Magnetic resonance spectroscopy of the thalamus inpatients with mesial temporal lobe epilepsy and hippocampal sclerosis. Epileptic Disord, 2007, 9(Suppl 1): S59-67. DOI: 10.1684/epd.2007.0148.
[43]
Tahry REI, Santos SF, Vrielynck P, et al. Additional clinical value of voxel-based morphometric MRI post-processing for MRI-negative epilepsies: a prospective study. Epileptic Disord, 2020, 22(2): 156-164. DOI: 10.1684/epd.2020.1152.
[44]
Ito YJ, Maesawa S, Bagarinao E, et al. Subsecond EEG-fMRI analysis for presurgical evaluation in focal epilepsy. J Neurosurg, 2020, 13(3): 1-10. DOI: 10.3171/2020.1.JNS192567.

上一篇 表观扩散系数直方图在区分室管膜瘤和间变性室管膜瘤中的价值
下一篇 FLAIR血管高信号征与颈内动脉系统性短暂性脑缺血发作患者短期内发生脑梗死的相关性研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2