分享:
分享到微信朋友圈
X
综述
MRI对肝纤维化及肝硬化定量评估的研究进展
刘冠辰 刘鹏飞

Cite this article as: Liu GC, Liu PF. Progress in quantitative assessment of liver fibrosis and cirrhosis by MRI[J]. Chin J Magn Reson Imaging, 2021, 12(5): 114-117.本文引用格式:刘冠辰, 刘鹏飞. MRI对肝纤维化及肝硬化定量评估的研究进展[J]. 磁共振成像, 2021, 12(5): 114-117. DOI:10.12015/issn.1674-8034.2021.05.028.


[摘要] 肝纤维化是一种可逆的创伤修复反应,肝纤维化的早期发现和分期可以降低其危险性。肝硬化作为肝纤维化的终末期,若未得到及时有效地干预,肝硬化会引起一系列严重的并发症。对于肝纤维化和肝硬化的评估,MRI检查比病理和血液生化学指标能够更直观、全面地反映肝脏的变化。作者主要对扩散加权成像、钆塞酸二钠增强成像、磁共振弹性成像的技术原理以及定量评估肝纤维化和肝硬化的研究进展进行综述。
[Abstract] Liver fibrosis is a reversible wound repair response. Early detection and staging of liver fibrosis can reduce its risk. As the end stage of liver fibrosis, cirrhosis will cause a series of serious complications if not timely and effective intervention. For the assessment of liver fibrosis and cirrhosis, MRI examination can reflect the changes of liver more directly and comprehensively than pathological and blood biochemical indexes. This article mainly reviews the technical principles of diffusion-weighted imaging (DWI), gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) enhanced imaging, magnetic resonance elastography (MRE) and the research progress in the evaluation of liver fibrosis and cirrhosis.
[关键词] 肝纤维化;肝硬化;磁共振成像;钆塞酸二钠;定量评估
[Keywords] liver fibrosis;liver cirrhosis;magnetic resonance imaging;gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid;quantitative evaluation

刘冠辰    刘鹏飞 *  

哈尔滨医科大学附属第一医院磁共振室,哈尔滨 150001

刘鹏飞,E-mail:Pfeiliu@hotmail.com

全体作者均声明无利益冲突。


收稿日期:2020-12-12
接受日期:2021-03-25
DOI: 10.12015/issn.1674-8034.2021.05.028
本文引用格式:刘冠辰, 刘鹏飞. MRI对肝纤维化及肝硬化定量评估的研究进展[J]. 磁共振成像, 2021, 12(5): 114-117. DOI:10.12015/issn.1674-8034.2021.05.028.

       肝纤维化是对慢性肝损伤的一种修复反应,其特征是细胞外基质的过度积聚,自身免疫性肝病、病毒性肝炎、酒精性肝病、非酒精性脂肪性肝病等多种因素可导致肝纤维化[1]。肝纤维化是一个具有消退潜力的动态过程,早期肝纤维化更容易接受治疗干预[2]。肝纤维化的早期发现和分期可以降低其危险性,防止其发展成为肝硬化[3]。肝硬化作为肝纤维化的终末期,它的特点是肝脏弥漫纤维化、假小叶形成、肝内外血管增生[4],若未得到及时有效地干预,肝硬化会引起一系列严重的并发症,如肝性脑病、肝肾综合征,甚至有很大的概率转变为肝癌。目前,肝活组织病理检查是诊断肝纤维化和肝硬化的“金标准”,由于是有创检查且存在取样误差,限制了其普遍应用[5]。在无创检查中,血液生化指标对于肝纤维化的诊断不具有特异性[6],虽然其可用于评估肝硬化的严重程度,但常用的评价肝功能的血清学指标,如Child-Pugh评分、终末期肝病模型(modle for end-stage liver disease,MELD)评分只能对肝脏进行等级评估,不能得到一个准确的数值进行精确的肝脏损伤程度评估,此外,这两个评分仅用于评估整个肝功能。相比于病理和实验室检查,MRI检查能够更直观、全面地反映肝脏的变化,而且随着功能成像及特异性对比剂的应用,能够反映更多的功能信息[7]。笔者主要对磁共振成像中的扩散加权成像、钆塞酸二钠增强成像、磁共振弹性成像的技术原理以及定量评估肝纤维化和肝硬化的研究进展进行综述。

1 扩散加权成像(diffusion weighted imaging,DWI)

       DWI是一种特殊的功能磁共振成像技术,其原理是基于组织中小分子的布朗运动[8]。人体中的水分约占体重的60%~70%左右,所以通常所说的扩散主要指水分子或含水组织的扩散,在MR成像序列中加入扩散敏感梯度时可通过ADC来反映水分子的扩散情况,ADC即表观扩散系数,提供了水分子移动的流量和距离的平均值,可通过单指数模型方法计算获得[9]。ADC值的计算至少需要两个不同的b值,b值为扩散敏感因子,b值越高扩散效应越明显[10]。在生物体组织中,水分子的扩散不仅包括自由运动,还包括毛细血管血流灌注对于扩散的影响[11]。Le Bihan等[12]最先提出了体素内不相干运动(intravoxel incoherent motion,IVIM)成像。该技术是在扩散加权成像基础上,使用多b值双指数模型合成,通过模型计算公式SI (b)=SI0 [(1-f)·exp (-b·D)+f·exp (-b·D*)]获得的三个参数即灌注系数(D*)、真性扩散系数(D)、灌注相关体积分数(f)能够反映组织的真实扩散率和组织微血管灌注情况,比从正常单指数模型导出的ADC值更能体现组织的特点[13, 14]

       肝纤维化所导致细胞外基质的过度合成(尤其是胶原纤维),使细胞外间隙减少,限制了水分子的扩散,导致肝脏ADC值降低[15]。Tokgöz等[16]研究发现,慢性肝病患者ADC值较正常对照组降低,认为ADC可用于慢性肝病患者肝纤维化的诊断,但对于肝纤维化的程度区分较差。Shin等[17]研究表明,在不同DWI采集的患者中,以脾脏为参考归一化的肝脏ADC值对肝纤维化分期的诊断性能优于直接测量的肝脏ADC值。Besheer等[18]通过对慢性丙型肝炎患者DWI图像和肝脏内源性微小RNA (miRNA)的研究表明,晚期肝纤维化患者(METAVIR评分系统,F3、F4)的ADC值低于早期肝纤维化患者(F1、F2),随着纤维化程度的增加,miR-200 b和miR-21表达增加,miR-29b表达下降,该研究还发现,将ADC值和miR (200 b,21和29 b)数据相结合,提高了检测肝纤维化以及区分早期肝纤维化和晚期肝纤维化的准确性。对于肝纤维化患者ADC值降低的原因,还有一些研究认为主要是由于血流灌注减少引起的[19, 20]。Zhang等[21]通过荟萃分析表明,DWI对于血流灌注无明显变化的早期肝纤维化DWI诊断能力较差,在晚期肝纤维化中ADC值降低的主要原因是血流灌注的减少,而不是水分子扩散受限,这一观点也在体内不相干运动研究中得到了进一步的检验。Gulbay等[22]使用IVIM-DWI扫描了37例进行了肝活检的慢性乙型肝炎患者,结果显示,D*可以作为组织中微血管密度的放射学标志物,是诊断慢性乙型肝炎患者早期肝纤维化的有力参数,而早期纤维化患者的ADC值并无显著差异。通过计算包括更多低b值(<200 s/mm2)获得的D是判断肝纤维化严重程度的可靠参数。Jiang等[23]通过荟萃分析表明,对于肝硬化患者,IVIM在评估肝硬化方面的表现在统计学上明显优于传统的DWI模型。Zhang等[24]设计10个b值在IVIM扩散加权成像中计算出了D、D*、f以及ADC值,发现肝功能不同阶段的D*与f值有显著差异,且f值与Child-Pugh分级的相关性强于D*值和ADC值。Chen等[25]评估了基于肝叶的IVIM参数与慢性乙型肝炎相关性肝硬化及其严重程度的关系,结果表明,与健康受试者相比,肝硬化患者中每个肝叶的D、D*和f值均显著降低,并且与Child-Pugh分级呈负相关,同时,肝右叶的D诊断肝硬化的准确率最高。

2 钆塞酸二钠增强MRI

       钆塞酸二钠(gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid,Gd-EOB-DTPA)是用于T1加权成像的顺磁性对比剂,兼具有非特异性细胞外对比剂和肝细胞特异性对比剂的特性[26]。钆塞酸二钠的摄取是由肝细胞膜表面的有机阴离子转运肽(OATP1 B1/B3)介导的,注射20 min后,达到摄取量的峰值,约50%被摄取到肝细胞中,然后通过多药耐药相关蛋白-2 (MRP2)排泄到胆道系统,在摄取和排泄的过程中并没有发生代谢的变化[27]。肝纤维化和肝硬化会导致有机阴离子转运肽和多药耐药相关蛋白-2表达异常或正常肝细胞数量的减少进而影响钆塞酸二钠的摄取[28]。因此,通过计算增强前后肝实质信号强度的变化以及用T1 mapping序列测量增强前后肝实质T1弛豫时间的变化能够反映肝纤维化和肝硬化程度。

       直接测量肝实质信号强度是Gd-EOB-DTPA增强MRI中评估肝功能最简单、最方便的方法[29]。Verloh等[30]研究表明,注射对比剂前后测得的肝实质相对强化程度(liver relative enhancement,LRE)与肝纤维化程度密切相关,并且对于肝纤维化各个阶段均具有高敏感性和高阳性预测率。Harada等[31]研究发现,通过肝胆期图像测得的肝实质对比增强指数(contrast enhancement index,CEI)、肝-肌肉信号强度比(liver-to-muscle-ratio,LMR)可用于区分轻度肝纤维与重度肝纤维化。该研究还与DWI进行了对比,认为CEI和LMR较ADC值更能鉴别轻度肝纤维化与重度肝纤维化。Zhang等[32]研究表明,随着慢性乙型肝炎患者肝硬化严重程度增加,Gd-EOB-DTPA增强MRI肝胆像中肝实质信号强度逐渐降低,同时在肝胆像中测得的肝-门静脉信号强度比(liver-to-portal vein contrast ratio,LPC)与Child-Pugh评分和MELD评分呈负相关,可以成为评估肝硬化程度的潜在影像学标志物。

       虽然直接测量肝实质信号强度的方法简单,但MRI信号强度与CT值不同,它受到多种技术参数的影响,例如射频放大器的功率以及所使用的脉冲序列和接收线圈等,因此它并不是一个绝对值[33],另一方面,增强MRI的信号强度与对比剂的浓度呈非线性关系,因此信号强度的测量与对比剂浓度可能不是直接相关的[34]。相反,T1弛豫时间的测量不受这些技术因素的影响,而且T1弛豫时间测量值与钆塞酸二钠浓度直接相关[33]。Haimerl等[35]研究发现,增强前后通过T1 mapping序列测量的T1弛豫时间减少率△T1%是诊断早期肝纤维化及鉴别肝纤维化分期的有效工具,并且表明△T1%随着肝纤维化程度的增加而降低。Yang等[36]研究表明,注射Gd-EOB-DTPA前后测得的T1弛豫时间减少率△T1%、T1弛豫时间增加率△R1%以及对比剂摄取率KHEP与肝纤维化程度呈负相关,其中△R1%相关性最强。该研究还认为将△R1%、△T1%、KHEP三个参数结合起来会提高评估肝纤维化程度的准确性。Pan等[37]研究发现,增强前后基于T1 mapping序列计算获得的肝细胞增强分数(hepatocyte fractions,HEF)及△T1%可用于评估慢性乙型肝炎、丙型肝炎患者肝纤维化程度,对于晚期肝纤维化HEF和△T1%的诊断效果都很好,但对于早期肝纤维化的诊断,HEF优于△T1%。Besa等[38]研究表明,肝胆期T1弛豫时间、△T1%可用于评估肝硬化患者肝功能,而且随着肝硬化程度的加重,T1弛豫时间逐渐增高,△T1%逐渐下降。Zhou等[39]在GD-EOB-DTPA增强MRI成像中,用T1弛豫时间评估了各个肝段的功能,结果表明,S5、S6、S7段的肝胆期T1弛豫时间诊断Child-Pugh B级的准确率最高,而对于Child-Pugh C级的诊断,各个肝段的肝胆期T1弛豫时间均具有较高的诊断价值。

3 磁共振弹性成像

       磁共振弹性成像(magnetic resonance elastography,MRE)是在MRI技术基础上再加入应变声波(波长)检测系统,从而将组织弹性程度和MR图像相结合的一门新的成像技术[40]。MRE成像技术需要三个步骤:第一步是由驱动器给腹部施加周期性的剪切波,引起微米量级的组织位移,第二步使用运动编码梯度的相位对比脉冲序列编码组织位移,第三步进行图像处理,以生成组织硬度的量化图,又称为硬度图或弹性图[41]。正常肝组织的硬度取决于肝组织的组成成分、肝细胞结构及血管成分[9]。慢性肝病是引起肝纤维化和肝硬化的主要原因,在这一过程中,肝细胞坏死、细胞外胶原纤维含量的增加、肝小叶结构的破坏等病理过程会显著增加肝脏硬度[42]。目前,MRE对于肝纤维化的诊断和分期受到了越来越多的关注和认可。Wu等[43]研究表明:MRE测量的肝硬度不仅与肝纤维化分级密切相关,而且还可以有效预测肝纤维化各个阶段,该研究还与注射Gd-EOB-DTPA前后测得的LRE和CEI进行了比较,认为MRE在肝纤维化分期的诊断中要优于LRE和CEI。Cheng等[44]研究结果与Wu等[43]一致,认为MRE可用于肝纤维化的评估,对于晚期肝纤维化的的诊断,该研究认为,联合检测脾硬度和肝硬度比单独检测肝硬度具有更高的准确性。慢性肝病的肝实质胶原蛋白沉积不均一,导致肝实质硬度不均匀,采样较少的检查可能无法准确地反映纤维化的总体水平,这也是肝活检和基于超声的弹性成像技术的主要局限之一[9]。不同于超声的弹性成像技术,MRE可以评估更大比例的肝脏硬度,减少采样的变异性,对于肝纤维化的评估有更好的诊断性能[45]。Lefebvre等[46]将瞬态弹性成像(transient elastography,TE)、点剪切波弹性成像(point shear-wave elastography,pSWE)以及MRE对肝纤维化的评估进行了比较,结果表明,所有弹性成像技术测得的肝硬度值都随着纤维化程度和炎症的增加而增加,但对于肝纤维化的分期,MRE诊断的准确性要高于TE和pSWE,该研究还发现,MRE对于早期纤维化的诊断要明显好于TE和pSWE。MRE除了可以用于肝纤维化的诊断和分期,还可以用于评估肝硬化的进展。Takamura等[47]研究发现,MRE测得的肝硬度有助于对慢性丙型肝炎患者肝硬化程度进行分级,该研究还发现,肝硬度的增加是Child-Pugh A级进展到B级的独立危险因素。

       综上所述,以上几种磁共振成像技术对于肝纤维化及肝硬化的定量评估均有一定的价值,但各有优缺点。与其他成像方法相比,DWI采集速度相对较快,不需要专门的硬件或对比剂,这解释了其在肝脏成像中的广泛应用[48]。DWI的局限性在于ADC值计算的过程中,只考虑了水分子扩散的情况,而忽略了毛细血管血流灌注对ADC值的影响,这使得解释ADC值改变原因变得困难[24]。IVIM成像能够分离水分子的真实扩散与毛细血管血流灌注,可以计算出分别反映组织扩散和微血管灌注的参数,相比于DWI,能更准确地反映组织的生理和病理变化[49]。IVIM成像同样存在一些不足,首先,序列的EPI读出方式容易受到磁敏感伪影的影响,还会受到呼吸和其他运动伪影的影响,导致图像的信噪比[11],其次,IVIM成像图像采集时间较长,b值数量的设置以及在双指数模型中区分低b值和高b值转折点的选取目前尚无统一结论[50]。钆塞酸二钠增强MRI成像通过注射前和注射后肝胆期的图像可以计算出多种参数,许多研究也证明了这些参数与肝纤维化分级及肝功能具有一定的相关性,但肝胆期的图像需要在注射对比剂20 min后才能获得,这会使检查时间有所延长[48]。MRE已经标准化,而且其诊断准确性要高于基于超声的弹性成像技术,但是,MRE会受到多种生物混杂因素的影响,MRE还会受到肝脏中度至重度铁沉积的影响,从而使信噪比减低,导致测量结果不准确[51]。目前关于MRI对肝纤维化及肝硬化定量评估的研究取得了一些具有积极意义的成果,但仍然存在一定的局限性与不足,未来还需要进行更多的探索。

1
Dhar D, Baglieri J, Kisseleva T, et al. Mechanisms of liver fibrosis and its role in liver cancer[J]. Exp Biol Med (Maywood), 2020, 245(2): 96-108. DOI: 10.1177/1535370219898141.
2
Li T, Che-Nordin N, Wáng YXJ, et al. Intravoxel incoherent motion derived liver perfusion/diffusion readouts can be reliable biomarker for the detection of viral hepatitis B induced liver fibrosis[J]. Quant Imaging Med Surg, 2019, 9(3): 371-385. DOI: 10.21037/qims.2019.02.11.
3
Serai SD, Trout AT, Miethke A, et al. Putting it all together: established and emerging MRI techniques for detecting and measuring liver fibrosis[J]. Pediatr Radiol, 2018, 48(9): 1256-1272. DOI: 10.1007/s00247-018-4083-2.
4
徐小元, 丁惠国, 李文刚, 等. 肝硬化诊治指南[J]. 临床肝胆病杂志, 2019, 35(11): 2408-2425.
Xu XY, Ding HG, Li WG, et al. Guidelines for liver cirrhosis[J]. J Clin Hepatol, 2019, 35(11): 2408-2405.
5
Sharma S, Khalili K, Nguyen GC. Non-invasive diagnosis of advanced fibrosis and cirrhosis[J]. World J Gastroenterol, 2014, 20(45): 16820- 16830. DOI: 10.3748/wjg.v20.i45.16820.
6
Ren H, Liu Y, Lu J, et al. Evaluating the clinical value of MRI multi-model diffusion-weighted imaging on liver fibrosis in chronic hepatitis B patients. Abdom Radiol (NY), 2020. [ DOI: ] DOI: 10.1007/s00261-020-02806-x.
7
徐佳, 王萱, 金征宇. 增强MRI定量评价肝纤维化及肝功能的研究进展[J]. 中华放射学杂志, 2016, 50(12): 994-996. DOI: 10.3760/cma.j.issn.1005-1201.2016.12.023.
Xu J, Wang X, Jin ZY. Research progress of enhanced MRI quantitative evaluation of liver fibrosis and liver function[J]. Chin J Radiol, 2016, 50(12): 994-996. DOI: 10.3760/cma.j.issn.1005-1201.2016.12.023.
8
Shenoy-Bhangle A, Baliyan V, Kordbacheh H, et al. Diffusion weighted magnetic resonance imaging of liver: Principles, clinical applications and recent updates[J]. World J Hepatol, 2017, 9(26): 1081-1091. DOI: 10.4254/wjh.v9.i26.1081.
9
潘晓华, 郭顺林, 蔺莉莉, 等. MRI定量评价肝脏纤维化的研究进展[J]. 磁共振成像, 2018, 9(9): 699-704. DOI: 10.12015/issn.1674-8034.2018.09.011.
Pan XH, Guo SL, Lin LL, et al. The progress of liver fibrosis quantitative evaluation by MRI[J]. Chin J Magn Reson Imaging, 2018, 9(9): 699-704. DOI: 10.12015/issn.1674-8034.2018.09.011.
10
Ni P, Lin Y, Zhong Q, et al. Technical advancements and protocol optimization of diffusion-weighted imaging (DWI) in liver[J]. Abdom Radiol (NY), 2016, 41(1): 189-202. DOI: 10.1007/s00261-015-0602-x.
11
李晨霞, 刘海甜, 李香, 等. MR体素内不相干运动扩散成像在肝功能评估中的应用[J]. 胃肠病学和肝病学杂志, 2019, 28(12): 1345-1349. DOI: CNKI:SUN:WCBX.0.2019-12-007.
Li CX, Liu HT, Li X, et al. Application of intravoxel incoherent motion- diffusion weighted imaging MR in the evaluation of liver function[J]. Chin J Gastroenterol Hepatol, 2019, 28(12): 1345-1349. DOI: CNKI:SUN:WCBX.0.2019-12-007.
12
Le Bihan D, Breton E, Lallemand D, et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders[J]. Radiology, 1986, 161(2): 401-407. DOI: 10.1148/radiology.161.2.3763909.
13
Wáng YXJ, Deng M, Li YT, et al. A combined use of intravoxel incoherent motion MRI parameters can differentiate early-stage hepatitis-b fibrotic livers from healthy livers[J]. SLAS Technol, 2018, 23(3): 259-268. DOI: 10.1177/2472630317717049.
14
Lu PX, Huang H, Yuan J, et al. Decreases in molecular diffusion, perfusion fraction and perfusion-related diffusion in fibrotic livers: a prospective clinical intravoxel incoherent motion MR imaging study[J]. PLoS One, 2014, 9(12): e113846. DOI: 10.1371/journal.pone.0113846.
15
Chow AM, Gao DS, Fan SJ, et al. Liver fibrosis: an intravoxel incoherent motion (IVIM) study[J]. J Magn Reson Imaging, 2012, 36(1): 159-167. DOI: 10.1002/jmri.23607.
16
Tokgöz Ö, Unal I, Turgut GG, et al. The value of liver and spleen ADC measurements in the diagnosis and follow up of hepatic fibrosis in chronic liver disease[J]. Acta Clin Belg, 2014, 69(6): 426-432. DOI: 10.1179/2295333714Y.0000000062.
17
Shin MK, Song JS, Hwang SB, et al. Liver fibrosis assessment with diffusion-weighted imaging: value of liver apparent diffusion coefficient normalization using the spleen as a reference organ[J]. Diagnostics (Basel), 2019, 9(3): 107. DOI: 10.3390/diagnostics9030107.
18
Besheer T, Elalfy H, Abd El-Maksoud M, et al. Diffusion-weighted magnetic resonance imaging and micro-RNA in the diagnosis of hepatic fibrosis in chronic hepatitis C virus[J]. World J Gastroenterol, 2019, 25(11): 1366-1377. DOI: 10.3748/wjg.v25.i11.1366.
19
Annet L, Peeters F, Abarca-Quinones J, et al. Assessment of diffusion-weighted MR imaging in liver fibrosis[J]. J Magn Reson Imaging, 2007, 25(1): 122-128. DOI: 10.1002/jmri.20771.
20
Luciani A, Vignaud A, Cavet M, et al. Liver cirrhosis: intravoxel incoherent motion MR imaging--pilot study[J]. Radiology, 2008, 249(3): 891-899. DOI: 10.1148/radiol.2493080080.
21
Zhang B, Liang L, Dong Y, et al. Intravoxel incoherent motion mr imaging for staging of hepatic fibrosis[J]. PLoS One, 2016, 11(1): e0147789. DOI: 10.1371/journal.pone.0147789.
22
Gulbay M, Ciliz DS, Celikbas AK, et al. Intravoxel incoherent motion parameters in the evaluation of chronic hepatitis B virus-induced hepatic injury: fibrosis and capillarity changes[J]. Abdom Radiol (NY), 2020, 45(8): 2345-2357. DOI: 10.1007/s00261-020-02430-9.
23
Jiang H, Chen J, Gao R, et al. Liver fibrosis staging with diffusion-weighted imaging asystematic review and meta-analysis[J]. Abdom Radiol (NY), 2017, 42(2): 490-501. DOI: 10.1007/s00261-016-0913-6.
24
Zhang J, Guo Y, Tan X, et al. MRI-based estimation of liver function by intravoxel incoherent motion diffusion-weighted imaging[J]. Magn Reson Imaging, 2016, 34(8): 1220-1225. DOI: 10.1016/j.mri.2016.05.013.
25
Chen F, Chen YL, Chen TW, et al. Liver lobe based intravoxel incoherent motion diffusion weighted imaging in hepatitis B related cirrhosis: association with child-pugh class and esophageal and gastric fundic varices[J]. Medicine (Baltimore), 2020, 99(2): e18671. DOI: 10.1097/MD.0000000000018671.
26
Liu MT, Zhang XQ, Lu J, et al. Evaluation of liver function using the hepatocyte enhancement fraction based on gadoxetic acid-enhanced MRI in patients with chronic hepatitis B[J]. Abdom Radiol (NY), 2020, 45(10): 3129-3135. DOI: 10.1007/s00261-020-02478-7.
27
Ippolito D, Pecorelli A, Famularo S, et al. Assessing liver function: diagnostic efficacy of parenchymal enhancement and liver volume ratio of Gd-EOB-DTPA-enhanced MRI study during interstitial and hepatobiliary phase[J]. Abdom Radiol (NY), 2019, 44(4): 1340-1349. DOI: 10.1007/s00261-018-1812-9.
28
Zhou ZP, Long LL, Qiu WJ, et al. Comparison of 10- and 20-min hepatobiliary phaseimages on Gd-EOB-DTPA-enhanced MRI T1 mapping for liver function assessment in clinic[J]. Abdom Radiol (NY), 2017, 42(9): 2272-2278. DOI: 10.1007/s00261-017-1143-2.
29
Yang M, Zhang Y, Zhao W, et al. Evaluation of liver function using liver parenchyma, spleen and portal vein signal intensities during the hepatobiliary phase in Gd-EOB-DTPA-enhanced MRI[J]. BMC Med Imaging, 2020, 20(1): 119. DOI: 10.1186/s12880-020-00519-7.
30
Verloh N, Utpatel K, Haimerl M, et al. Detecting liver fibrosis with Gd-EOB-DTPA-enhanced MRI: a confirmatory study[J]. Sci Rep, 2018, 8(1): 6207. DOI: 10.1038/s41598-018-24316-z.
31
Harada TL, Saito K, Araki Y, et al. Prediction of high-stage liver fibrosis using ADC value on diffusion-weighted imaging and quantitative enhancement ratio at the hepatobiliary phase of Gd-EOB-DTPA- enhanced MRI at 1.5 T[J]. Acta Radiol, 2018, 59(5): 509-516. DOI: 10.1177/0284185117725778.
32
Zhang W, Wang X, Miao Y, et al. Liver function correlates with liver-to-portal vein contrast ratio during the hepatobiliary phase with Gd-EOB-DTPA-enhanced MR at 3 Tesla[J]. Abdom Radiol (NY), 2018, 43(9): 2262-2269. DOI: 10.1007/s00261-018-1462-y.
33
Haimerl M, Verloh N, Zeman F, et al. Gd-EOB-DTPA-enhanced MRI for evaluation of liver function: comparison between signal-intensity- based indices and T1 relaxometry[J]. Sci Rep, 2017, 7(1): 43347. DOI: 10.1038/srep43347.
34
Sheng RF, Wang HQ, Yang L, et al. Assessment of liver fibrosis using T1 mapping on Gd-EOB-DTPA-enhanced magnetic resonance[J]. Dig Liver Dis, 2017, 49(7): 789-795. DOI: 10.1016/j.dld.2017.02.006.
35
Haimerl M, Utpatel K, Verloh N, et al. Gd-EOB-DTPA-enhanced MR relaxometry for the detection and staging of liver fibrosis[J]. Sci Rep, 2017, 7(1): 41429. DOI: 10.1038/srep41429.
36
Yang L, Ding Y, Rao S, et al. Staging liver fibrosis in chronic hepatitis B with T1 relaxation time index on gadoxetic acid-enhanced MRI: comparison with aspartate aminotransferase-to-platelet ratio index and FIB-4[J]. J Magn Reson Imaging, 2017, 45(4): 1186-1194. DOI: 10.1002/jmri.25440.
37
Pan S, Wang XQ, Guo QY. Quantitative assessment of hepatic fibrosis in chronic hepatitis B and C: T1 mapping on Gd-EOB-DTPA-enhanced liver magnetic resonance imaging[J]. World J Gastroenterol, 2018, 24(18): 2024-2035. DOI: 10.3748/wjg.v24.i18.2024.
38
Besa C, Bane O, Jajamovich G, et al. 3D T1 relaxometry pre and post gadoxetic acid injection for the assessment of liver cirrhosis and liver function[J]. Magn Reson Imaging, 2015, 33(9): 1075-1082. DOI: 10.1016/j.mri.2015.06.013.
39
Zhou ZP, Long LL, Qiu WJ, et al. Evaluating segmental liver function using T1 mapping on Gd-EOB-DTPA-enhanced MRI with a 3.0 Tesla[J]. BMC Med Imaging, 2017, 17(1): 20. DOI: 10.1186/s12880-017-0192-x.
40
陆伦根, 尤红, 谢渭芬, 等. 肝纤维化诊断及治疗共识(2019年)[J]. 临床肝胆病杂志, 2019, 35(10): 2163-2172.
Lu LG, You H, Xie WF, et al. Consensus on the diagnosis and therapy of hepatic fibrosis (2019)[J]. J Clin Hepatol, 2019, 35(10): 2163-2172.
41
Petitclerc L, Sebastiani G, Gilbert G, et al. Liver fibrosis: Review of current imaging and MRI quantification techniques[J]. J Magn Reson Imaging, 2017, 45(5): 1276-1295. DOI: 10.1002/jmri.25550.
42
Venkatesh SK, Wells ML, Miller FH, et al. Magnetic resonance elastography: beyond liver fibrosis-a case-based pictorial review[J]. Abdom Radiol (NY), 2018, 43(7): 1590-1611. DOI: 10.1007/s00261-017-1383-1.
43
Wu WP, Hoi CI, Chen RC, et al. Comparison of the efficacy of Gd-EOB-DTPA-enhanced magnetic resonance imaging and magnetic resonance elastography in the detection and staging of hepatic fibrosis[J]. Medicine (Baltimore), 2017, 96(42): e8339. DOI: 10.1097/MD.0000000000008339.
44
Cheng YW, Chang YC, Chen YL, et al. Feasibility of measuring spleen stiffness with MR elastography and splenic volume to predict hepatic fibrosis stage[J]. PLoS One, 2019, 14(5): e0217876. DOI: 10.1371/journal.pone.0217876.
45
Tang A, Cloutier G, Szeverenyi NM, et al. Ultrasound elastography and MR elastography for assessing liver fibrosis: part 1, principles and techniques[J]. AJR Am J Roentgenol, 2015, 205(1): 22-32. DOI: 10.2214/AJR.15.14552.
46
Lefebvre T, Wartelle-Bladou C, Wong P, et al. Prospective comparison of transient, point shear wave, and magnetic resonance elastography for staging liver fibrosis[J]. Eur Radiol, 2019, 29(12): 6477-6488. DOI: 10.1007/s00330-019-06331-4.
47
Takamura T, Motosugi U, Ichikawa S, et al. Usefulness of MR elastography for detecting clinical progression of cirrhosis from child-pugh class A to B in patients with type C viral hepatitis[J]. J Magn Reson Imaging, 2016, 44(3): 715-722. DOI: 10.1002/jmri.25182.
48
Petitclerc L, Sebastiani G, Gilbert G, et al. Liver fibrosis: review of current imaging and MRI quantification techniques[J]. J Magn Reson Imaging, 2017, 45(5): 1276-1295. DOI: 10.1002/jmri.25550.
49
Tosun M, Onal T, Uslu H, et al. Intravoxel incoherent motion imaging for diagnosing and staging the liver fibrosis and inflammation[J]. Abdom Radiol (NY), 2020, 45(1): 15-23. DOI: 10.1007/s00261-019-02300-z.
50
Wáng YXJ, Li YT, Chevallier O, et al. Dependence of intravoxel incoherent motion diffusion MR threshold b-value selection for separating perfusion and diffusion compartments and liver fibrosis diagnostic performance[J]. Acta Radiol, 2019, 60(1): 3-12. DOI: 10.1177/0284185118774913.
51
Petitclerc L, Gilbert G, Nguyen BN, et al. Liver fibrosis quantification by magnetic resonance imaging[J]. Top Magn Reson Imaging, 2017, 26(6): 229-241. DOI: 10.1097/RMR.0000000000000149.

上一篇 基于脑fMRI 技术针刺支沟穴特异性及脑网络的研究进展
下一篇 化学交换饱和转移效应量化方法的应用进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2