分享:
分享到微信朋友圈
X
全民健康助力全面小康
磁共振三维准连续式动脉自旋标记成像在急性脑梗死患者中的应用
赵文超 宋雨 唐晨虎 吴雪 马东 姜亦伦

Cite this article as: Zhao WC, Song Y, Tang CH, et al. Application of MRI 3D-pCASL in patients with acute cerebral infarction. Chin J Magn Reson Imaging, 2020, 11(12): 1156-1158, 1166.本文引用格式:赵文超,宋雨,唐晨虎,等.磁共振三维准连续式动脉自旋标记成像在急性脑梗死患者中的应用.磁共振成像, 2020, 11(12): 1156-1158, 1166. DOI:10.12015/issn.1674-8034.2020.12.016.


[摘要] 目的 探讨磁共振三维准连续式动脉自旋标记(3D pseudo-continuous arterial spin labeling,3D-pCASL)成像在急性脑梗死患者中的临床应用价值。材料与方法 分析急性脑梗死患者84例(脑梗死组),其中脑梗死组根据溶栓后有无出血转化,分为出血转化组(35例)和无出血转化组(49例)。另选取50例健康志愿者作为对照组。所有患者都经磁共振3D-pCASL检查,并进行统计学分析。结果 脑梗死患者在常规MRI序列图像上呈现大脑半球大片低灌注区,远端血管分支未见显示,扩散加权成像(diffusion weighted imaging,DWI)均表现为明显高信号,ADC图像均表现为明显低信号。脑梗死患者病灶位于右侧大脑半球者54例,病灶位于左侧大脑半球者30例。脑梗死核心区相对脑血流量(relative cerebral blood flow,rCBF)绝对值和ADC值较对侧镜像区降低,且两侧rCBF绝对值和ADC值均低于健康对照组(P<0.05)。以3D-pCASL图像后处理参数rCBF进行ROC曲线分析,ROC下面积为0.915。出血转化组患者脑梗死核心区边缘rCBF绝对值和ADC值较无出血转化组高(P<0.05),以3D-pCASL图像后处理参数rCBF进行ROC曲线分析,ROC下面积为0.926。结论 磁共振3D-pCASL可显示急性脑梗死患者梗死病灶的血液动力学状态的信息,结合rCBF可客观反映脑组织缺血梗死灌注改变,并对治疗后出血转化的预判有一定价值,为临床诊断提供影像学依据。
[Abstract] Objective: To investigate the clinical value of three-dimensional pseudo-continuous arterial spin labeling (3D-pCASL) in patients with acute cerebral infarction.Materials and Methods: A total of 84 patients with acute cerebral infarction (cerebral infarction group) were selected. The cerebral infarction group was divided into a hemorrhagic transformation group (35 cases) and a non-hemorrhagic transformation group (49 cases) according to the presence or absence of hemorrhagic transformation after thrombolysis. And 50 healthy volunteers were selected as the control group. All patients were examined by MRI 3D-pCASL, and statistical analysis was performed.Results: MRI of cerebral infarction patients showed large cerebral hemisphere hypoperfusion regions, while no distal vascular branches were shown. DWI showed significantly high signals, and ADC images showed significantly low signals. In 54 patients with cerebral infarction, the lesion was located in the right cerebral hemisphere, while in 30 patients with cerebral infarction. the absolute value of rCBF and ADC value in the core area of cerebral infarction were lower than those in the contralateral mirror area; the absolute value of rCBF and ADC value in both sides were lower than those in the healthy control group (P<0.05). ROC curve analysis was carried out with 3D-pCASL image post-processing parameter rCBF, and the area under ROC was 0.915. The absolute value of peripheral blood flow (rCBF) and ADC values in the cerebral infarction core area of patients in the hemorrhagic transformation group were higher than those in the non-hemorrhagic transformation group (P<0.05). ROC curve analysis was carried out with 3D-pCASL image post-processing parameter rCBF, and the area under ROC was 0.926.Conclusions: 3D-pCASL can display the hemodynamic state information of infarction lesions in patients with acute cerebral infarction. Combined with rCBF. It can objectively reflect the changes of cerebral ischemic infarction perfusion, and has certain value in predicting hemorrhage transformation after treatment, providing imaging basis for clinical diagnosis.
[关键词] 磁共振成像;三维准连续式动脉自旋标记;脑卒中;短暂性脑缺血发作;扩散加权成像
[Keywords] magnetic resonance imaging;three-dimensional pseudo-continuous arterial spin labeling;stroke;transient ischemic attack;diffusion weighted imaging

赵文超 南京中医药大学附属南京市中西医结合医院放射科,南京 210014

宋雨 南京中医药大学附属南京市中西医结合医院超声科,南京 210014

唐晨虎 南京中医药大学附属南京市中西医结合医院放射科,南京 210014

吴雪 南京中医药大学附属南京市中西医结合医院放射科,南京 210014

马东* 南京中医药大学附属南京市中西医结合医院放射科,南京 210014

姜亦伦 无锡市锡山人民医院神经内科,无锡 214000

通信作者:马东,E-mail:mdwllmht@163.com

利益冲突:无。


收稿日期:2020-08-21
接受日期:2020-12-03
中图分类号:R445.2; R743.3 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2020.12.016
本文引用格式:赵文超,宋雨,唐晨虎,等.磁共振三维准连续式动脉自旋标记成像在急性脑梗死患者中的应用.磁共振成像, 2020, 11(12): 1156-1158, 1166. DOI:10.12015/issn.1674-8034.2020.12.016.

       急性脑梗死是由于脑血管阻塞而致脑组织缺血、缺氧发生的病变,轻者引起功能障碍,重者会导致死亡[1,2],具有高发病、高致残的特点,近年来具有年轻化的趋势。临床上根据脑梗死范围的不同,脑梗死可分为弥漫性脑梗死和局限性脑梗死,且随着当今社会人口老龄化的逐步发展,急性脑梗死的发病率逐年上升[3,4,5]。因此快速准确地对急性脑梗死做出诊断尤为重要。目前,磁共振灌注成像(perfusion-weighted imaging,PWI)是临床上评估脑血流灌注最常用的影像学检查手段[6,7]。在PWI技术中,三维准连续式动脉自旋标记(three-dimensional pseudo-continuous arterial spin labeling,3D-pCASL)是一种无创的3D磁共振灌注技术,它无需注射对比剂,利用自体动脉血中的水分子当作内源性示踪剂,能够定量检测脑相对脑血流量(relative cerebral blood flow,rCBF)值,评估脑血液动力学及微循环的变化[8]。本文旨在探讨磁共振3D-pCASL在急性脑梗死患者临床诊断中的应用价值。

1 材料与方法

1.1 研究对象

       收集自2016年9月至2018年5月于南京中医药大学附属南京市中西医结合医院神经科诊治的急性脑梗死患者84例为脑梗死组,以扩散加权成像(diffusion weighted imaging,DWI)检查为确定脑梗死的金标准。其中脑梗死组根据溶栓后有无出血转化分为出血转化组(35例)和无出血转化组(49例)。出血转化诊断标准:脑梗死发病后22 h~7 d出现嗜睡、偏瘫加重等表现,复查CT或MRI发现出血灶。纳入标准:缺血区域在大脑前循环供血区,发病到检查时间≤24 h,单侧发病,临床资料完整。排除标准:妊娠与哺乳期妇女,无法实现有效配合患者,存在严重心肺功能障碍或其他脏器功能障碍等,脑出血、遗传及变性疾病、多发性硬化、蛛网膜下腔出血患者,心脏起搏器、人工金属植入等顺磁性物质植入者。另外选取50名健康志愿者作为对照组,进行3D-pCASL以及DWI扫描,纳入标准:既往体健,无脑梗死相关病史,经MRI检查明确无脑梗死,无体内金属植入物及其他MRI检查禁忌,无外伤、手术、脑肿瘤、感染、代谢性脑病及其他神经系统疾病等病史。本研究经南京中医药大学附属南京市中西医结合医院伦理委员批准。全部受试者签署了知情同意书。

1.2 MRI检查

       使用GE 1.5 T磁共振机,采用8通道头颈部专用相阵控线圈。扫描时取仰卧位,嘱患者尽可能减少头部运动,常规行颅脑磁共振扫描、DWI与3D-pCASL序列检查。MRI常规扫描:首先扫描轴位T1WI图像,TR 1800 ms,TE 15 ms;T2WI图像,TR 5000 ms,TE 120 ms;T2WI FLAIR图像,TR 8000 ms,TE 136 ms;矢状位T1WI图像,TR 2100 ms,TE 10 ms;矩阵256×256,扫描18层,层厚6 mm。DWI扫描:TR 3700 ms,TE 90 ms,扩散敏感系数b=1000 s/mm2,扫描矩阵128×128,层间距1 mm,扫描18层,层厚5 mm。3D-pCASL扫描:TR 6 ms,TE 2.1 ms,FOV 250 mm×250 mm,层厚4.0 mm,矩阵512×512,共进行3次激励,选择反转恢复时间点为1800、2200、2600 ms分别进行3次3D-pCASL。

1.3 数据分析

       使用GE ADW4.6工作站Functool软件由技师进行图像后处理。在梗死组中,在梗死病灶中央区域和梗死病灶边缘范围内设置ROI (范围尽可能大,但不能超过梗死病灶边缘),并以大脑中线为对称轴,生成对侧镜像ROI,若对侧镜像区为病变组织或脑室、脑沟,则选取邻近正常脑组织。健康组ROI范围与梗死组基本保持一致,并记录梗死核心区与健康对照组ADC、rCBF值,每个病灶至少测量3次,取其均值。记录两组病例不同反转恢复时间点的rCBF值,记为rCBFTI=1800、rCBFTI=2200、rCBFTI=2600等。

1.4 统计学方法

       应用SPSS 21.00分析各项数据,两组患者一般资料中的计数资料比较采用卡方检验,选取均值±标准差来描述计量数据,组间比较采用t检验或单因素方差分析;并绘制ROC曲线,计算诊断指标的敏感度和特异度,检验水准为α=0.05。P<0.05为差异有统计学意义。

2 结果

2.1 两组受试者一般资料比较

       两组受试者一般资料比较均无明显差异(P>0.05),具有可比性,见表1

表1  两组受试者一般资料对比

2.2 MRI影像学特征

       脑梗死组患者病灶位于右侧大脑半球者54例,病灶位于左侧大脑半球者30例。在常规MRI序列图像上呈现大脑半球大片低灌注区,远端血管分支未见显示,存在小片状、数量不同的斑点状的小缺血灶;DWI均表现为明显高信号,ADC图像均表现为明显低信号。

2.3 梗死组梗死核心区与对侧镜像区及健康组ADC值对比

       在梗死组患者中,梗死核心区的ADC值[(0.31±0.02)×10-3 mm2/s]较对侧镜像区[(0.71±0.15)×10-3 mm2/s]降低,且两侧均低于健康对照组[(0.89±0.08)×10-3 mm2/s](F=9.105,P=0.007)。

2.4 两组rCBF值对比

       梗死组患者病灶核心部位的rCBFTI=1800、rCBFTI=2200、rCBFTI=2600值较对侧镜像区降低,且两侧均低于健康对照组,对比差异均有统计学意义(P<0.05),每组不同反转恢复时间点的rCBF值差异无统计学意义(P>0.05)。见表2

表2  两组病灶部位的rCBF值对比(±s)

2.5 出血转化组与无出血转化组患者脑梗死核心区边缘rCBF绝对值和ADC值比较

       出血转化组患者脑梗死核心区边缘rCBF绝对值和ADC值较无出血转化组高,组间比较差异有统计学意义(P<0.05)。见表3

表3  两组脑梗死核心区边缘rCBF绝对值和ADC值比较

2.6 ROC曲线分析

       分别以ADC和3D-pCASL图像后处理参数rCBF作为预判出血转化的指标进行ROC曲线分析,3D-pCASL图像后处理参数rCBF的ROC下面积较大(0.926),敏感度为0.993,特异度为0.889,具有较高的诊断效能,见图1。以3D-pCASL图像后处理参数rCBF作为诊断急性脑梗死指标进行ROC曲线分析,ROC下面积为0.915,敏感度为0.990,特异度为0.943,具有较高的诊断效能,见图2

图1  ADC和3D-pCASL图像后处理参数rCBF预测出血转化ROC曲线分析
图2  3D-pCASL图像后处理参数rCBF判断脑梗死的ROC曲线分析

3 讨论

       急性脑梗是临床上常见的危重疾病,具有高发病率与高致残率等特点,且有一定的死亡率[9,10,11,12]。MRI在缺血性脑血管疾病中的应用能够得到准确诊断,并且可以评估患者的预后情况、发病风险等方面[13]。特别是当前多种MRI技术可利用快速扫描技术显示组织的血液灌注状况与微血管分布,进而对组织的功能与活力进行评估,提供组织的血流动力学信息,从而定量测量出脑血流灌注情况,有利于急性脑梗的定量诊断[14,15]。本研究显示梗死组患者在常规MRI序列图像上呈现大脑半球大片低灌注区,远端血管分支未见显示;DWI均表现为明显高信号,ADC图像均表现为明显低信号;脑梗死核心区ADC值较对侧镜像区降低,且两侧ADC值均低于健康对照组(P<0.05),与相关研究基本一致[16,17]。3D-pCASL序列是磁共振技术中灌注成像序列,将自体动脉血当中含有的水分子当作内源性示踪剂,获得灌注成像。其应用的基本原理是将反转脉冲施加于成像层面的供血动脉其流入侧,让血中质子的磁化矢量出现反转,按照反转的恢复时间,能够反映从大动脉到毛细血管的水平灌注状况,DSC-PWI则需要注射对比剂作为外源性示踪剂,其成像速度较快、灌注参数多,但由于对比剂的注入,易产生磁敏感伪影[18,19]。同时由于血液中的质子被反转,静态组织的信号比灌注信号比较强,标记像中流入标记血的组织信号强度比较弱,导致信噪比很小,所以需要多次采集不同时间点的rCBF值[20]。国外学者[21]等通过对急性脑梗死患者溶栓前后3D-pCASL对比分析提示其可以很好地显示溶栓后不同区域灌注的高低,其可以作为评价急性脑梗死患者溶栓效果评价的依据。本研究显示梗死组患者病灶部位的rCBFTI=1800、rCBFTI=2200、rCBFTI=2600值低于对侧镜像组及健康对照组,对比差异均有统计学意义(P<0.05)。3D-pCASL可全程在MR图像上显示脑部组织血流灌注情况,进行rCBF的测量,可进一步对梗死病灶以及周围组织的灌注情况提供可靠依据。从机制上分析,急性脑梗的供血血管病变相对更加严重,在对侧标识的动脉质子还没有通过侧副循环进入病灶区域时,可出现灌注异常区域的脑血流量下降[22]。另外,本研究发现出血转化组患者脑梗死核心区边缘rCBF绝对值和ADC值较无出血转化患者均升高,分析原因可能为脑梗死早期由于脑自身保护因素在核心梗死区边缘形成高灌注侧支循环,但同时脑梗死区周围的高灌注侧支循环也增加了脑梗死后发生脑出血转化的风险,与本研究结果基本一致。由此可见,急性脑梗死患者梗死区边缘出现侧支循环高灌注时,患者发生脑出血转化的危险性可能加大。

       当前也有研究显示3D-pCASL技术与CT、超声、DWI测得的数据具有高度一致性,能够更敏感地发现脑组织血流的灌注异常,且不受血脑屏障的影响,能够更真实地反映脑组织的真实灌注情况[23,24,25]。本研究也存在一些不足,如样本数量较少,患者的配合程度也可能导致实验数据的不准确,将在下一步研究进行深入分析。

       总之,磁共振3D-pCASL可显示急性脑梗死患者梗死病灶的血液动力学状态的信息,结合rCBF可客观反映脑组织缺血梗死灌注改变,并对治疗后出血转化的预判有一定价值,为临床诊断提供影像学依据。

[1]
Dai W, Fong T, Jones RN, et al. Effects of arterial transit delay on cerebral blood flow quantification using arterial spin labeling in an elderly cohort. J Magn Reson Imaging, 2017, 45: 472-481. DOI: 10.1002/jmri.25367.
[2]
Yu S, Ma SJ, Liebeskind DS, et al. ASPECTS-based reperfusion status on arterial spin labeling is associated with clinical outcome in acute ischemic stroke patients. J Cereb Blood Flow Metab, 2018, 38(3): 382-392. DOI: 10.1177/0271678x17697339.
[3]
Madai VI, Martin SZ, von Samson-Himmelstjerna FC, et al. Correction for susceptibility distortions increases the performance of arterial spin labeling in patients with cerebrovascular disease. J Neuroimaging, 2016, 26(4): 436-444. DOI: 10.1111/jon.12331.
[4]
Leng X, Lan L, Liu L, et al. Good collateral circulation predicts favorable outcomes in intravenous thrombolysis: a systematic review and mate-analysis. Eur J Neurol, 2016, 23: 1738-749. DOI: 10.1111/ene.13111.
[5]
Yu S, Liebeskind DS, Dua S, et al. Postischemic hyperperfusion on arterial spin labeled perfusion MRI is linked to hemorrhagic transformation in stroke. J Cereb Blood Flow Metab, 2015, 35(4): 630-637. DOI: 10.1038/jcbfm.2014.238.
[6]
Akiyama T, Morioka T, Shimogawa T, et al. Arterial spin-labeling magnetic resonance perfusion imaging with dual postlabeling delay in internal carotid artery steno-occlusion: Validation with digital subtraction angiography. J Stroke Cerebrova Dis, 2016, 25: 2099-2108. DOI: 10.1016/j.jstrokecerebrovasdis.2016.06.005.
[7]
Hwang YH, Kwon YS, Lee YH. STA-distal ACA bypass using a contralateral STA interposition graft for symptomatic ACA stenosis. J Cerebrovasc Endovasc Neurosurg, 2018, 20(3): 191-197. DOI: 10.7461/jcen.2018.20.3.191.
[8]
Fujiwara Y, Matsuda T, Kanamoto M, et al. Comparison of long-labeled pseudo-continuous arterial spin labeling (ASL) features between young and elderly adults: special reference to parameter selection. Acta Radiologica, 2017, 58: 84-90. DOI: 10.1177/0284185116632387.
[9]
Jeong DK, Hwang SK. A case of posterior inferior cerebellar artery infarction after cervical chiropractic manipulation. Korean J Neurotrauma, 2018, 14(2): 159-163. DOI: 10.13004/kjnt.2018.14.2.159.
[10]
Wang W, Jiang B, Sun H, et al. Prevalence, incidence, and mortality of stroke in China: Results from a nationwide population-based survey of 480687 adults. Circulation, 2017, 135(8): 759-771. DOI: 10.1161/CIRCULATIONAHA.116.025250.
[11]
Wolman DN, Iv M, Wintermark M, et al. Can diffusion and perfusion-weighted imaging alone accurately triage anterior circulation acute ischemic stroke patients to endovascular therapy. J Neurointerv Surg, 2018, 10(12): 1132-1136. DOI: 10.1136/neurintsurg-2018-013784.
[12]
Eisenhut M. In diabetic ketoacidosis brain injury including cerebral oedema and infarction is caused by interleukin-1. Med Hypotheses, 2018, 12(121): 44-46. DOI: 10.1016/j.mehy.2018.09.005.
[13]
Jiang L, Su HB, Zhang YD, et al. Collateral vessels on magnetic resonance angiography in endovascular-treated acute ischemic stroke patients associated with clinical outcomes. Oncotarget, 2017, 8(46): 81529-81537. DOI: 10.18632/oncotarget.21081.
[14]
Huh IY, Han IS, Lee HK, et al. Recurrent thrombosis after carotid endarterectomy secondary to activated protein C resistance and essential thrombocytosis: A case report. Medicine(Baltimore), 2018, 97(44): e13118. DOI: 10.1097/MD.0000000000013118.
[15]
Mosimann PJ, Kaesmacher J, Gautschi D, et al. Predictors of unexpected early reocclusion after successful mechanical thrombectomy in acute ischemic stroke patients. Stroke, 2018, 49(11): 2643-2651. DOI: 10.1161/STROKEAHA.118.021685.
[16]
Dong X, Bai C, Nao J. Influential factors and clinical significance of fluid-attenuated inversion recovery vascular hyperintensities in transient ischemic attacks of carotid arterial system. Neuroradiology, 2017, 59(11): 1093-1099. DOI: 10.1007/s00234-017-1906-z.
[17]
Hoving JW, Marquering HA, Majoie CBLM, et al. Volumetric and spatial accuracy of computed tomography perfusion estimated ischemic core volume in patients with acute ischemic stroke. Stroke, 2018, 49(10): 2368-2375. DOI: 10.1161/STROKEAHA.118.020846.
[18]
Sakai Y, Delman BN, Fifi JT, et al. Estimation of ischemic core volume using computed tomographic perfusion. Stroke, 2018, 49(10): 2345-2352. DOI: 10.1161/STROKEAHA.118.021952.
[19]
Yoo J, Baek JH, Park H, et al. Thrombus volume as a predictor of nonrecanalization after intravenous thrombolysis in acute stroke. Stroke, 2018, 49(9): 2108-2115. DOI: 10.1161/STROKEAHA.118.021864.
[20]
Luo S, Yang L, Luo Y. Susceptibility-weighted imaging predicts infarct size and early-stage clinical prognosis in acute ischemic stroke. Neurol Sci, 2018, 39(6): 1049-1055. DOI: 10.1007/s10072-018-3324-3.
[21]
Reijmer YD, van den Heerik MS, Heinen R, et al. Microstructural white matter abnormalities and cognitive impairment after aneurysmal subarachnoid hemorrhage. Stroke, 2018, 49(9): 2040-2045. DOI: 10.1161/STROKEAHA.118.021622.
[22]
Chen ML, Gupta A, Chatterjee A, et al. Association between unruptured intracranial aneurysms and downstream stroke. Stroke, 2018, 49(9): 2029-2033. DOI: 10.1161/STROKEAHA.118.021985.
[23]
Kim D, Lee H, Jung JM, et al. Hypointensity on susceptibility-weighted images prior to signal change on diffusion-weighted images in a hyperacute ischemic infarction: A case study. Investig Magn Reson Imaging, 2018, 2(22): 131-134. DOI: 10.13104/imri.2018.22.2.131.
[24]
Zhuang FJ, Chen Y, He WB, et al. Prevalence of white matter hyperintensities increases with age. Neural Regen Res, 2018, 13(12): 2141-2146. DOI: 10.4103/1673-5374.241465.
[25]
Wang T, Zhu L, Hu C, et al. The diagnostic value of susceptibility-weighted imaging for ischemic penumbra in patients with acute ischemic stroke. Technol Health Care, 2017, 25(Suppll 1): 449-457. DOI: 10.3233/THC-171348.

上一篇 磁共振DTI量化值对脊髓型颈椎病患者术后神经功能预后的相关性
下一篇 基于MRI的糖尿病合并急性脑梗死患者动脉粥样硬化分布情况与稳定性的临床研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2