分享:
分享到微信朋友圈
X
综述
肿瘤微环境响应型19F-MR分子成像纳米探针
胡雪松 卫佳楠 王洪斌 吴丽娜 王凯 孙夕林

Cite this article as: Hu XS, Wei JN, Wang HB, et al. Tumor microenvironment responsive 19F-MR molecular imaging nanoprobe[J]. Chin J Magn Reson Imaging, 2021, 12(5): 121-124.本文引用格式:胡雪松, 卫佳楠, 王洪斌, 等. 肿瘤微环境响应型19F-MR分子成像纳米探针[J]. 磁共振成像, 2021, 12(5): 121-124. DOI:10.12015/issn.1674-8034.2021.05.030.


[摘要] 肿瘤微环境(tumor microenvironment,TME)与肿瘤的发生、转移及其所在组织的结构、功能密切相关。在体研究肿瘤细胞与TME之间的相互作用机制,是基础和临床研究癌症发生发展、研发肿瘤精准诊断新技术以及开发有效抑制肿瘤新策略的迫切需求。分子影像学(molecular imaging)着眼于生物过程的分子水平变化,对早期TME中分子改变及环境变化的研究具有重要意义。现已研制出多种针对TME响应的19F-MR纳米分子成像探针,这类探针可在复杂TME中的某些特定刺激下,使含氟小分子核团暴露,19F-MR信号明显增强。利用探针这一环境响应特性,结合19F-MR成像,可在分子水平早期可视化TME中的恶性生物学行为,为实现肿瘤早期诊断及精准治疗提供有利支持。该综述从基础及临床研究需求出发,对已研发的TME响应型纳米分子成像探针展开评述,以期为新型纳米探针的设计、制备及临床转化提供研究思路及理论依据。
[Abstract] Tumor microenvironment (TME) is closely related to the occurrence and metastasis of tumors and the structure and function of the tumor tissues.In vivo research on the interaction mechanism between tumor cells and TME is an urgent need for basical and clinical research on the occurrence and development of cancer, the development of new technology for accurate tumor diagnosis, and the development of new strategy for effective tumor inhibition. Molecular imaging focuses on molecular changes in biological processes, and early intervention and improvement of prognosis are of great significance for the study of molecular changes and environmental changes in early TME. With the continuous development of nanotechnology, a variety of 19F-MR nanomolecular imaging probes have been developed in response to TME. Such probes can change their molecular conformations under certain stimuli in complex TME, exposing the 19F nuclear mass and significantly enhancing the 19F-MR signal. By utilizing the environmental response characteristic of probe and combining with 19F-MR imaging, abnormal malignant biological behaviors in TME can be visualized at the early molecular level, providing favorable support for the realization of early diagnosis of tumor and guidance of precise treatment of tumor. This review based on basic and clinical studies, reviews the developed TME responsive nanomolecular imaging probes, so as to provide research ideas and theoretical basis for the design, preparation and clinical transformation of the new 19F-MR nanomolecular imaging probes.
[关键词] 肿瘤微环境;分子影像学;纳米分子成像探针;19氟;磁共振成像;智能环境响应
[Keywords] tumor microenvironment;molecular imaging;nanomolecular imaging probe;19F;magnetic resonance imaging;intelligent environment response

胡雪松 1, 2   卫佳楠 1, 2   王洪斌 1, 2   吴丽娜 1, 2   王凯 1, 2   孙夕林 1, 2*  

1 哈尔滨医科大学附属第四医院TOF-PET/CT/MR中心,哈尔滨 150028

2 哈尔滨医科大学分子影像研究中心,哈尔滨 150028

孙夕林,E-mail:sunxl@ems.hrbmu.edu.cn

全体作者均声明无利益冲突。


基金项目: 国家自然科学基金 81627901 国家重点基础研究发展计划基金 2015CB931800 黑龙江省自然科学基金 JQ2020H002
收稿日期:2020-12-01
接受日期:2021-03-25
DOI: 10.12015/issn.1674-8034.2021.05.030
本文引用格式:胡雪松, 卫佳楠, 王洪斌, 等. 肿瘤微环境响应型19F-MR分子成像纳米探针[J]. 磁共振成像, 2021, 12(5): 121-124. DOI:10.12015/issn.1674-8034.2021.05.030.

       肿瘤微环境(tumor microenvironment,TME)是肿瘤细胞及其生活的内环境,不仅包括肿瘤细胞本身,还包括周围的各种细胞及生物分子,在研究肿瘤发生、发展和生物学行为中起着重要作用。19世纪80年代Paget[1]首次提出“种子-土壤”理论,TME作为为肿瘤生长提供营养支持的土壤,是肿瘤生理结构和功能的重要组成部分,为肿瘤的发生发展、侵袭、转移等恶性生物学行为提供必需的营养环境[2]。分子影像学(molecular imaging)是在活体状态下,应用影像学方法对人或动物体内的细胞和分子水平的生物学过程进行成像、定性和定量的研究。分子影像学作为一种多学科交叉、融合的学科,是医学影像学的发展方向和未来,在监测肿瘤发生发展过程中TME内的一些分子改变及环境变化方面具有巨大研究潜力,包括肿瘤细胞内pH改变[3, 4, 5]、大量新生血管生成[6, 7, 8]、肿瘤组织乏氧[9, 10, 11]、酶和蛋白质的异常表达[12, 13, 14]等,并能够做出相应特异性诊断,判定预后,监测疗效和肿瘤复发等情况,对基础及临床研究具有重大意义。

       磁共振成像(magnetic resonance imaging,MRI)具有高空间分辨率和深组织穿透能力,特别适合用于软组织高分辨率成像[15, 16]。与此同时,19F原子高自旋量子数、高灵敏度(H质子的83%,仅次于H)、广泛化学位移和可忽略的人体背景信号等特点引起了研究者的兴趣[17, 18, 19]。将19F-MRI与分子影像相结合,利用氟原子高磁敏感率、高生物安全性及高MR成像能力的特点,可在分子水平上实时监测各组织器官的生物学行为。

       纳米医学是将纳米颗粒应用于疾病诊断和治疗的一门学科,利用纳米技术可将多种材料如金属[20, 21, 22]、硅及二氧化硅[23, 24, 25, 26]等应用于构建这类纳米颗粒。迄今为止,已有大量纳米药物被设计用于治疗各种疾病,尤其是针对于肿瘤的治疗[27]。纳米颗粒尺寸较小,通常在肿瘤组织的滞留和穿透方面发挥重要作用[28]。随着纳米技术的不断发展,已设计出大量针对于TME改变的智能环境响应型纳米分子成像探针,这些探针能精准识别组织和器官的微小环境变化,使分子构象发生改变,并通过体外分子水平19F-MR成像方式,早期识别异常。由于TME复杂多变,针对肿瘤pH、酶、各种离子、氧化还原变化等特性的TME响应型纳米分子成像探针的研究成为热点,笔者对TME响应型19F-MR纳米分子成像探针的特点及应用进行讨论,以期为新型探针的制备提供理论依据。

1 pH响应型19F-MR纳米分子成像探针

       相对于正常组织(pH为7.35~7.45),TME的pH明显降低,范围在6.5~6.9之间,这与肿瘤组织的糖酵解代谢上调以及乳酸生成增加有关[3]。近年来,针对TME中pH改变而设计的pH响应型19F-MR纳米分子成像探针的研究成为热点。Chen等[3]设计合成一种新型纳米分子成像探针,由于叶酸受体在肿瘤细胞表面高表达,因此将叶酸偶联到金纳米粒子(AuNPs)表面,AuNPs再通过对酸不稳定的腙键共价偶联到荧光功能化的介孔二氧化硅纳米颗粒(FMSNs)上,得到Au-FMSNs,再将19F对比剂六氟苯(C6F6)封装于FMSNs中,最终制得pH响应型19F-MR纳米分子成像探针C6F6@Au-FMSNs。对于pH为中性(pH=7.4)的正常细胞或PBS溶液,pH触发的19F生物传感器未被激活,19F-MR呈现低信号。而在pH为酸性的TME中,由于叶酸的主动靶向,探针能够顺利进入肿瘤细胞,腙键在细胞内酸性pH中被裂解,导致FMSNs释放19F对比剂,19F分子由束缚态变为液体状态,弛豫时间有明显改变,T1大大缩短,19F-MR信号明显增强。通过对19F-MR信号变化的监测,间接反映出TME中pH值的变化,对肿瘤早期诊断和定位具有重要意义。

       Zhu等[29]将二甲基咪唑四氟硼酸盐BMMIBF4封装在可溶于酸性溶液的聚合物中,获得pH响应型19F-MR纳米分子成像探针。BMMIBF4被封装后,19F信号消失,19F NMR峰明显降低,说明BMMIBF4完全封装于聚合物中(图1)。将该探针在不同pH条件下进行MR成像,结果显示,在pH=7.4时被封装的BMMIBF4的T2*非常短(T2*<TE),几乎没有19F信号;而当pH为6.4和5.0时,19F信号随时间增加逐渐增强,提示pH触发的氟剂释放导致MRI T2*延长,19F-MR信号开启,且pH 5.0比pH 6.4的信噪比更高(达到188)。该探针的pH响应特性能使其在细胞和分子水平对TME中pH改变做出响应,并通过MRI等成像手段对19F信号进行监测,及早察觉TME改变并做出相应治疗策略。

图1  对于游离的氟,19F信号开启。当被封装后,19F信号关闭。涂层溶解或降解后,导致氟化离子从其内释放及MRI信号开启
Fig. 1  For free fluorine, the 19F signal is turned on.When encapsulated, the 19F signal is turned off. After the coating dissolves or degrades, fluoride ions are released and MRI signals are turned on.

2 离子响应型19F-MR纳米分子成像探针

       相对于正常细胞,肿瘤细胞内离子浓度尤其是Na+和Cl-浓度明显升高[30, 31, 32, 33, 34]。Smith等[33]研究结果也表明,与正常肝细胞相比,肝癌细胞中Na+和Cl-浓度增加了两倍多。Zhang等[35]研究发现肿瘤细胞内离子强度的变化会导致离子反应聚合物在溶液中的构象和迁移率发生改变,在盐溶液中共聚物OEGMA-co-TFEA中的OEGMA侧链上的醚氧原子可与Na+紧密结合,由于高氟化聚合物片段的聚集,TME中离子含量明显升高,导致这些基团的T2弛豫时间非常短,19F-MR信号明显降低。实验中还发现,肿瘤细胞中的Na+浓度大约为癌前和正常乳腺细胞的3倍,此外,在人乳腺癌MCF-7肿瘤细胞中得到的19F NMR T2值(82.3 ms)远低于正常细胞T2值(124.2 ms)。因此,这些离子聚合物纳米分子成像探针的19F-MR T2可以作为一种非侵入性检测指标,对TME中离子改变做出实时响应。

3 酶响应型19F-MR纳米分子成像探针

       酶涉及多种人类疾病,如癌症、自身免疫性疾病等,在药物开发和疾病诊断方面具有重要研究意义,对哺乳动物酶活性的检测和成像亦可作为生物成像的最终目标之一[12]。半胱天冬酶-3和-7 (Caspase-3和-7)是细胞凋亡的标志,以酶原形式在细胞内胞浆中高表达,Caspase-3/7活性被用作评价诱导肿瘤细胞凋亡的抗肿瘤治疗的生物标志物,且在凋亡早期表达情况明显高于凋亡晚期及死细胞。利用这一特性,Akazawa等[12]设计了高度功能化且具有19F信号响应开关的纳米分子成像探针FLAME-DEVD 2,其中FLAME由液体全氟碳核和坚固的二氧化硅外壳组成;DEVD 2是Caspase-3/7酶的底物肽序列,该探针表面通过DEVD 2连接Gd3+复合物,基于其顺磁弛豫增强效应(proton relaxation enhancement,PRE),即顺磁分子中的未成对电子与原子核之间的偶极-偶极相互作用引起原子核弛豫速率加快的现象[36],探针中PFCs的T2值被有效抑制,19F-MR信号减弱。而在肿瘤组织微环境中,Caspase-3/7酶高表达,纳米探针进入后,Caspase-3/7酶可裂解底物肽DEVD 2,使Gd3+复合物与FLAME分离,淬灭作用消失,T2值延长,19F-MR信号显著增强。

       酯酶是一类广泛应用于生物技术领域的酶,具有催化酯类水解的功能,在肿瘤组织中高表达,通过调节机体内蛋白质的活性参与物质代谢、运输和基因表达等生物过程[37, 38]。基于纳米分子成像探针的酶响应特性,Guo等[39]设计了一种酶响应型19F-MR上转换发光纳米探针Gd3+-NaYF4:Yb3+/Er3+,用于检测TME中磷脂酶A2 (PLA2)活性。该探针以全氟-15-冠-5-醚(PFCE)为疏水核心,配以磷脂壳层,基于19F-MR信号T2的PRE效应,当一个氟化基团通过酶底物与Gd3+配合物连接时,19F-MR信号被Gd3+淬灭。PLA2在多种病理条件下存在[40, 41, 42]。因此这些纳米分子成像探针进入TME后,由于PLA2的含量增多,导致磷脂壳降解,19F核的流动性增加,氟原子的T2弛豫时间延长,19F NMR显示91.9 ppm处单线态峰的信号显著增加,19F-MR信号开启,并且在5.0~200 U/L范围内随PLA2含量的增加,19F-MRI信号呈线性增强趋势。

4 还原响应型19F-MR纳米分子成像探针

       肿瘤细胞的快速生长将导致细胞数量急剧增多、体积迅速增大,从而导致组织供血不足,进而引发肿瘤细胞乏氧及酸性微环境的产生[9]。针对肿瘤组织乏氧的特点,Kadakia等[43]设计一种可同时利用19F-MR和荧光两种手段检测细胞缺氧状况的双模态纳米分子成像探针CuATSMF3-Fl。正常组织中由于Cu2+存在导致19F和荧光信号淬灭,探针在19F NMR谱中未出现峰值,无19F-MR信号产生。而在低氧的TME中,Cu2+被还原为Cu+,淬灭作用消失,相应19F-MR和荧光信号在纳米探针的配体支架脱膜时开启,在19F NMR谱图中70.2 ppm处可观察到尖锐的峰,19F-MR和荧光信号均明显增强。利用该纳米分子成像探针的还原响应特性结合19F-MR成像通过对TME的检测能够鉴别出正常细胞和乏氧细胞,早期识别低氧肿瘤,实现肿瘤早期诊断及治疗。

       Tang等[44]设计并合成一种两亲性氧化还原反应响应型19F聚合物和近红外吸收吲哚箐绿(ICG)分子自组装的级联多响应型19F NMR纳米分子成像探针1-ICG NPs。探针含有19F基团,通过可被还原裂解的二硫键连接到聚乙二醇上。由于自组装限制,19FNMR未检测到峰值;而当1-ICG NPs溶液与还原型谷胱甘肽共同孵育后,二硫键断裂,19F NMR显示在62.7 ppm处有19F峰出现并逐渐升高,信噪比呈不断增加趋势,随后在外部施加808 nm的激光治疗,19F NMR出现更高、更尖锐的峰,出现明显的第二次19F-MR信号放大。级联过程产生的最大信噪比约提高64倍。利用该纳米分子成像探针的分步双级信号激活放大响应特性,可有效提高19F-MR对TME的诊断灵敏度。

5 总结与展望

       随着纳米技术的不断发展,研究者们设计研发出种类繁多的智能环境响应型纳米分子成像探针,这些纳米分子成像探针具有特异靶向性、高信噪比及原位显示深部组织等优势,特别是,在其合成过程中加入19F小分子核团,这类新型纳米探针在肿瘤复杂微环境改变的特定刺激下,构象发生改变,19F核团暴露,从而使19F-MR信号明显升高,最终达到19F-MR肿瘤微环境分子成像的目的。同时,随着一些硬件软件技术,如双1H/19F射频线圈和超快脉冲序列的不断研发,19F-MR的精度和灵敏度得到极大提高,对氟信号的检测敏感度更高。但是,TME复杂多样,变化不尽相同,智能环境响应型19F-MR纳米分子成像探针合成过程中又涉及多种级联反应,设计及操作步骤复杂,这都为研发性能优越的智能环境响应型19F-MR纳米分子成像探针带来了巨大的挑战。但相信不久的将来,通过研究者们不断努力,这些瓶颈问题一定会被逐一攻克,使基于智能环境响应型纳米探针的肿瘤19F-MR微环境分子成像能够在体敏感地针对TME变化做出精准监测,从而为TME分子水平在体动态可视化、研究TME分子机制、及时研发全新的诊断及治疗策略开辟全新的技术方法和途径。

1
Paget S. Distribution of secondary growths in cancer of the breast[J]. Cancer Metastasis Rev, 1989, 8(2): 98-101.
2
Wang JJ Lei KF, Han F. Tumor microenvironment: recent advances in various cancer treatments[J]. Eur Rev Med Pharmacol Sci, 2018, 22(12): 3855-3864. DOI: 10.26355/eurrev_201806_15270.
3
Chen S, Yang Y, Li H, et al. pH-triggered au-fluorescent mesoporous silica nanoparticles for 19F MR/fluorescent multimodal cancer cellular imaging[J]. Chem Commun (Camb), 2014, 50(3): 283-285. DOI: 10.1039/c3cc47324d.
4
Park H, Saravanakumar G, Kim J, et al. Tumor microenvironment sensitive nanocarriers for bioimaging and therapeutics[J]. Adv Healthc Mater, 2021, 10(5): e2000834. DOI: 10.1002/adhm.202000834.
5
Qing S, Lyu C, Zhu L, et al. Biomineralized bacterial outer membrane vesicles potentiate safe and efficient tumor microenvironment reprogramming for anticancer therapy[J]. Adv Mater, 2020, 32(47): e2002085. DOI: 10.1002/adma.202002085.
6
Chen B, Gao A, Tu B, et al. Metabolic modulation via mTOR pathway and anti-angiogenesis remodels tumor microenvironment using PD-L1- targeting codelivery[J]. Biomaterials, 2020, 255: 120187. DOI: 10.1016/j.biomaterials.2020.120187.
7
Roma-Rodrigues C, Mendes R, Baptista P, et al. Targeting tumor microenvironment for cancer therapy[J]. Int J Mol Sci, 2019, 20(4): 840. DOI: 10.3390/ijms20040840.
8
Zeng D, Li M, Zhou R, et al. Tumor microenvironment characterization in gastric cancer identifies prognostic and immunotherapeutically relevant gene signatures[J]. Cancer Immunol Res, 2019, 7(5): 737-750. DOI: 10.1158/2326-6066.CIR-18-0436.
9
吴丽君, 赵光明, 张雪鹏. 缺氧微环境与肿瘤的关系[J]. 中国综合临床, 2014, 30(7): 782-784. DOI: 10.3760/cma.j.issn.1008-6315.2014.07.041.
Wu LJ, Zhao GM, Zhang XPRelationship between hypoxia microenvironment and tumor[J]. Clinl Med Chin, 2014, 30(7): 782-784. DOI: 10.3760/cma.j.issn.1008-6315.2014.07.041.
10
Bhattacharya S, Calar K, De La Puente P. Mimicking tumor hypoxia and tumor-immune interactions employing three-dimensional in vitro models[J]. J Exp Clin Cancer Res, 2020, 39(1): 75. DOI: 10.1186/s13046-020-01583-1.
11
Riera-Domingo C, Audigé A, Granja S, et al. Immunity, hypoxia and metabolism-the ménage à trois of cancer: implications for immunotherapy[J]. Physiol Rev, 2020, 100(1): 1-102. DOI: 10.1152/physrev.00018.2019.
12
Akazawa K, Sugihara F, Nakamura T, et al. Highly sensitive detection of caspase-3/7 activity in living mice using enzyme-responsive (19)F MRI nanoprobes[J]. Bioconjug Chem, 2018, 29(5): 1720-1728. DOI: 10.1021/acs.bioconjchem.8b00167.
13
Fathi M, Safary A, Barar J. Therapeutic impacts of enzyme-responsive smart nanobiosystems[J]. Bioimpacts, 2020, 10(1): 1-4. DOI: 10.15171/bi.2020.01.
14
Liu X, Hao Y, Popovtzer R, et al. Construction of enzyme nanoreactors to enable tumor microenvironment modulation and enhanced cancer treatment[J]. Adv Healthc Mater, 2021, 10(5): e2001167. DOI: 10.1002/adhm.202001167.
15
Preslar AT, Lilley LM, Sato K, et al. Calcium-induced morphological transitions in peptide amphiphiles detected by (19)F-magnetic resonance imaging[J]. ACS Appl Mater Interfaces, 2017, 9(46): 39890-39894. DOI: 10.1021/acsami.7b07828.
16
Jeon M, Halbert MV, Stephen ZR, et al. Iron oxide nanoparticles as T1 contrast agents for magnetic resonance imaging:fundamentals, challenges, applications, and prospectives[J]. Adv Mater, 2020: e1906539. DOI: 10.1002/adma.201906539.
17
Xie D, Yu M, Kadakia RT, et al. (19)F magnetic resonance activity-based sensing using paramagnetic metals[J]. Acc Chem Res, 2020, 53(1): 2-10. DOI: 10.1021/acs.accounts.9b00352.
18
Bouvain P, Temme S, Flogel U. Hot spot (19) F magnetic resonance imaging of inflammation[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2020, 12(6): e1639. DOI: 10.1002/wnan.1639.
19
Wu L, Liu F, Liu S, et al. Perfluorocarbons-based (19)F magnetic resonance imaging in biomedicine[J]. Int J Nanomedicine, 2020, 15: 7377-7395. DOI: 10.2147/IJN.S255084.
20
Xie M, Wang Z, Lu Q, et al. Ultracompact iron oxide nanoparticles with a monolayer coating of succinylated heparin: a new class of renal-clearable and nontoxic T1 agents for high-field MRI[J]. ACS Appl Mater Interfaces, 2020: 19. DOI: 10.1021/acsami.0c12454.
21
Liu L, Jin R, Duan J, et al. Bioactive iron oxide nanoparticles suppress osteoclastogenesis and ovariectomy-induced bone loss through regulating the TRAF6-p62-CYLD signaling complex[J]. Acta Biomater, 2020, 103: 281-292. DOI: 10.1016/j.actbio.2019.12.022.
22
Huo DX, Chen B, Meng GW, et al. Ag-nanoparticles@bacterial nanocellulose as a 3D flexible and__robust surface-enhanced raman scattering substrate[J]. ACS Appl Mater Interfaces, 2020, 12(45): 50713-50720. DOI: 10.1021/acsami.0c13828.
23
Dong X, Cao L, Si Y, et al. Cellular structured CNTs@SiO2 nanofibrous aerogels with vertically aligned vessels for salt-resistant solar desalination[J]. Adv Mater, 2020, 32(34): e1908269. DOI: 10.1002/adma.201908269.
24
Guillet-Nicolas R, Wainer M, Marcoux L, et al. Exploring the confinement of polymer nanolayers into ordered mesoporous silica using advanced gas physisorption[J]. J Colloid Interface Sci, 2020, 579: 489-507. DOI: 10.1016/j.jcis.2020.05.103.
25
Ma J, Li Y, Zhou X, et al. Au nanoparticles decorated mesoporous SiO2-WO3 hybrid materials with improved pore connectivity for ultratrace ethanol detection at low operating temperature[J]. Small, 2020, 16(46): e2004772. DOI: 10.1002/smll.202004772.
26
Sun Y, Sun B, He J, et al. Millimeters long super flexible Mn5Si3@SiO2 electrical nanocables applicable in harsh environments[J]. Nat Commun, 2020, 11(1): 647. DOI: 10.1038/s41467-019-14244-5.
27
Wolfram J, Zhu MT, Yang Y, et al. Safety of nanoparticles in medicine[J]. Curr Drug Targets, 2015, 16(14): 1671-81. DOI: 10.2174/1389450115666140804124808.
28
Chen Q, Feng L, Liu J, et al. Intelligent albumin-MnO2Nanoparticles as pH-/H2O2-responsive dissociable nanocarriers to modulate tumor hypoxia for effective combination therapy[J]. Adv Mater, 2016, 28(33): 7129-7136. DOI: 10.1002/adma.201601902.
29
Zhu X, Tang X, Lin H, et al. A fluorinated ionic liquid-based activatable 19F MRI platform detects biological targets[J]. Chem, 2020, 6(5): 1134-1148. DOI: 10.1016/j.chempr.2020.01.023.
30
Cameron IL, Smith NK, Pool TB, et al. Intracellular concentration of sodium and other elements as related to mitogenesis and oncogenesis in vivo[J]. Cancer Res, 1980, 40(5): 1493-1500.
31
Nagy I, Lustyik G, Lukács G, et al. Correlation of malignancy with the intracellular Na+:K+ ratio in human thyroid tumors[J]. Cancer Res, 1983, 43(11): 5395-5402.
32
Despa S, Islam MA, Weber CR, et al. Intracellular Na(+) concentration is elevated in heart failure but Na/K pump function is unchanged[J]. Circulation, 2002, 105(21): 2543-2548. DOI: 10.1161/01.CIR.0000016701.85760.97.
33
Smith NR, Sparks RL, Pool TB, et al. Differences in the intracellular concentration of elements in normal and cancerous liver cells as determined by X-ray microanalysis[J]. Cancer Res, 1978, 38(7): 1952-1959.
34
Smith NK, Stabler SB, Cameron IL, et al. X-ray microanalysis of electrolyte content of normal, preneoplastic, and neoplastic mouse mammary tissue[J]. Cancer Res, 1981, 41(10): 3877-3880.
35
Zhang C, Moonshi SS, Peng H, et al. Ion-responsive 19F MRI contrast agents for the detection of cancer cells[J]. ACS Sensors, 2016, 1(6): 757-65. DOI: 10.13488/j.smhx.20140506.
36
郭俊, 李华, 许琛琪. 顺磁弛豫增强效应在蛋白质结构及动力学上的应用[J]. 生命的化学, 2014, 34(5): 621-626. DOI: 10.13488/j.smhx.20140506.
Guo J, Li H, Xu CQ. Application of PRE on protein structure and dynamics study[J]. Chem Life, 2014, 34(5): 621-626. DOI: 10.13488/j.smhx.20140506.
37
Hu J, Cheng K, Wu Q, et al. Dual fluorogenic and 19F NMR probe for detection of the esterase activity[J]. Mater Chem Front, 2013. DOI: 10.1039/C8QM00107C.
38
Stathopoulos AM, Cyert MS. Calcineurin acts through the CRZ1/TCN1-encoded transcription factor to regulate gene expression in yeast[J]. Genes Dev, 1997, 11(24): 3432-3444. DOI: 10.1101/gad.11.24.3432.
39
Guo C, Zhang Y, Li Y, et al. (19)F MRI nanoprobes for the turn-on detection of phospholipase A2 with a low background[J]. Anal Chem, 2019, 91(13): 8147-8153. DOI: 10.1021/acs.analchem.9b00435.
40
Cummings BS. Phospholipase A2 as targets for anti-cancer drugs[J]. Biochem Pharmacol, 2007, 74(7): 949-959. DOI: 10.1016/j.bcp.2007.04.021.
41
Du J, Lane LA, Nie S. Stimuli-responsive nanoparticles for targeting the tumor microenvironment[J]. J Control Release, 2015, 219: 205-214. DOI: 10.1016/j.jconrel.2015.08.050.
42
Kutova OM, Guryev EL, Sokolova EA, et al. Targeted delivery to tumors: multidirectional strategies to improve treatment efficiency[J]. Cancers (Basel), 2019, 11(1): 68. DOI: 10.3390/cancers11010068.
43
Kadakia RT, Xie D, Martinez D, et al. A dual-responsive probe for detecting cellular hypoxia using (19)F magnetic resonance and fluorescence[J]. Chem Commun (Camb), 2019, 55(60): 8860-8863. DOI: 10.1039/c9cc00375d.
44
Tang X, Gong X, Li A, et al. Cascaded multiresponsive self-assembled (19)F MRI nanoprobes with redox-triggered activation and NIR-induced amplification[J]. Nano letters, 2020, 20(1): 363-371. DOI: 10.1021/acs.nanolett.9b04016.

上一篇 化学交换饱和转移效应量化方法的应用进展
下一篇 基于DTI对白质微结构介导发病年龄和抑郁症严重程度的研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2