分享:
分享到微信朋友圈
X
综述
脑小血管病影像学标志物对脑卒中影响的研究进展
郑文乔 王效春

Cite this article as: Zheng WQ, Wang XC. Research progress on the effect of neuroimaging markers of cerebral small vessel disease on stroke[J]. Chin J Magn Reson Imaging, 2021, 12(4): 96-99.本文引用格式:郑文乔, 王效春. 脑小血管病影像学标志物对脑卒中影响的研究进展[J]. 磁共振成像, 2021, 12(4): 96-99. DOI:10.12015/issn.1674-8034.2021.04.024.


[摘要] 脑小血管病(cerebral small vessel disease,CSVD)属于脑血管疾病,主要累及小动脉、毛细血管和小静脉,尽管其病因多样,发病机制也各不相同,但CSVD具有相似的影像学标志物,这些标志物不仅是脑卒中发生风险增高的预测因子,亦与卒中复发、卒中较差预后和较低生活质量明显相关。笔者将对CSVD影像学标志物及其对脑卒中的影响进行综述,以指导临床将CSVD对卒中发生发展、治疗及预后的不良影响降至最低。
[Abstract] Cerebral small vessel disease (CSVD) belongs to cerebrovascular diseases which primarily affect the perforating arterioles, capillaries and venules, though they have multiple pathogenesis and etiologies, they are characterized with similar neuroimaging markers. These neuroimaging makers are not only the predictors of increased risk of stroke, they also associated with increased risk of stroke recurrence, worse clinical outcomes and poor life quality. In this paper, the neuroimaging markers of CSVD and their effects on the prognosis of stroke will be reviewed, so as to guide the clinical practice to minimize the adverse effects of CSVD on the occurrence, development, treatment and prognosis of stroke.
[关键词] 脑小血管病;影像学标志物;脑卒中;磁共振成像
[Keywords] cerebral small vessel disease;neuroimaging markers;stroke;magnetic resonance imaging

郑文乔 1   王效春 2*  

1 山西医科大学医学影像学院,太原 030001

2 山西医科大学第一医院影像科,太原 030001

王效春,E-mail:2010xiaochun@163.com

全体作者均声明无利益冲突。


基金项目: 国家自然科学基金 81971592 山西省重点研发计划 201903D321189
收稿日期:2021-01-14
接受日期:2021-01-29
DOI: 10.12015/issn.1674-8034.2021.04.024
本文引用格式:郑文乔, 王效春. 脑小血管病影像学标志物对脑卒中影响的研究进展[J]. 磁共振成像, 2021, 12(4): 96-99. DOI:10.12015/issn.1674-8034.2021.04.024.

       脑小血管病(cerebral small vessel disease,CSVD)在老年人群中普遍存在,可同时导致缺血性和出血性脑损伤。CSVD最常见的两个原因是高血压小动脉硬化和脑淀粉样血管病(cerebral amyloid angiopathy,CAA),其中高血压导致的CSVD是最常见类型。脑MRI是临床评估CSVD的常用方法和金标准,根据CSVD的国际神经影像学STRIVE (Standards for Reporting Vascular changes on Neuroimaging)标准[1],其影像学标志物包括近期皮质下小梗死(recent small subcortical infarcts,RSSI)、假定血管源性的腔隙灶(lacune of presumed vascular origin)、假定血管源性的白质高信号(white matter hyperintensities of presumed vascular origin,WMH)、血管周围间隙(perivascular space,PVS)、脑微出血(cerebral microbleed,CMB)和脑萎缩(brain atrophy)[2],现就CSVD影像学标志物及其分别对缺血性和出血性卒中的影响进行综述。

1 CSVD影像学标志物

1.1 近期皮质下小梗死

       约1/4的急性缺血性脑卒中由RSSI引起,影像学主要表现为腔隙性脑梗死,FLAIR序列显示为轴位上最大直径小于20 mm的高信号区,扩散加权成像(diffusion weighted imaging,DWI)的高信号可将其与陈旧性梗死灶区分[1]。RSSI多由穿支动脉闭塞导致的灌注区梗死所致,也可由心源性栓塞或颈动脉狭窄等引起[3]。流行病学证据表明[4],年龄、高血压、糖尿病、肥胖和吸烟是RSSI的独立危险因素,而代谢综合征和糖尿病则与其复发紧密相关。

1.2 假定血管源性的腔隙灶

       假定血管源性的腔隙灶在T2加权成像上表现为与脑脊液信号相类似的圆形或卵圆形腔隙,直径为3~15 mm,在FLAIR序列上表现为中心的脑脊液样低信号和周围高信号[5],腔隙灶大多为缺血性卒中所致,也可由出血性卒中演变而来,多无临床症状,只是在MRI检查时偶然发现,因此它与急性脑卒中产生的症状没有太多关联,而可能与更细微的神经损伤有关[6]

1.3 假定血管源性的白质高信号

       WMH在T1加权成像上常表现为双侧对称的斑片状等低信号,T2加权成像和FLAIR序列上表现为高信号。扩散张量成像(diffusion tensor imaging,DTI)可以观察到脑白质微结构完整性的损伤并预测WMH的进展[7]。WMH的发生率随着患者年龄增长而增加,80岁以上人群可达到90%,WMH在有缺血性或出血性卒中病史的人群中更为常见。其传统的危险因素包括高血压、年龄、糖尿病、吸烟等,而肾小球滤过率(estimated glomerular filtration rate,eGFR)升高也被证实与其相关[4]

1.4 血管周围间隙

       PVS在T2加权成像上定义为与脑脊液信号类似的圆形或管状高信号间隙,在FLAIR序列上通常为低信号,直径一般小于3 mm,而扩大的血管周围间隙直径可达到4 mm[1],使用7.0 T MRI的T2加权序列可以显著提高PVS的检出率。PVS也被称为Virchow-Robin空间,是血管内皮细胞和星形细胞终足之间的潜在腔隙,主要分为半卵圆中心的血管周围间隙(PVS in centrum semiovale,CSO-PVS)和基底节区的血管周围间隙(PVS in basal ganglia,BG-PVS),但也可见于海马和脑干等[8]。年龄和高血压是PVS最常见的血管危险因素,其他常见的危险因素有eGFR升高、蛋白尿和高尿酸血症[4]

1.5 脑微出血

       CMB在磁敏感加权成像(susceptibility weighted imaging,SWI)上更容易识别,表现为小的圆形或椭圆形低信号病灶,直径多在2~5 mm,也可达10 mm[1]。CMB由血管周围的含铁血黄素渗出并被巨噬细胞吞噬所形成,脑脊液白蛋白与血清白蛋白比值升高提示血脑屏障破坏和内皮功能障碍是CMB的重要发病机制[9]。常见的危险因素包括年龄、高血压、吸烟、高脂血症、肥胖、颈动脉内中膜增厚、动脉粥样硬化、低eGFR等,除此之外,降脂/抗血栓药物的应用和早期肾功能损伤的指标血清胱抑素C也增加了CMB的发病风险[4]

1.6 总CSVD评分

       既往研究主要关注单个影像学标志物,而这些标志物常同时存在,仅研究一个标志物是片面的。有学者[10]考察了WMH与假定血管源性的腔隙灶以及WMH与CMB的联合作用,发现与单一影像学标志物相比,两种标志物联合与脑卒中发生风险的关联性更高。CSVD影像学标志物通常相互关联而非单独发生,因此Staals等[11]首次提出了总CSVD评分的概念,通过综合不同的MRI特征(包括假定血管源性的腔隙灶、WMH、CMB和PVS)来评估CSVD负担(范围0~4分)。

2 CSVD影像学标志物对缺血性卒中的影响

2.1 预测卒中的发生风险

       诸多研究证实,CSVD影像学标志物均与缺血性卒中的发生与复发显著相关。JAMA的研究表明,无症状腔隙性脑梗死是脑卒中发生的独立预测因子,使卒中的发生风险较正常人高2~3倍,且无论是否伴有卒中的危险因素,均与其发生风险呈显著正相关[12, 13]。同时,腔隙灶作为腔隙性脑梗死的另一种影像学表现形式,存在于约20%的老年人群和超过50%的卒中高危人群中,也是卒中发生风险增加的重要影像学标志物之一[14]。WMH作为反映年龄、血管危险因素、缺血、炎症等累积损伤效应的最佳指标[15],也会增加卒中发生的风险,与没有或只有轻度WMH的患者相比,WMH负担较重的患者发生卒中的风险将增加1倍以上,且与卒中复发也有较强相关性[16]。近年,有研究[17]认为PVS亦与卒中复发的风险升高有关,在一项伴卒中高危因素参与者的研究[18]中发现,较高的BG-PVS负担(>20 PVSs)与缺血性卒中的复发显著相关。此外,CMB也与卒中复发风险升高有关,一项Meta分析[13]结果表明,CMB的存在与卒中风险在总体上显著相关。

       除单个影像学标志物外,总CSVD评分在预测卒中发生与复发面亦有较大作用,随访研究[19]发现,患者总CSVD评分越高,10年内发生卒中的风险将明显升高。

2.2 影响卒中的治疗效果

       CSVD影像学标志物的存在可能会影响患者的治疗效果,第三次国际卒中试验(the third international stoke trial,IST-3)[20]发现腔隙性脑梗死患者进行静脉溶栓治疗后颅内出血发生的风险较低,与非腔隙性脑梗死相比,前者3个月时的死亡率和颅内出血的发生率均偏低,在校正基线水平的年龄、性别等因素后结果仍具有统计学意义(P<0.001)[21]。WMH对急性缺血性脑卒中患者静脉溶栓治疗的影响还存在争议。有研究[22]指出WMH的严重程度与静脉溶栓治疗后颅内出血无显著相关性,但部分学者[23, 24]认为WMH是患者静脉溶栓不良预后的独立预测因子,Meta分析结果[25]也证实伴有WMH的患者颅内出血发生率明显增加,不良预后的发生率也显著升高。此外,CMB也对缺血性卒中患者的治疗有较大影响,CMB高负荷(>10 CMBs)患者是静脉溶栓治疗后发生颅内出血的高危人群,研究[26]表明,这类患者静脉溶栓治疗后死亡率较高;另一项前瞻性研究[27]考察了CMB对抗血小板治疗的影响,发现>5个CMB的患者一年内缺血性卒中复发的风险较高,但随时间发展,患者颅内出血的风险将在一年后逐渐超过缺血性卒中,表明在缺血性卒中一年内使用抗血小板药物对患者是有益的;另外,缺血性卒中合并房颤的CMB患者接受抗凝治疗后颅内出血的风险较高[28],这类患者进行长期抗凝治疗的安全性还存在争议,但有队列研究[29]发现,CMB是此类患者抗凝治疗后发生颅内出血的独立预测因子,且随CMB负荷的增加颅内出血的风险也显著增加。最近一项研究[30]表明,BG-PVS也可能是房颤患者长期抗凝治疗后颅内出血的预测因子,但这种相关性应该在更大的队列中进行研究。

       近年,有学者认为总CSVD评分也与缺血性脑卒中患者静脉溶栓后的不良预后有相关性,Liu等[31]发现总CSVD评分与卒中患者静脉溶栓治疗后神经功能损伤的严重程度独立相关,可以作为静脉溶栓治疗不良预后的预测指标。

2.3 影响卒中后的神经功能

       CSVD影像学标志物亦影响卒中患者的神经功能,可能会造成其短期预后不佳。研究发现[32, 33],WMH可以预测患者卒中后3个月的神经功能状况,患者的Fazekas评分越高,3个月的神经功能预后越差,同时改良Rankin量表(modified Rankin Scale,mRS)评分也越差,多项前瞻性研究一致证实了WMH的严重程度与临床预后间的相关性。最近一项研究[34]单独对脑室周围高信号(periventricular hyperintensity,PVH)和深部白质高信号(deep white matter hyperintensity,DWMH)进行了比较,发现PVH与卒中后较差的神经功能预后更为相关,提示PVH在预测脑卒中的功能预后方面较DWMH更敏感,其机制可能是由于脑室周围白质与脑血流总量下降的联系更为密切,当此处血液供应不稳定时就会发生更严重的缺血性损伤。此外,缺血性卒中早期使用DTI测量外观正常白质的扩散张量成像参数是卒中患者短期功能预后的独立预测因子,可作为评估卒中后功能预后的附加标志物[35]

       Huo等[34]的研究表明急性缺血性卒中患者的总CSVD评分与其发病3个月时的功能预后呈负相关,即患者的总CSVD评分越高,90 d mRS评分及死亡率都明显升高(由于研究者考虑到临床上SWI序列的普及性以及可行性,这项研究并未将CMB纳入总评分内)。

3 CSVD影像学标志物对出血性卒中的影响

       CSVD影像学标志物不仅对缺血性卒中有所影响,亦会对出血性卒中的发生发展及预后产生影响。较缺血性脑卒中而言,腔隙灶提示患者发生出血性卒中的风险可能更高[3],位于脑叶的腔隙灶与CAA患者颅内出血的发生独立相关,而位于深部的腔隙灶(包括基底节区、内囊、海马等)则与高血压性脑血管病发生的脑出血联系更为紧密[36, 37]。与此类似, CSO-PVS与CAA引发的脑叶微出血关联性较高,而BG-PVS则提示了高血压性脑血管病相关的脑深部出血[38]。高负荷(≥20 PVSs)的CSO-PVS还与颅内出血复发显著相关,可以作为复发性颅内出血的独立预测因子[39]。另外,有分析[13]指出CMB患者发生出血性卒中的风险将增加3倍,位于脑叶的CMB具有提示CAA相关的脑出血事件的倾向,而深部或幕下的CMB则对于出血性或缺血性卒中均有提示意义[40]

       CSVD影像学标志物也影响着出血性卒中患者的预后。研究表明,CMB的存在与出血性卒中患者的功能预后紧密联系,其负荷大小与患者卒中后的功能独立性呈显著负相关[41]。WMH也可以作为出血性卒中患者不良预后的独立预测因子,且随其严重程度增加,90 d时患者的死亡率及残疾率都明显升高[42]。此外,其余CSVD影像学标志物与出血性卒中预后之间的相关性还有待进一步研究。

       除单个影像学标志物外,总CSVD评分不仅与出血性卒中发生的风险增高相关,同时也是出血性卒中后功能预后较差的独立预测因子[43],因此临床医生在判断此类患者的预后时,应充分考虑到基线期患者的总CSVD评分情况。

4 小结

       CSVD影像学标志物作为脑卒中发生风险增加的独立预测因子,与卒中复发显著相关,并影响卒中患者早期神经功能的恢复,提示临床医师应早期干预、早期预防脑卒中的发生;诸多证据也表明CSVD影像学标志物可能导致患者在抗凝、抗血小板或静脉溶栓等治疗后继发出血性事件;此外,总CSVD评分与单个影像学标志物相比,可能能够更为全面地评估CSVD影像学标志物对脑卒中转归的影响。

1
Wardlaw JM, Smith EE, Biessels GJ, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration[J]. The Lancet Neurology, 2013, 12(8): 822-838. DOI: 10.1016/S1474-4422(13)70124-8.
2
黄一宁. 中国脑小血管病诊治共识[J]. 中华神经科杂志, 2015, 48(10): 838-844. DOI: 10.3760/cma.j.issn.1006-7876.2015.10.004.
Huang YN. Consensus on diagnosis and treatment of cerebral small vessel diseases in China[J]. Chin J Neurol, 2015, 48(10): 838-844. DOI: 10.3760/cma.j.issn.1006-7876.2015.10.004.
3
Pasi M, Cordonnier C. Clinical relevance of cerebral small vessel diseases[J]. Stroke, 2020, 51(1): 47-53. DOI: 10.1161/STROKEAHA.119.024148.
4
Chen X, Wang J, Shan Y, et al. Cerebral small vessel disease: neuroimaging markers and clinical implication[J]. J Neurology, 2019, 266(10): 2347-2362. DOI: 10.1007/s00415-018-9077-3.
5
关双, 徐蕊, 刘骏, 等. 脑小血管病诊治的研究进展[J]. 医学综述, 2019, 25(23): 4696-4701. DOI: 10.3969/j.issn.1006-2084.2019.23.019.
Guan S, Xu R, Liu J, et al. Progress in diagnosis and treatment of cerebral small vessel disease[J]. Med Recapitul, 2019, 25(23): 4696- 4701. DOI: 10.3969/j.issn.1006-2084.2019.23.019.
6
Hong YJ, Kim CM, Kim JE, et al. Regional amyloid burden and lacune in pure subcortical vascular cognitive impairment[J]. Neurobiol Aging, 2017, 55: 20-26. DOI: 10.1016/j.neurobiolaging.2017.03.010.
7
Van Leijsen EMC, Bergkamp MI, Van Uden IWM, et al. Progression of white matter hyperintensities preceded by heterogeneous decline of microstructural integrity[J]. Stroke, 2018, 49(6): 1386-1393. DOI: 10.1161/STROKEAHA.118.020980.
8
Adams HHH, Hilal S, Schwingenschuh P, et al. A priori collaboration in population imaging: The Uniform Neuro-Imaging of Virchow-Robin Spaces Enlargement consortium[J]. Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring, 2015, 1(4): 513-520. DOI: 10.1016/j.dadm.2015.10.004.
9
Shams S, Granberg T, Martola J, et al. Cerebral microbleeds topography and cerebrospinal fluid biomarkers in cognitive impairment[J]. J Cereb Blood Flow Metab, 2017, 37(3): 1006-1013. DOI: 10.1177/0271678X16649401.
10
Rensma SP, van Sloten TT, Launer LJ, et al. Cerebral small vessel disease and risk of incident stroke, dementia and depression, and all-cause mortality: A systematic review and meta-analysis[J]. Neurosci Biobehav Rev, 2018, 90:164-173. DOI: 10.1016/j.neubiorev.2018.04.003.
11
Staals J, Makin SD, Doubal FN, et al. Stroke subtype, vascular risk factors, and total MRI brain small-vessel disease burden[J]. Neurology, 2014, 83(14): 1228-1234. DOI: 10.1212/WNL.0000000000000837.
12
Gupta A, Giambrone AE, Gialdini G, et al. Silent brain infarction and risk of future stroke: a systematic review and meta-analysis[J]. Stroke, 2016, 47(3): 719-725. DOI: 10.1161/STROKEAHA.115.011889.
13
Debette S, Schilling S, Duperron MG, et al. Clinical significance of magnetic resonance imaging markers of vascular brain injury: a systematic review and meta-analysis[J]. JAMA neurology, 2019, 76(1): 81-94. DOI: 10.1001/jamaneurol.2018.3122.
14
Pasi M, Cordonnier C. Clinical relevance of cerebral small vessel diseases[J]. Stroke, 2020, 51(1): 47-53. DOI: 10.1161/STROKEAHA.119.024148.
15
Liang Y, Chen YK, Liu YL, et al. Cerebral small vessel disease burden is associated with accelerated poststroke cognitive decline: A 1-year follow-up study[J]. J Geriatr Psychiatry Neurol, 2019, 32(6): 336-343. DOI: 10.1177/0891988719862630.
16
Ryu WS, Schellingerhout D, Hong KS, et al. White matter hyperintensity load on stroke recurrence and mortality at 1 year after ischemic stroke[J]. Neurology, 2019, 93(6): e578-e589. DOI: 10.1212/WNL.0000000000007896.
17
Passiak BS, Liu D, Kresge HA, et al. Perivascular spaces contribute to cognition beyond other small vessel disease markers[J]. Neurology, 2019, 92(12): 1309-1321. DOI: 10.1212/WNL.0000000000007124.
18
Lau KK, Li L, Lovelock CE, et al. Clinical correlates, ethnic differences, and prognostic implications of perivascular spaces in transient ischemic attack and ischemic stroke[J]. Stroke, 2017, 48(6): 1470-1477. DOI: 10.1161/STROKEAHA.117.016694.
19
Yilmaz P, Ikram MK, Niessen WJ, et al. Practical small vessel disease score relates to stroke, dementia, and death[J]. Stroke, 2018, 49(12): 2857-2865. DOI: 10.1161/STROKEAHA.118.022485.
20
IST-3 Collaborative Group. The benefits and harms of intravenous thrombolysis with recombinant tissue plasminogen activator within 6 h of acute ischemic stroke (the third international stroke trial [IST-3]): a randomised controlled trial[J]. The Lancet, 2012, 379(9834): 2352- 2363. DOI: 10.1016/S0140-6736(12)60768-5.
21
Matusevicius M, Paciaroni M, Caso V, et al. Outcome after intravenous thrombolysis in patients with acute lacunar stroke: An observational study based on SITS international registry and a meta-analysis[J]. Inter J Stroke, 2019, 14(9): 878-886. DOI: 10.1177/1747493019840947.
22
Yang CM, Hung CL, Su HC, et al. Leukoaraiosis and risk of intracranial hemorrhage and outcome after stroke thrombolysis[J]. PLoS one, 2018, 13(5): e0196505. DOI: 10.1371/journal.pone.0196505.
23
Curtze S, Melkas S, Sibolt G, et al. Cerebral computed tomography-graded white matter lesions are associated with worse outcome after thrombolysis in patients with stroke[J]. Stroke, 2015, 46(6): 1554-1560. DOI: 10.1161/STROKEAHA.115.008941.
24
Charidimou A, Pasi M, Fiorelli M, et al. Leukoaraiosis, cerebral hemorrhage, and outcome after intravenous thrombolysis for acute ischemic stroke: A meta-analysis[J]. Stroke, 2016, 47(9): 2364-2372. DOI: 10.1161/STROKEAHA.116.014096.
25
舒秀琼, 肖劲松. 脑白质疏松对急性脑梗死患者溶栓治疗后症状性颅内出血及预后影响的Meta分析[J]. 临床神经病学杂志, 2019, 32(4): 263-267. DOI: 10.3969/j.issn.1004-1648.2019.04.007.
Shu XQ, Xiao JS. Meta-analysis of effect of leukoaraiosis on symptomatic intracranial hemorrhage and function prognosis in patients with cerebral infarction after thrombolysis[J]. J Clin Neurol, 2019, 32(4): 263-267. DOI: 10.3969/j.issn.1004-1648.2019.04.007.
26
Schlemm L, Endres M, Werring DJ, et al. Benefit of intravenous thrombolysis in acute ischemic stroke patients with high cerebral microbleed burden[J]. Stroke, 2020, 51(1): 232-239. DOI: 10.1161/STROKEAHA.119.027633.
27
Lau KK, Lovelock CE, Li L, et al. Antiplatelet treatment after transient ischemic attack and ischemic stroke in patients with cerebral microbleeds in 2 large cohorts and an updated systematic review[J]. Stroke, 2018, 49(6): 1434-1442. DOI: 10.1161/STROKEAHA.117.020104.
28
Charidimou A, Boulouis G, Shams S, et al. Intracerebral haemorrhage risk in microbleed-positive ischemic stroke patients with atrial fibrillation: Preliminary meta-analysis of cohorts and anticoagulation decision schema[J]. J Neurological Sci, 2017, 378: 102-109. DOI: 10.1016/j.jns.2017.04.042.
29
Wilson D, Ambler G, Shakeshaft C, et al. Cerebral microbleeds and intracranial haemorrhage risk in patients anticoagulated for atrial fibrillation after acute ischaemic stroke or transient ischemic attack (CROMIS-2): a multicentre observational cohort study[J]. The Lancet Neurology, 2018, 17(6): 539-547. DOI: 10.1016/S1474-4422(18)30145-5.
30
Best JG, Barbato C, Ambler G, et al. Association of enlarged perivascular spaces and anticoagulant-related intracranial hemorrhage[J]. Neurology, 2020, 95(16): e2192-e2199. DOI: 10.1212/WNL.0000000000010788.
31
Liu X, Li T, Diao S, et al. The global burden of cerebral small vessel disease related to neurological deficit severity and clinical outcomes of acute ischemic stroke after IV rt-PA treatment[J]. Neurol Sci, 2019, 40(6): 1157-1166. DOI: 10.1007/s10072-019-03790-x.
32
Zerna C, Yu AYX, Modi J, et al. Association of white matter hyperintensities with short-term outcomes in patients with minor cerebrovascular events[J]. Stroke, 2018, 49(4): 919-923. DOI: 10.1161/STROKEAHA.117.017429.
33
Ryu WS, Woo SH, Schellingerhout D, et al. Stroke outcomes are worse with larger leukoaraiosis volumes[J]. Brain, 2017, 140(1): 158-170. DOI: 10.1093/brain/aww259.
34
Huo Y, Li Q, Zhang W, et al. Total small vessel disease burden predicts functional outcome in patients with acute ischemic stroke[J]. Front in Neurology, 2019, 10: 808. DOI: 10.3389/fneur.2019.00808.
35
Sagnier S, Catheline G, Dilharreguy B, et al. Normal-appearing white matter integrity is a predictor of outcome after ischemic stroke[J]. Stroke, 2020, 51(2): 449-456. DOI: 10.1161/STROKEAHA.119.026886.
36
Linn J, Halpin A, Demaerel P, et al. Prevalence of superficial siderosis in patients with cerebral amyloid angiopathy[J]. Neurology, 2010, 74(17): 1346-1350. DOI: 10.1212/WNL.0b013e3181dad605.
37
Tsai HH, Pasi M, Tsai LK, et al. Distribution of lacunar infarcts in Asians with intracerebral hemorrhage: a magnetic resonance imaging and amyloid positron emission tomography study[J]. Stroke, 2018, 49(6): 1515-1517. DOI: 10.1161/STROKEAHA.118.021539.
38
Wang X, Feng H, Wang Y, et al. Enlarged perivascular spaces and cerebral small vessel disease in spontaneous intracerebral hemorrhagic patients[J].Front in Neurology, 2019, 10: 881. DOI: 10.3389/fneur.2019.00881.
39
Boulouis G, Charidimou A, Pasi M, et al. Hemorrhage recurrence risk factors in cerebral amyloid angiopathy: Comparative analysis of the overall small vessel disease severity score versus individual neuroimaging markers[J]. J Neurological Sci, 2017, 380: 64-67. DOI: 10.1016/j.jns.2017.07.015.
40
Akoudad S, Portegies ML, Koudstaal PJ, et al. Cerebral microbleeds are associated with an increased risk of stroke: the Rotterdam study[J]. Circulation, 2015, 132(6): 509-516. DOI: 10.1161/CIRCULATIONAHA.115.016261.
41
Lioutas VA, Wu B, Norton, et al. Cerebral small vessel disease burden and functional and radiographic outcomes in intracerebral hemorrhage[J]. J Neurol, 2018, 265(12): 2803-2814. DOI: 10.1007/s00415-018-9059-5.
42
Uniken VSM, Marini S, Lena UK, et al. Impact of cerebral small vessel disease on functional recovery after intracerebral hemorrhage[J]. Stroke, 2019, 50(10): 2722-2728. DOI: 10.1161/STROKEAHA.119.025061.
43
Sato S, Delcourt C, Heeley E, et al. Significance of cerebral small-vessel disease in acute intracerebral hemorrhage[J]. Stroke, 2016, 47(3): 701-707. DOI: 10.1161/STROKEAHA.115.012147.

上一篇 脑静脉窦血栓形成预后评估的影像学研究进展
下一篇 磁共振神经突定向扩散与密度成像对脑胶质瘤分级的研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2