分享:
分享到微信朋友圈
X
综述
心脏磁共振细胞外容积在高血压性心脏病中的应用
黄淑梅 江桂华 汪天悦 刘萍 李国旻

Cite this article as: Huang SM, Jiang GH, Wang TY, et al. Application of cardiac magnetic resonance extracellular volume in hypertensive heart disease[J]. Chin J Magn Reson Imaging, 2021, 12(3): 98-101.本文引用格式:黄淑梅, 江桂华, 汪天悦, 等. 心脏磁共振细胞外容积在高血压性心脏病中的应用[J]. 磁共振成像, 2021, 12(3): 98-101. DOI:10.12015/issn.1674-8034.2021.03.024.


[摘要] 血压长期增高会引起心脏后负荷增加,导致高血压性心脏病。高血压性心脏病的主要改变是左心室肥厚及弥漫性心肌纤维化。通过心脏磁共振T1 mapping测量的细胞外容积作为无创性评估心肌纤维化的手段,在高血压性心脏病的诊断中发挥了重要的作用。作者就高血压性心脏病心肌纤维化的病理生理、高血压性心脏病细胞外容积的特点,治疗后细胞外容积的变化及细胞外容积与心脏磁共振其他技术的在高血压性心脏病中的联合应用进行综述。
[Abstract] Long-term increase in blood pressure can cause increased cardiac afterload, leading to hypertensive heart disease (HHD). The main changes of hypertensive heart disease are left ventricular hypertrophy and diffuse myocardial fibrosis. The extracellular volume (ECV) measured by cardiac magnetic resonance (CMR) T1 mapping is used as a non-invasive means to assess myocardial fibrosis and plays an important role in the diagnosis of hypertensive heart disease. The author discusses the pathophysiology of myocardial fibrosis in hypertensive heart disease, the characteristics of the extracellular volume of hypertensive heart disease, the change of extracellular volume after treatment, the extracellular volume and other techniques of cardiac magnetic resonance in hypertensive heart disease. The joint application of the company is reviewed.
[关键词] 高血压性心脏病;心肌纤维化;心脏磁共振;细胞外容积
[Keywords] hypertensive heart disease;myocardial fibrosis;cardiac magnetic resonance;extracellular volume

黄淑梅 1   江桂华 1, 2*   汪天悦 2   刘萍 2   李国旻 2  

1 广东医科大学,湛江 524023

2 广东省第二人民医院影像科,广州 510317

江桂华,E-mail:jiangguihua177@163.com

作者利益冲突声明:全体作者均声明无利益冲突。


基金项目: 国家自然科学基金 U1903120
收稿日期:2020-11-10
接受日期:2021-01-21
DOI: 10.12015/issn.1674-8034.2021.03.024
本文引用格式:黄淑梅, 江桂华, 汪天悦, 等. 心脏磁共振细胞外容积在高血压性心脏病中的应用[J]. 磁共振成像, 2021, 12(3): 98-101. DOI:10.12015/issn.1674-8034.2021.03.024.

       全世界有六亿多人受到高血压的影响,它大大增加了发生重大心血管事件的风险。据估计,在未来十年内,全世界将有30%的人口患有高血压[1],它与高发病率和高死亡率相关,包括增加心肌梗死,中风和心力衰竭的风险[2]。高血压性心脏病(hypertensive heart disease, HHD)是血压长期增高导致的左心室结构及功能变化的一类疾病,心肌纤维化就是其特征之一[3]。抗高血压治疗有助于心肌纤维化的逆向恢复,改善心脏舒张功能障碍。目前,诊断HHD的金标准是心内膜心肌活检,但是该方法有创,会引起一系列并发症。细胞外容积(extracellular volume, ECV)是经活检验证的评估心肌纤维化的手段[3]

1 HHD心肌纤维化的病理生理机制

       心肌纤维化的细胞途径主要有两种,一种是细胞凋亡/坏死介导的“替代纤维化”,另一种是成纤维细胞激活,而不一定有心肌细胞丢失的“间质纤维化”[4],HHD心肌纤维化的途径主要是后者,是继发于间质及壁间冠状动脉和小动脉周围的Ⅰ型和Ⅲ型胶原纤维的弥漫性积聚[5],主要为Ⅰ型胶原纤维[6, 7]

       心肌纤维化可能通过多种途径促进HHD的病理生理变化,在心肌纤维化和左室功能障碍之间建立联系[8]。最初,胶原纤维的积累会使心室肌顺应性下降、僵硬度增加,从而导致舒张功能受损,胶原纤维的持续积累,进一步损害了舒张期充盈[9, 10, 11, 12];第二,因为HHD患者血管周胶原的含量与冠状动脉血流储备呈负相关,血管周纤维化可能压迫冠状动脉而损害冠状动脉血流储备[13];第三,间质纤维化也可能促成高血压的室性心律失常,因为心肌纤维化会引起传导异常[14]

2 检查技术

       心内膜心肌活检作为诊断高血压性心脏病的金标准,可以确定组织病理学及分子方式,但这是一种侵入性手术,存在一系列的并发症,包括气胸、心律失常、穿孔、心包积液、心包填塞等,并发症发生率高达6%[15],这限制了它在临床上的应用。因此,无创的影像学检查在诊断HHD上发挥了重要的作用。超声心动图由于操作简单,价格较低廉,应用广泛,但是其受图像质量的影响较大,且对操作的医师的水平有较高的要求。心脏磁共振晚期钆剂增强(late gadolinium enhancement, LGE)已成为局限性心肌纤维化的参考标准[16, 17],但LGE依赖于正常心肌做对比[18]。与正常心肌相比,LGE技术可以确定心肌瘢痕的范围,但在较轻或较弥漫性纤维化的情况下,由于缺乏正常心肌作为参考,不太可能揭示弥漫性异常组织的存在[19]。T1 mapping与ECV值可以评估弥漫性心肌纤维化,且经活检验证[20, 21, 22],但T1 mapping受磁场强度[23]、钆剂清除率、测量时间、注射方式[24]、身体状况或血细胞比容的影响,而ECV值不受这些因素的影响[25, 26, 27]。ECV测量与组织学测量胶原体积分数的一致性也优于单纯的T1 mapping[28]

3 细胞外容积

       随着心脏磁共振定量技术的发展,T1 mapping与细胞外容积(extracellular volume, ECV)成为非侵入性判断心肌弥漫性纤维化的可靠手段[29],且经过活检验证[20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]。ECV值是通过测量打药前后心肌和血池的T1 mapping和患者的血细胞比容计算出来的:

       这种计算方式是基于以下假设:在对比剂平衡时,对比剂在血液和心肌中的浓度是相等的,并且可以从血细胞比容中知道对比剂在血液中的分布量[31]。T1 mapping反映的是细胞外和细胞内的情况[32],即反映细胞肥大和细胞外纤维化的变化。细胞内外之间存在着快速的水交换,并且如果没有对比剂就不能区分细胞内和细胞外成分。钆对比剂仅在细胞外间质积累,因此,注药后T1缩短主要是由于细胞外间隙T1弛豫时间的缩短。ECV是从打药前TI mapping和打药后T1 mapping计算的结果,并以像素为单位显示了细胞外空间的体积分数。因此,ECV反映的则是细胞外间质的情况[33]

4 ECV在HHD中的应用

       在无心肌淀粉样变或细胞外心肌水肿的情况下,细胞外容积的变化主要取决于心肌纤维化的程度,与人的胶原体积分数的组织学测量有很好的一致性。HHD患者心肌纤维化大部分是胶原纤维沉积在细胞外及血管周围[34],这是一种弥漫性心肌纤维化[1,35, 36],会引起细胞外容积的增加,这种变化可能引起心脏磁共振ECV值的增加,因此,ECV值可以作为非侵入性鉴别弥漫性纤维化的手段。

4.1 ECV在HHD中的特点

       大量的研究表明,高血压性心脏病患者的ECV值较正常血压对照组高。在首次证明ECV值检测HHD心肌纤维化的研究中,Kuruvilla等[32]的研究显示,HTN-LVH组ECV值为0.29±0.03,HTN-non LVH组ECV值为0.27±0.02,正常血压对照组ECV值为0.26±0.02,HTN-LVH组ECV值明显升高,而HTN-non LVH组与正常血压对照组的ECV值没有统计学差异。他们还发现,HTN-LVH组与HTN-non LVH组和正常血压对照组相比,收缩压及舒张压明显升高,左室质量增加,收缩期周向应变和舒张早期应变率明显降低,而HTN-non LVH组和正常血压对照组相比,除了收缩压明显升高之外,余没有统计学差异;因此,他们认为应变成像测量的局部收缩功能降低与ECV值的增加有关。在另一项研究中,国内学者发现HTN-LVH患者组ECV值增加,正常血压对照组与HTN-LVH患者组的ECV分别为26.9%±2.7%和28.5%±2.9% (P<0.001);且他们还发现当ECV小于0.30时,左室质量指数(left ventricular mass index, LVMI)值相对于ECV值是恒定的,但当ECV值大于0.30时,LVMI的增加明显快于ECV值的变化,说明在相对较低的ECV值(正常或稍高)时表现为较少或无重构,但当ECV值升高到一定程度时,左室重构的发展可能进入加速过程[37]

4.2 HHD治疗后 ECV的变化

       有研究表明,抗高血压治疗有助于心肌纤维化的逆向恢复及改善舒张功能障碍。赖诺普利治疗高血压性心脏病6个月后心肌胶原纤维的比率下降,由6.9%±0.6%降至6.3%±0.6% (P<0.01);赖诺普利治疗还可以改善左室舒张功能,治疗后心脏的E/A比值明显升高[38]。Diez等[39]对氯沙坦治疗高血压心脏病的疗效进行了评价,发现重度纤维化患者服用氯沙坦12个月后,活检时的纤维化量减少,且发现心肌胶原纤维含量与左室室壁僵硬度有很强的相关性,氯沙坦逆向恢复心肌纤维化诱导严重心肌纤维化消退的能力与高血压患者心肌僵硬度的降低有关。

       对小鼠的初步动物研究表明,ECV 值升高可用于检测高血压心肌纤维化。Coelho-Filho等[40]采用L-N(G)-硝基精氨酸甲酯(L-NAME)建造高血压小鼠模型,7周后,小鼠结缔组织分数明显升高(2.6±0.6%与8.5±1.6%比较,P<0.001),与CMR测定的ECV值升高(0.25±0.03与0.42±0.08比较)显著相关。在另一项研究中,Coelho-Filho等[41]比较了L-NAME所致未治疗高血压小鼠的ECV值与L-NAME所致高血压小鼠螺内酯治疗后的ECV值发现,螺内酯治疗组结缔组织分数显著低于未治疗组(2.7±0.8%与8.5±1.6%比较,P<0.001),ECV值也低于未治疗组(0.25±0.03与0.43±0.09比较,P<0.001)。

       有学者对18名健康志愿者在基线和随访后(平均间隔3.8±0.6年)分别测得其T1 mapping及ECV值,研究发现心肌T1 mapping和ECV值稳定[42]。我们可以推测,HHD患者ECV值发生变化在一定程度上提示心肌纤维化程度的变化,因此推测,ECV值可以用来监测HHD患者病情的变化,进一步指导治疗。

4.3 ECV与CMR其他技术在HHD中的联合应用

       有研究通过计算17名不伴LVH的高血压患者、13名伴LVH的高血压患者和12名正常志愿者心肌的ECV值及ADC值证明,氯沙坦治疗可降低左室僵硬度和胶原含量,这个研究通过非侵入性的研究证明了高血压患者的弥漫性纤维化通过一定的降压治疗是可恢复的,减轻弥漫性纤维化可改善舒张功能、收缩功能障碍[43]。另一项研究显示,相同的左室质量指数对应着相似的ECV值,即ECV值不能区分HHD组与HCM组,但展示了在这两种疾病中的明显的分配,在HHD和HCM患者中,就肉眼可见的LGE而言,84% HCM组的患者是有延迟强化(late gadalinum enhancement,LGE),瘢痕的范围是0%~40.6%,而HHD组延迟强化没那么常见(34%)且范围没那么大(0%~31.9%)[44],因此,同时考虑延迟强化和ECV值可能是区分肥厚性心肌病和HHD的合理方法。

5 ECV的局限性

       除了HHD,能引起ECV值增高的疾病有很多,包括心肌病[45, 46]、心肌梗死[47, 48]及心肌淀粉样变[36]、急性心肌炎等[49, 50],其中有一些疾病的ECV值存在交叉,并没有明确的分界。有学者研究发现,具有相同左室质量指数的HHD患者与HCM患者具有相似的ECV值[44],这就给单独应用ECV值进行诊断带来了一定的困难。

       HHD患者与正常志愿者ECV值的差距较小,Kuruvilla等[32]的研究得出HTN-LVH患者ECV值为0.29±0.03,正常血压对照组的ECV值为0.26±0.02;国内学者也发现HTN-LVH患者组ECV值增加,正常血压对照组与HTN-LVH患者组的ECV值分别为26.9%±2.7%和28.5%±2.9%[37]。由此可见,正常人与HHD患者的ECV值亦存在一定的交叉,这种微小的差距及交叉就限制了ECV值在临床上的应用。

       ECV值需要做心脏磁共振增强检查测得,若患者肾功能不好,或者过敏则不适合做该检查。

6 小结与展望

       血压长期增高可引起高血压性心脏病,以心肌重塑为特征,包括左室肥厚和弥漫性心肌纤维化。因为有研究证实左室增厚和心肌纤维化可以逆转,所以早期诊断和治疗是必要的。最近在心脏磁共振成像方面的进展是在HHD患者中使用ECV值判断弥漫性心肌纤维化。多项研究表明HHD患者ECV值增高。由于正常人的ECV值具有长期稳定性,因此可以利用ECV作为弥漫性纤维化的标记物,监测HHD的疾病进展及评估治疗干预的成功。此外,ECV值还有望通过与心脏磁共振其他成像技术结合起来对疾病进行诊断。

1
Schumann CL, Jaeger NR, Kramer CM. Recent Advances in imaging of hypertensive heart disease. Curr Hypertens Rep, 2019, 21(1): 3-3. DOI: 10.1007/s11906-019-0910-6
2
Schumann CL, Jaeger NR, Kramer CM, et al. Heart disease and stroke statistics—2020 update: a report from the American Heart Association. Circulation, 2020, 141(9): e139-e596. DOI: 10.1161/CIR.0000000000000757
3
Weber KT, Sun Y, Gerling IC, et al. Regression of established cardiac fibrosis in hypertensive heart disease. Am J Hypertens, 2017, 30(11):1049-1052. DOI: 10.1093/ajh/hpx054
4
Schelbert EB, Messroghli DR. Messroghli, state of the art: clinical applications of cardiac T1 mapping. Radiology, 2016, 278(3): 658-676. DOI: 10.1148/radiol.2016141802
5
Berk BC, Fujiwara K, Lehoux S. ECM remodeling in hypertensive heart disease. The Journal of clinical investigation, 2007, 117(3): 568-575. DOI: 10.1172/JCI31044
6
Weber KT. Are myocardial fibrosis and diastolic dysfunction reversible in hypertensive heart disease?Congest Heart Fail, 2005, 11(6): 322-326. DOI: 10.1111/j.1527-5299.2005.04479.x
7
Javier D, Arantxa G, Begoña L. Mechanisms of disease: pathologic structural remodeling is more than adaptive hypertrophy in hypertensive heart disease. Nat Clin Pract Cardiovasc Med, 2005, 2(4): 209-216. DOI: 10.1038/ncpcardio0158
8
Yoneyama K, Donekal S, Venkatesh BA, et al. Natural history of myocardial function in an adult human population: serial longitudinal observations from MESA. Cardiovasc Imaging, 2016, 9(10): 1164-1173. DOI: 10.1016/j.jcmg.2016.01.038
9
Díez J, Querejeta R, López B, et al. Losartan-dependent regression of myocardial fibrosis is associated with reduction of left ventricular chamber stiffness in hypertensive patients. Circulation, 2002, 105(21): 2512-2517. DOI: 10.1161/01.CIR.000017264.66561.3D
10
Kasner M, Westermann D, Lopez B, et al. Diastolic tissue doppler indexes correlate with the degree of collagen expression and cross-linking in heart failure and normal ejection fraction. J Am Coll Cardiol, 2011, 57(8): 977-985. DOI: 10.1016/j.jacc.2010.10.024
11
Turkbey EB, Nacif MS, Guo M, et al., Prevalence and correlates of myocardial scar in a US Cohort. JAMA, 2015, 314(18): 1945-1954. DOI: 10.1001/jama.2015.14849
12
Nayor M, Enserro DM, Xanthakis V, et al. Comorbidities and cardiometabolic disease: relationship with longitudinal changes in diastolic function. Heart Fail, 2018. 6(4): 317-325. DOI: 10.1016/j.jchf.2017.12.018
13
Schwartzkopff B, Motz W, Frenzel H, et al. Structural and functional alterations of the intramyocardial coronary arterioles in patients with arterial hypertension. Circulation, 1993, 88(3): 993-1003. DOI: 10.1161/01.CIR.88.3.993
14
McLenachan JM, Dargie HJ. Ventricular arrhythmias in hypertensive left ventricular hypertrophy: relationship to coronary artery disease, left ventricular dysfunction, and myocardial fibrosis. Am J Hypertens, 1990, 3(10Pt 1): 735-740. DOI: 10.1016/0049-3848(90)90297-P
15
Yilmaz A, Kindermann I, Kindermann M, et al. Comparative evaluation of left and right ventricular endomyocardial biopsy. Circulation, 2010, 122(9): 900-909. DOI: 10.1161/CIRCULATIONAHA.109.924167
16
Kim RJ, Wu E, Rafael A, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med, 2000. 343(20): 1445-1453. DOI: 10.1056/NEJM200011163432003
17
Iles LM, Ellims AH, Llewellyn H, et al. Histological validation of cardiac magnetic resonance analysis of regional and diffuse interstitial myocardial fibrosis. Eur Heart J Cardiovasc Imaging, 2015, 16(1): 14-22. DOI: 10.1093/ehjci/jeu182
18
Nordin S, Dancy L, Moon JC, et al. Clinical applications of multiparametric CMR in left ventricular hypertrophy. Int J Cardiovasc Imaging, 2018, 34(4): 577-585. DOI: 10.1007/s10554-018-1320-6
19
Mizuno R, Fujimoto S, Saito Y, et al. Non-invasive quantitation of myocardial fibrosis using combined tissue harmonic imaging and integrated backscatter analysis in dilated cardiomyopathy. Cardiology, 2007, 108(1): 11-17. DOI: 10.1159/000095595
20
Cui Y, Cao Y, Song J,et al. Association between myocardial extracellular volume and strain analysis through cardiovascular magnetic resonance with histological myocardial fibrosis in patients awaiting heart transplantation. J Cardiovasc Magn Reson, 2018, 20(1): 25-25. DOI: 10.1186/s12968-018-0445-z
21
Kammerlander AA, Marzluf BA, Zotter-Tufaro C, et al. T1 mapping by CMR imaging: from histological validation to clinical implication. Cardiovasc Imaging, 2016, 9(1): 14-23. DOI: 10.1016/j.jcmg.2015.11.002
22
Radenkovic D, Weingärtner S, Ricketts L, et al. T(1) mapping in cardiac MRI. Heart Fail revie, 2017, 22(4): 415-430. DOI: 10.1007/s10741-017-9627-2
23
Matsumoto S, Okuda S, Yamada Y, et al. Myocardial T1 values in healthy volunteers measured with saturation method using adaptive recovery times for T1 mapping (SMART1Map) at 1.5 T and 3 T. Heart and Vessels, 2019, 34(11): 1889-1894. DOI: 10.1007/s00380-019-01401-5
24
Al-Wakeel-Marquard N, Rastin S, Muench F, et al. Cardiac T1 mapping in congenital heart disease: bolus vs. infusion protocols for measurements of myocardial extracellular volume fraction. Int J Cardiovasc Imaging, 2017, 33(12): 1961-1968. DOI: 10.1007/s10554-017-1191-2
25
Heydari B, Jerosch-Herold M, Kwong RY. Assessment of myocardial ischemia with cardiovascular magnetic resonance. Prog Cardiovasc Di, 2012, 54(3): 191-203. DOI: 10.1016/j.pcad.2011.09.004
26
Lee JJ, Liu ST, Nacif MS, et al. Myocardial T1 and extracellular volume fraction mapping at 3 tesla. J Cardiovasc Magn Reson, 2011, 13(1): 75-75. DOI: 10.1186/1532-429X-13-75
27
Gai N, Turkbey EB, Nazarian S, et al. T1 mapping of the gadolinium-enhanced myocardium: adjustment for factors affecting interpatient comparison. Magn Reson Med, 2011, 65(5): 1407-1415. DOI: 10.1002/mrm.22716
28
Sibley CT, Noureldin RA, Gai N, et al. T1 Mapping in cardiomyopathy at cardiac MR: comparison with endomyocardial biopsy. Radiology, 2012, 265(3): 724-732. DOI: 10.1148/radiol.12112721
29
Mavrogeni S, Katsi V, Vartela V, et al. The emerging role of cardiovascular magnetic resonance in the evaluation of hypertensive heart disease. BMC Cardiovasc Disord, 2017, 17(1): 132-132. DOI: 10.1186/s12872-017-0556-8
30
Kammerlander AA, Marzluf BA, Zotter-Tufaro C, et al. T1 mapping by CMR imaging: from histological validation to clinical implication. Cardiovasc Imaging, 2016, 9(1): 14-23. DOI: 10.1016/j.jcmg.2015.11.002
31
Miller CR, Naish JH, Bishop P, et al. Comprehensive validation of cardiovascular magnetic resonance techniques for the assessment of myocardial extracellular volume. Cardiovasc Imaging, 2013, 6(3): 373-383. DOI: 10.1161/CIRCIMAGING.112.000192
32
Kuruvilla S, Janardhanan R, Antkowiak P, et al. Increased extracellular volume and altered mechanics are associated with LVH in hypertensive heart disease, not hypertension alone. Cardiovasc Imaging, 2015, 8(2): 172-180. DOI: 10.1016/j.jcmg.2014.09.020
33
Goldfarb JW, Zhao W. Effects of transcytolemmal water exchange on the assessment of myocardial extracellular volume with cardiovascular MRI. NMR Biomed, 2016, 29(4): 499-506. DOI: 10.1002/nbm.3488
34
Berk C, Fujiwara K, Lehoux S. ECM remodeling in hypertensive heart disease. J Clin Invest, 2007, 117(3): 568-575. DOI: 10.1172/JCI31044
35
Janardhanan R, Kramer CM. Imaging in hypertensive heart disease. Expert review of cardiovascular therapy, 2011, 9(2): 199-209. DOI: 10.1586/erc.10.190
36
de Carvalho FP, Erthal F, Azevedo CF. The role of cardiac MR imaging in the assessment of patients with cardiac amyloidosis. Magn Reson Imaging Clin North Am, 2019, 27(3): 453-463. DOI: https://DOI.org/10.1016/j.mric.2019.04.005
37
Wang SL, Hu HJ, Lu MJ, et al. Myocardial extracellular volume fraction quantified by cardiovascular magnetic resonance is increased in hypertension and associated with left ventricular remodeling. Eur Radiol, 2017, 27(11): 4620-4630. DOI: 10.1186/1532-429X-18-S1-P282
38
Brilla CG, Funck RC, Rupp H. Lisinopril-mediated regression of myocardial fibrosis in patients with hypertensive heart disease. Circulation, 2000, 102(12): 1388-1393. DOI: 10.1161/01.CIR.102.12.1388
39
Díez J, Querejeta R, López B, et al. Losartan-dependent regression of myocardial fibrosis is associated with reduction of left ventricular chamber stiffness in hypertensive patients. Circulation, 2002, 105(21): 2512-2517. DOI: 10.1161/01.CIR.000017264.66561.3D
40
Coelho-Filho OR, Shah RW, Mitchell R, et al. Quantification of cardiomyocyte hypertrophy by cardiac magnetic resonance: implications for early cardiac remodeling. Circulation, 2013, 128(11): 1225-1233. DOI: 10.1161/CIRCULATIONAHA.112.000438
41
Coelho-Filho OR, Shah RV, Neilan TG, et al. Cardiac magnetic resonance assessment of interstitial myocardial fibrosis and cardiomyocyte hypertrophy in hypertensive mice treated with spironolactone. J Am Heart Assoc, 2014. 3(3): e000790-e000790. DOI: 10.1161/JAHA.114.000790
42
Siepen FA, Baumgärtner C, Müller-Henessen M, et al. Variability of cardiovascular magnetic resonance (CMR) T1 mapping parameters in healthy volunteers during long-term follow-up. Open heart, 2018, 5(1): e000717-e000717. DOI: 10.1136/openhrt-2017-000717
43
Wu LM, Wu R, Ouyang RZ, et al. Fibrosis quantification in hypertensive heart disease with LVH and non-LVH: findings from T1 mapping and contrast-free cardiac diffusion-weighted imaging. Sci Rep, 2017. 7(1): 559-559. DOI: 10.1038/s41598-017-00627-5
44
Jiang M, Wang Z, Su X, et al. The significance of interstitial fibrosis on left ventricular function in hypertensive versus hypertrophic cardiomyopathy. Sci Rep, 2018, 8(1): 9995-9995. DOI: 10.1038/s41598-018-27049-1
45
Inui K, Tachi M, Saito T, et al. Superiority of the extracellular volume fraction over the myocardial T1 value for the assessment of myocardial fibrosis in patients with non-ischemic cardiomyopathy. Magn Reson Imaging, 2016, 34(8): 1141-1145. DOI: 10.1016/j.mri.2016.05.008
46
Swoboda PP, McDiarmid AK, Erhayiem B, et al. Assessing myocardial extracellular volume by T1 mapping to distinguish hypertrophic cardiomyopathy from Athlete's heart. J Am Coll Cardiol, 2016, 67(18): 2189-2190. DOI: 10.1016/j.jacc.2016.02.054
47
Garg P, Saunders LC, Swift AJ, et al. Role of cardiac T1 mapping and extracellular volume in the assessment of myocardial infarction. Anatol J Cardiol, 2018, 19(6): 404-411. DOI: 10.14744/AnatolJCardiol.2018.39586
48
Carrick D, Haig C, Rauhalammi S, et al. Prognostic significance of infarct core pathology revealed by quantitative non-contrast in comparison with contrast cardiac magnetic resonance imaging in reperfused ST-elevation myocardial infarction survivors. Eur Heart J, 2016, 37(13): 1044-1059. DOI: 10.1093/eurheartj/ehv372
49
Haaf P, Garg P, Messroghli DR, et al. Cardiac T1 mapping and extracellular volume (ECV) in clinical practice: a comprehensive review. J Cardiovasc Magn Reson, 2016, 18(1): 89-89. DOI: 10.1186/s12968-016-0308-4
50
Lurz JA, Luecke C, Lang D, et al. CMR-derived extracellular volume fraction as a marker for myocardial fibrosis: the importance of coexisting myocardial inflammation. Cardiovasc Imaging, 2018, 11(1): 38-45. DOI: 10.1016/j.jcmg.2017.01.025

上一篇 心脏磁共振在扩张型心肌病危险分层及预后评估中的应用进展
下一篇 乳腺磁共振背景实质强化的研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2