分享:
分享到微信朋友圈
X
临床研究
临床指标联合MRI评估胎盘植入高危患者术中子宫切除风险
钟淑媛 丁志广 徐坚民 胡根文 苏放明 成志强

Cite this article as: Zhong SY, Ding ZG, Xu JM, et al. Combining clinical characteristics and specific magnetic resonance imaging features to predict the risk of hysterectomy in gravid patients at high risk for placenta accreta spectrum disorders[J]. Chin J Magn Reson Imaging, 2021, 12(5): 35-39.本文引用格式:钟淑媛, 丁志广, 徐坚民, 等. 临床指标联合MRI评估胎盘植入高危患者术中子宫切除风险[J]. 磁共振成像, 2021, 12(5): 35-39. DOI:10.12015/issn.1674-8034.2021.05.008.


[摘要] 目的 探索临床指标联合MRI征象评估胎盘植入谱系疾病(placenta accreta spectrum,PAS)高危患者术中子宫切除风险的价值。材料与方法 回顾性分析251例妊娠晚期(32周以上) PAS高危孕妇的MR图像及临床资料,包括64例子宫切除患者及187例子宫保留患者,对相关临床指标及MRI征象进行单因素及多因素分析,构建预测PAS高危患者子宫切除风险Logistic回归模型。结果 单因素分析显示,剖宫产次数、前置胎盘、T2WI胎盘内暗带、胎盘膨出、子宫肌层变薄或消失、膀胱壁T2WI低信号中断、局部外突性肿块和子宫浆膜面异常血管在两组之间差异具有统计学意义(P<0.01)。Logistic回归分析显示,剖宫产次数(X1)、T2WI胎盘内暗带(X2)、胎盘膨出(X3)、子宫浆膜面异常血管(X4)是PAS高危患者子宫切除的独立危险因素,联合预测模型为Logistic (P)=-4.713+0.960X1+1.477X2+1.569X3+1.901X4,模型AUC值0.915 (95% CI:0.873~0.946),敏感度、特异度分别为87.50%、81.82%。校准曲线显示模型校准能力好。结论 基于临床指标及MRI征象,有望产前为PAS高危患者子宫切除风险的评估提供依据,改善患者预后。
[Abstract] Objective To explore the value of clinical characteristics combined with MRI features for predicting the risk of intraoperative hysterectomy in gravid patients at high risk for placenta accreta spectrum (PAS). Materials andMethods Retrospectively analyzed the MRI images and clinical data of 251 patients (including 64 patients who required hysterectomy and 187 patients did not) who underwent MRI during the third trimester from January 2010 to March 2020 with high risk for PAS disorders according to FIGO guidelines. Clinical characteristics included age, gestational age at delivery, number of cesarean deliveries, gravidity, prior other uterine surgeries and placenta previa. Two radiologists independently evaluated the following MRI features according to the consensus from Society of Abdominal Radiology and European Society of Urogenital Radiology: T2-dark intraplacental bands, placental bulge, loss of retroplacental T2-hypointense line, myometrial thinning, uterine serosa hypervascularity, focal exophytic mass and disruption of low-T2 bladder wall. Univariate analyses of clinical characteristics and MRI features were performed between patients with hysterectomy and those who without. Absence or uncertainty of MRI features was recorded as negative while presence as positive. Logistic regression was used to identify any clinical or MRI features in predicting hysterectomy. ROC analysis and calibration curve were performed to test the predictive power.Results Significant differences were found in number of cesarean deliveries, placenta previa and all seven MRI features except for loss of retroplacental T2-hypointense line between patients with hysterectomy and those who without (P<0.01). The number of cesarean deliveries (X1: OR=2.611, P=0.017), T2-dark intraplacental bands (X2: OR=4.379, P=0.001), placental bulge (X3: OR=4.804, P=0.000) and uterine serosa hypervascularity (X4: OR=6.691, P=0.000) were independent risk factors for intraoperative hysterectomy. The Logistic regression model combining the four independent risk factors to forecast intraoperative hysterectomy was Logistic (P)=-4.713+0.960X1+1.477X2+1.569X3+1.901X4. The AUC of the combined risk model reached 0.915, which was larger than that each of the four independent risk factors (P<0.01). The diagnostic sensitivity and specificity of the model were 87.50% and 81.82%. The model illustrated good calibration.Conclusions Combining clinical characteristics and specific MRI features is benefit to the assessment of the risk of intraoperative hysterectomy in gravid patients at high risk of PAS and improve their prognosis.
[关键词] 胎盘植入谱系疾病;磁共振成像;产前诊断;高危妊娠患者;子宫切除
[Keywords] placenta accreta spectrum;magnetic resonance imaging;prenatal diagnosis;high-risk gravid patient;hysterectomy

钟淑媛 1   丁志广 1   徐坚民 1*   胡根文 1   苏放明 2   成志强 3  

1 暨南大学第二临床医学院(深圳市人民医院)放射科,深圳 518000

2 暨南大学第二临床医学院(深圳市人民医院)产科,深圳 518000

3 暨南大学第二临床医学院(深圳市人民医院)病理科,深圳 518000

徐坚民,E-mail:13600163204@163.com

全体作者均声明无利益冲突。


基金项目: 深圳市科技计划基础研究项目 JCYJ20180228164641207
收稿日期:2020-08-23
接受日期:2021-03-25
DOI: 10.12015/issn.1674-8034.2021.05.008
本文引用格式:钟淑媛, 丁志广, 徐坚民, 等. 临床指标联合MRI评估胎盘植入高危患者术中子宫切除风险[J]. 磁共振成像, 2021, 12(5): 35-39. DOI:10.12015/issn.1674-8034.2021.05.008.

       胎盘植入谱系疾病(placenta accreta spectrum,PAS)是产科的危急重症,是导致产妇子宫切除的重要原因之一[1]。术前预判子宫切除较术中判断更有利于规避产妇及新生儿不良结局[2]。目前MRI在PAS产前诊断的应用已日趋广泛,大量文献多集中于MRI对PAS的诊断效能[3],对PAS高危患者子宫切除或保留的预测价值缺乏相应研究。笔者回顾性分析本院251例妊娠晚期PAS高危孕妇的MR图像,并联合临床指标,探索PAS高危患者子宫切除的独立危险因素,构建预测模型,以期为产前评估PAS高危患者子宫切除或保留提供依据。

1 材料与方法

1.1 一般资料

       本院2010年7月至2020年3月共268名具有PAS高危因素[4]、临床或超声怀疑PAS孕妇于妊娠晚期(32周以上)行胎盘磁共振检查,因图像质量差或扫描序列不同或合并子宫畸形各排除2例,另6例外院分娩无临床或病理结果及5例因发生羊水栓塞于术中或二次手术切除子宫亦除外,最终251名孕妇纳入研究。所有患者于MRI检查后6周内由具有20年以上丰富经验的产科医生行剖宫产手术。PAS诊断标准采用术中所见、诊断及术后病理相结合,根据术中所见胎盘侵袭程度及镜下绒毛组织侵入深度分为胎盘粘连、胎盘植入、胎盘穿透三型[5]。经病历系统收集患者临床资料包括:年龄、剖宫产次数、宫腔操作史、孕周、孕次、前置胎盘(包括完全性、部分性及边缘性前置胎盘)、产程出血量、PAS类型。本研究为回顾性研究,经过本单位医学伦理委员会批准(批准文号:KY-LL-2021004-01),免除受试者知情同意。

1.2 检查方法

       采用Simens Avanto 1.5 T MRI扫描仪进行扫描,相控阵线圈。孕妇取仰卧位,头先进。所有患者均行横断位、矢状位、冠状位三个方位扫描,扫描序列及参数:(1) T2WI半傅立叶采集单次激发快速自旋回波(T2-weighted half-Fourier acquisition single-shot turbo spin echo,T2-Haste)序列,TR 1000 ms,TE 82~87 ms,翻转角度150°;(2) T2WI真稳态进动快速成像(T2-weighted true fast imaging with steady-state precession,T2-True FISP)序列,TR 3.2~3.8 ms,TE 1.3~1.9 ms,翻转角度60°;(3) T1WI快速小角度激发(fast low angle shot,FLASH)序列,TR 125 ms,TE 2.43 ms,翻转角度70°,屏气扫描。各序列层厚4~6 mm,层间距1.2~1.8 mm,视野370~400 mm,矩阵256×224。

1.3 图像分析

       在进行MR图像分析前,由1名具有29年MRI诊断经验的放射科医生参考既往文献报道[6, 7]对2名分别具有1年及2年经验的放射科医生进行培训2个月。2名医生在不知道患者的超声检查、临床及病理结果的情况下,独立对251例PAS高危晚孕患者MRI征象进行评价,0分为征象不存在或不确定,1分为征象存在。2名医生出现意见分歧时,与高年资医生进行讨论并最终达成一致意见。MRI征象(图1)包括:(1) T2WI胎盘内暗带:在T2-Haste和T2-True FISP序列中,从胎盘-子宫肌层交界面延伸至胎盘内的条状低信号带,粗细不均,最大直径大于2 cm;(2)胎盘膨出:指胎盘局部膨出进入子宫肌层,可合并子宫肌层连续性中断及子宫外轮廓变形;(3)胎盘-子宫交界面低信号线消失或中断;(4)子宫肌层变薄或消失:子宫肌层变薄小于1 mm,肌层渐近性消失;(5)膀胱壁T2WI低信号中断;(6)局部外突性肿块:胎盘穿透子宫壁,呈膀胱内或宫旁肿块影;(7)子宫浆膜面异常血管:子宫下段胎盘附着处子宫浆膜面密集排列的流空血管。

图1  PAS相关MRI征象。A:T2-Haste序列上见从胎盘-子宫肌层交界面延伸至胎盘内的低信号条带(星),局部膀胱壁低信号带连续性中断(箭);B:子宫前下壁胎盘向外膨出进入子宫肌层(箭),正常胎盘-子宫交界面低信号线中断,子宫下段肌层变薄;C:胎盘穿透子宫肌层形成宫旁肿块(箭);D:子宫浆膜下见密集排列的流空血管(箭)
Fig. 1  MRI features of PAS. A: The T2-Haste sequence demonstrates the low signal band (star) extended from the uteroplacental interface to intraplacental region and disruption of low-T2 bladder wall (arrow). B: The placenta of the anterior inferior wall of the uterus bulges outward into the myometrium (arrow), with the loss of uteroplacental interface and myometrial thinning. C: The placenta protrudings through the uterine wall and presents as a parauterine mass (arrow). D: The T2-Haste sequence shows the intensive flow-void vessls along the uterine serosa (arrow).

1.4 统计学分析

       采用SPSS 22.0、Medcale 18.2.1软件进行统计分析。P<0.05认为差异有统计学意义。二位阅片者对MRI征象判读的一致性采用Kappa检验。对临床指标和MRI征象与子宫切除的相关性进行单因素和多因素分析,单因素分析符合正态分布计量资料采用两独立样本的t检验,不符合正态分布数据采用Wilcoxon-Mann-Whitney秩和检验,计数资料采用χ2检验。多因素分析采用Logistic回归,并构建风险预测模型,采用ROC曲线及Hosmer-Lemeshow拟合优度检验评价模型区分度及校准度,AUC比较采用DeLong检验。

2 结果

2.1 一般情况

       本研究共纳入251例患者,子宫切除组64例,切除原因包括胎盘广泛植入、胎盘剥离非常困难甚至无法剥离或剥离胎盘时出现不可控制大出血;子宫保留组187例。入组患者年龄(32.80±4.59)岁,生产孕周(36.90±1.16)周,孕次1~11次,既往有1次剖宫产史188例,有2次及以上剖宫产史29例。根据诊断标准,无PAS 70例,胎盘粘连91例,胎盘植入与胎盘穿透各45例;子宫切除组平均出血量(2472.66±268.65) mL,子宫保留组平均出血量(873.42±53.73) mL。

2.2 一致性分析

       2名影像医师对PAS高危患者MRI征象的判读Kappa值均大于0.4,局部外突性肿块一致性好(表1)。

表1  2名阅片者MRI征象判读一致性比较
Tab. 1  Inter-observer agreement for MRI features

2.3 单因素分析

       由于两组患者均约有75%患者既往有1次剖宫产史,两组剖宫产次数中位数及上下四分位数相同,但子宫保留组16.6%患者既往无剖宫产史,子宫切除组20.3%患者有2次以上的剖宫产史,两组剖宫产次数差异有统计学意义。此外,两组之间,前置胎盘、T2WI胎盘内暗带、胎盘膨出、子宫肌层变薄或消失、膀胱壁T2WI低信号中断、局部外突性肿块和子宫浆膜面异常血管差异亦均有统计学意义(均P<0.01)。胎盘-子宫交界面低信号线消失或中断、年龄、孕周、孕次和宫腔操作史两组差异均无统计学意义(均P>0.05);所有出现膀胱壁T2WI低信号中断及局部外突性肿块患者均切除子宫(表2)。

表2  临床指标及MRI征象与PAS高危患者子宫切除的关系
Tab. 2  Clinical characteristics and MRI features of patients with high risk of PAS

2.4 多因素分析

       对单因素分析差异有统计学意义的产前临床指标剖宫产次数、前置胎盘及MRI征象进行多因素分析,结果显示,剖宫产次数(X1)、T2WI胎盘内暗带(X2)、胎盘膨出(X3)、子宫浆膜面异常血管(X4)为PAS高危患者子宫切除的独立危险因素(表3),各独立危险因素对PAS患者子宫切除的预测效能见表4。使用Logistic回归构建风险预测模型,Logistic (P)=-4.713+0.960X1+1.477X2+1.569X3+1.901X4,绘制该模型ROC曲线(图2),AUC为0.915 (95% CI:0.873~0.946),与各独立危险因素的AUC相比,差异具有统计学意义(P<0.05),模型敏感度、特异度、阳性预测值及阴性预测值分别为87.50%、81.82%、62.2%、95.0%。Hosmer-Lemeshow拟合优度检验示χ2=1.994,P=0.920;校准曲线图(图3)显示校准曲线接近45°理想曲线,模型校准能力好。

图2  风险预测模型及各危险因素ROC曲线
图3  校准曲线
Fig. 2  ROC curve of the combined risk model and each risk factor for intraoperative hysterectomy.
Fig. 3  Calibration curve for the combined risk model.
表3  PAS高危患者子宫切除多因素分析
Tab. 3  Multivariate analysis of hysterectomy in patients with high risk of PAS
表4  各独立危险因素对PAS高危患者子宫切除的诊断效能
Tab. 4  Predictive performance of risk factors for hysterectomy in patients with high risk of PAS

3 讨论

3.1 MRI在PAS高危患者中的应用现状

       PAS的最佳治疗方法仍未明确,2018年美国妇产科医师协会建议视术中情况决定保留或切除子宫[8]。术前预测保留子宫的可能性,组织多学科团队对希望继续生育的产妇有重要的临床意义。近来,将MRI应用转化为相关临床决策或与临床指标结合也初见报道,Bourgioti等[9]报道了根据MRI征象数目预测子宫切除、术中出血和新生儿不良结局等,Chen等[10]联合临床指标与MRI征象构建评分系统预测术中大出血。

       PAS高危患者MRI检查推荐时间为24~30周[11],文献报道多达17个MRI征象与PAS相关[12],且多集中在对胎盘植入深度的研究,对征象判断的一致性和诊断效能仍存在较大的差异和不同观点[13],尤其是32周以上。本研究参照2020年腹部放射学学会和欧洲泌尿生殖放射学学会推荐的PAS征象[6],由2名经过培训的低年资住院医师进行评估,平均检查孕周(35.52±1.84)周,结果表明医生间MRI征象评估一致性中等至好。

3.2 临床指标及MRI征象与PAS高危患者子宫切除的相关性

       本研究针对晚孕期PAS的MRI征象联合临床指标评估手术切除子宫风险,结果表明剖宫产次数、前置胎盘、T2WI胎盘内暗带、胎盘膨出、子宫肌层变薄或消失、膀胱壁T2WI低信号中断、局部外突性肿块和子宫浆膜面异常血管与PAS高危患者术中子宫切除有关,其中,剖宫产次数、T2WI胎盘内暗带、胎盘膨出和子宫浆膜面异常血管是PAS高危患者子宫切除的独立危险因素。

       就单一征象而言,胎盘膨出和子宫浆膜面异常血管是较理想的独立危险因素。胎盘膨出被认为是诊断PAS可靠的征象[7,14],由于胎盘绒毛膜深入肌层或穿过子宫肌层而导致邻近肌层中断,胎盘向外凸出,甚至造成子宫轮廓曲线扭曲。Jha等[15]发现该征象敏感度及特异度分别达97%、96%,联合其他征象可100%提示子宫肌层侵犯。在本研究中,该征象敏感度及特异度均约80%,与术中子宫切除密切相关。

       子宫浆膜面异常血管是近几年比较关注PAS的MRI征象,表现为子宫下段沿子宫浆膜紧密排列的血管,与诊断PAS及术中大出血有关[7]。本研究中,子宫浆膜面异常血管可用于PAS高危患者术中子宫切除的风险评估,优势比高于胎盘膨出。造成子宫浆膜面异常血管可能是因为绒毛组织刺激子宫胎盘循环血管的异常扩张或新生血管和动静脉瘘形成[16]。对异常血管的了解,有利于产科医生对术区的选择,减少出血。

       T2WI胎盘内暗带被认为是最有用MRI征象,并且在不同的观察者之间具有良好的一致性[17]。Linduska等[18]认为T2WI胎盘内暗带可能是由于胎盘梗死后出现纤维组织沉积、钙化所致。Zhang等[19]研究指出该征象可预测术中大出血及大量输血,Chen等[20]研究发现,T2WI胎盘内暗带是合并前置胎盘PAS患者出现术中大出血及子宫切除的独立危险因素,与本研究结果相符。

       剖宫产次数和前置胎盘与PAS的发生密切相关,有5次剖宫产史产妇PAS发病率为1次剖宫产史的10倍[21],其敏感度高,特异度低,Chu等[22]认为联合1~2个MRI征象可以提高其对PAS的诊断效能。

3.3 PAS高危患者子宫切除风险预测模型

       Clark等23发现胎盘膨出、T2WI胎盘内暗带、胎盘异质性等征象与PAS孕妇子宫切除相关,但未进一步分析征象敏感度、特异度及联合使用的效能。本研究联合应用四个独立危险因素,构建PAS高危患者子宫切除风险产前预测模型,使其优势互补,提高了PAS高危患者术中子宫切除风险的预测效能,又兼顾了预测的敏感度和特异度,拟合优度检验结果显示其拟合度良好,提示该预测模型具有良好的区分度及校准度,可对产前评估患者是否存在子宫切除风险提供依据。

       本研究存在以下局限性:(1)本研究为单中心回顾性研究,主要考虑胎盘因素导致的子宫切除,因此除外了5例由羊水栓塞导致子宫切除患者,未涵盖更多其他因素;(2) MRI征象判断存在一定的主观性,缺乏量化指标。(3)子宫切除与医师及患者意愿有关,本研究产妇治疗决策由三级甲等医院具有20年经验产科医生参与决定。

       本研究结果表明,基于孕妇临床指标及MRI征象,有望产前为PAS高危患者子宫切除风险的评估提供依据,改善患者预后。当出现上述独立危险因素时,应做好充分的围术期准备,组织多学科团队合作,以改善产妇和新生儿结局。

1
Machado LSM. Emergency peripartum hysterectomy: incidence, indications, risk factors and outcome[J]. N Am J Med Sci, 2011, 3(8): 358-361. DOI: 10.4297/najms.2011.358.
2
Rahila I, Zubaida M, Samia H, et al. A comparison of antenatally and intraoperatively diagnosed cases of placenta accreta spectrum[J]. J Turk Ger Gynecol Assoc, 2020, 21(2): 84-89. DOI: 10.4274/jtgga.galenos.2019.2019.0063.
3
郑慈娜, 杨天和, 林建忠, 等. 胎盘植入的磁共振成像诊断价值[J]. 磁共振成像, 2017, 8(8): 593-597. DOI: 10.12015/issn.1674-8034.2017.08.007.
Zheng CN, Yang TH, Lin JZ, et al. MRI in the diagnosis of placenta accreta[J]. Chin J Magn Reson Imaging, 2017, 8(8): 593-597. DOI: 10.12015/issn.1674-8034.2017.08.007.
4
Jauniaux E, Chantraine F, Silver RM, et al. FIGO consensus guidelines on placenta accreta spectrum disorders: epidemiology[J]. Int J Gynaecol Obstet, 2018, 140(3): 265-273. DOI: 10.1002/ijgo.12407.
5
Laurence B, Vinciane P, Sandra B, et al. Suspected invasive placenta: evaluation with magnetic resonance imaging[J]. Eur Radiol, 2014, 24(12): 3150-3160. DOI: 10.1007/s00330-014-3354-z.
6
Jha P, Pōder L, Bourgioti C, et al. Society of abdominal radiology (SAR) and European Society of Urogenital Radiology (ESUR) joint consensus statement for MR imaging of placenta accreta spectrum disorders[J]. Eur Radiol, 2020, 30(5): 2604-2615. DOI: 10.1007/s00330-019-06617-7.
7
Chen X, Shan R, Zhao L, et al. Invasive placenta previa: placental bulge with distorted uterine outline and uterine serosal hypervascularity at 1.5T MRI: useful features for differentiating placenta percreta from placenta accreta[J]. Eur Radiol, 2017, 28(2): 708-717. DOI: 10.1007/s00330-017-4980-z.
8
American College of Obstetricians and Gynecologists. Obstetric Care Consensus No. 7: Placenta Accreta Spectrum[J]. Obstet Gynecol, 2018, 132(6): 1519-1521. DOI: 10.1097/AOG.0000000000002984.
9
Bourgioti C, Zafeiropoulou K, Fotopoulos S, et al. MRI prognosticators for adverse maternal and neonatal clinical outcome in patients at high risk for placenta accreta spectrum (PAS) disorders[J]. J Magn Reson Imaging, 2019, 50(2): 602-618. DOI: 10.1002/jmri.26592.
10
Chen D, Xu J, Ye P, et al. Risk scoring system with MRI for intraoperative massive hemorrhage in placenta previa and accreta[J]. J Magn Reson Imaging, 2020, 51(3): 947-958. DOI: 10.1002/jmri.26922.
11
Kanal E, Barkovich AJ, Bell C, et al. ACR guidance document on MR safe practices: 2013[J]. J Magn Reson Imaging, 2013, 37(3): 501-530. DOI: 10.1002/jmri.24011.
12
Lax A, Prince MR, Mennitt KW, et al. The value of specific MRI features in the evaluation of suspected placental invasion[J]. Magn Reson Imaging, 2007, 25(1): 87-93. DOI: 10.1016/j.mri.2006.10.007.
13
Einerson BD, Rodriguez CE, Silver RM, et al. Accuracy and interobserver reliability of magnetic resonance imaging for placenta accreta spectrum disorders[J]. Am J Perinat, 2020, DOI: 10.1055/s-0040-1701196.
14
Huang F, Lai Q, Wu H, et al. Application of indirect signs of magnetic resonance imaging (MRI) in prenatal diagnosis of abnormally invasive placenta[J]. Med Sci Monit, 2020, 26(6): e923272. DOI: 10.12659/MSM.923272.
15
Jha P, Rabban J, Chen L M, et al. Placenta accreta spectrum: value of placental bulge as a sign of myometrial invasion on MR imaging[J]. Abdom Radiol, 2019, 44(7): 2572-2581. DOI: 10.1007/s00261-019-02008-0.
16
Chantraine F, Blacher S, Berndt S, et al. Abnormal vascular architecture at the placental-maternal interface in placenta increta[J]. Am J Obstet Gynecol, 2012, 207(3): 181-188. DOI: 10.1016/j.ajog.2012.06.083.
17
Goergen SK, Posma E, Wrede D, et al. Interobserver agreement and diagnostic performance of individual MRI criteria for diagnosis of placental adhesion disorders[J]. Clin Radiol, 2018, 73(10): 901-908. DOI: 10.1016/j.crad.2018.05.021.
18
Linduska N, Dekan S, Messerschmidt A, et al. Placental pathologies in fetal MRI with pathohistological correlation[J]. Placenta, 2009, 30(6): 555-559. DOI: 10.1016/j.placenta.2009.03.010.
19
Zhang J, Xu H, Xin Y, et al. Assessment of the massive hemorrhage in placenta accreta spectrum with magnetic resonance imaging[J]. Exp Ther Med, 2020, 19(3): 2367-2376. DOI: 10.3892/etm.2020.8457.
20
Chen T, Xu XQ, Shi HB, et al. Conventional MRI features for predicting the clinical outcome of patients with invasive placenta[J]. Diagn Interv Radiol, 2017, 23(3): 173. DOI: 10.5152/dir.2016.16412.
21
Marshall NE, Fu R, Guise J. Impact of multiple cesarean deliveries on maternal morbidity: a systematic review[J]. Am J Obstet Gynecol, 2011, 205(3): 261-262. DOI: 10.1016/j.ajog.2011.06.035.
22
Chu C, Zhao S, Ding M, et al. Combining clinical characteristics and specific magnetic resonance imaging features to predict placenta accreta[J]. J Comput Assist Tomo, 2019, 43(5): 775-779. DOI: 10.1097/RCT.0000000000000894.
23
Clark HR, Ng TW, Khan A, et al. Placenta accreta spectrum: correlation of MRI parameters with pathologic and surgical outcomes of high-risk pregnancies[J]. AJR Am J Roentgenol, 2020, 214(6): 1417-1423. DOI: 10.2214/AJR.19.21705.

上一篇 双参数磁共振成像在前列腺癌检出方面的应用——基于前列腺癌根治术病理大切片为对照的研究
下一篇 跑步相关因素对男性业余马拉松运动员大腿肌肉横截面积影响的磁共振研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2