分享:
分享到微信朋友圈
X
临床研究
急性/亚急性脑梗死患者FVH征评分与脑氧代谢及神经功能的关系
常佩佩 苗延巍 蒋玉涵 车艺玮 高冰冰 陈丽华 宋清伟 刘爱连

Cite this article as: Chang PP, Miao YW, Jiang YH, et al. Relationship between FVH sign and brain oxygen metabolism of SWI sequence and clinical state in patients with acute/subacute cerebral infarction[J]. Chin J Magn Reson Imaging, 2021, 12(6): 5-9, 77.本文引用格式:常佩佩, 苗延巍, 蒋玉涵, 等. 急性/亚急性脑梗死患者FVH征评分与脑氧代谢及神经功能的关系[J]. 磁共振成像, 2021, 12(6): 5-9, 77. DOI:10.12015/issn.1674-8034.2021.06.002.


[摘要] 目的 定量分析单侧大脑中动脉(middle cerebral artery,MCA)狭窄患者FLAIR血管高信号(FLAIR vascular hyperintensity,FVH)征评分与磁敏感加权成像(susceptibility-weighted imaging,SWI)上不对称突出皮质静脉征(asymmetrical prominent cortical veins,APCVs)评分、静脉phase差值(Δφ)、静脉phase差值比值(rΔφ)、NIHSS评分及梗死体积之间的关系,进一步探讨FVH征评分的影响因素。材料与方法 前瞻性研究我院神经内科住院治疗的34例单侧MCA狭窄的急性/亚急性脑梗死患者,记录其基本资料及入院和出院NIHSS评分(NIHSS入院,NIHSS出院)。所有患者均行常规MR及扩散加权成像(diffusion-weighted imaging,DWI)、SWI检查。两位影像科医师分别测量并评估MCA狭窄程度以及FVH征、APCVs征评分;观察病灶周围静脉,测量并计算静脉phase差值(Δφ)及比值(rΔφ),测量梗死核心体积。所有患者分为血管狭窄轻-中度组和重度-闭塞组,采用独立样本t检验比较FVH、APCVs评分组间差异,运用Spearman相关性分析分别研究3组(整体、轻-中度组、重度-闭塞组) FVH评分与APCVs评分、Δφ、rΔφ、NIHSS评分、梗死体积的关系,采用多元线性回归探讨FVH征评分的影响因素。结果 所有患者中,重度-闭塞组的FVH、APCVs评分均高于轻-中度组,差异有统计学意义(t=2.29,P=0.03;t=4.89,P<0.001)。整体比较,FVH评分与APCVs评分、rΔφ、NIHSS入院评分之间正相关(r=0.55,P=0.001;r=0.35,P=0.04;r=0.39,P=0.02)。无论整体比较还是分组比较,FVH评分与Δφ、NIHSS出院、梗死体积均无相关性(P>0.05)。APCVs评分是FVH评分的影响因素(B=0.48,P=0.002)。结论 脑梗死责任动脉狭窄越明显,FVH征和APCVs征的范围越大,而FVH范围越大,局部脑缺氧越明显,神经功能受损越严重。
[Abstract] Objective To investigate the correlation of flair vascular hyperintensity (FVH) with brain venous blood oxygen metabolism and explore the relationship between FVH score and asymmetrically prominent cortical veins (APCVs) score, phase difference value (Δφ), the rato of phase difference value (rΔφ), NIHSS score, infarct volume in patients with acute or subacute cerebral infarction. Materials andMethods Thirty-four acute or subacute cerebral infarction patients were prospectively collected. The clinical base data of all patients were recorded, and the National Institute of Health stroke scale (NIHSS) scores at admission and discharge were evaluated (NIHSSadmission, NIHSSdischarged). All subjects underwent conventional MRI and diffusion-weighted imaging (DWI), susceptibility-weighted imaging (SWI) sequences. The degree of MCA stenosis, FVH score and APCVs score were measured and evaluated independently by two radiologists. The phase difference value (Δφ) and ratio (rΔφ) of veins around infarct area were measured and calculated and the infarct core volume was measured. All patients were divided into mild-moderate stenosis group and severe-occlusion group, the differences of FVH and APCVs scores between the two groups were compared with independent t-test. Spearman correlation analysis were separately used to analyze the relationships between FVH scores and APCVs score, Δφ, rΔφ, NIHSS score, infarct volume in three groups (whole, mild-moderate stenosis group and severe-occlusion group). The influencing factors of FVH score were analyzed by multiple linear regression.Results In thirty-four patients with unilateral MCA stenosis and cerebral infarction, the scores of FVH and APCVs in the severe-occlusion group were significantly higher than those in the mild-moderate group (t=2.29, P=0.03; t=4.89, P<0.001). On unified comparison, FVH score was positively correlated with APCVs score, rΔφ, NIHSSadmission (r=0.55, P=0.001; r=0.35, P=0.04; r=0.39, P=0.02). There was no correlation between FVH score and Δφ, NIHSSdischarged, infarct volume (P>0.05) whether overall or separately analysis. APCVs score was the influencing factor of FVH score (B=0.48, P=0.002).Conclusions The ranges of FVH and APCVs are related to the stenosis of the responsible artery. The larger territory of FVH is consistent with more serious hypoxia and clinical status.
[关键词] 脑梗死;磁共振成像;血管高信号征;磁敏感加权成像;氧代谢
[Keywords] cerebral infarction;magnetic resonance imaging;vascular hyperintensities;susceptibility-weighted imaging;oxygen metabolism

常佩佩    苗延巍 *   蒋玉涵    车艺玮    高冰冰    陈丽华    宋清伟    刘爱连   

大连医科大学附属第一医院放射科,大连 116011

苗延巍,E-mail:ywmiao716@163.com

全体作者均声明无利益冲突。


基金项目: 国家自然科学基金 81671646
收稿日期:2020-11-23
接受日期:2021-01-27
DOI: 10.12015/issn.1674-8034.2021.06.002
本文引用格式:常佩佩, 苗延巍, 蒋玉涵, 等. 急性/亚急性脑梗死患者FVH征评分与脑氧代谢及神经功能的关系[J]. 磁共振成像, 2021, 12(6): 5-9, 77. DOI:10.12015/issn.1674-8034.2021.06.002.

       脑梗死患者在液体衰减反转恢复(fluid-attenuated inversion recovery,FLAIR)序列上可见沿外侧裂或脑沟分布的点、线状高信号影,即“FLAIR血管高信号”征(fluid-attenuated inversion recovery vascular hyperintensity,FVH)[1]。研究发现,FVH征与脑梗死患者动脉闭塞部位以外的侧支血管一致[2],颈内动脉狭窄后,FVH征显著程度与狭窄后血流速度呈高度负相关[3],说明FVH征代表缓慢的侧支血流。单侧颈内动脉闭塞患者急性脑梗死时,FVH-扩散加权成像(diffusion-weighted imaging,DWI)明显不匹配与良好预后相关[4],而且FVH-DWI不匹配组患者入院时DWI体积较小,随访时DWI体积较小,DWI体积增长率低[5],表明FVH征与脑梗死体积有关,可以预测预后。脑梗死患者血流灌注降低往往伴随脑氧代谢的变化,而FVH征与脑氧代谢的关系尚未可知。

       SWI可以清晰显示脑静脉,主要原理是基于氧合血红蛋白与去氧血红蛋白磁化率的不同。部分急性脑梗死患者的SWI序列上,梗死灶周围皮质静脉可较对侧增多增粗,称为不对称突出皮质静脉征(asymmetrical prominent cortical veins,APCVs)[6]。研究发现,APCVs的出现与局部血流缓慢,氧饱和度降低有关,SWI的静脉相位值(phase值)可以间接定量静脉内去氧血红蛋白含量,进一步量化脑组织氧代谢情况[7-9]。FVH征与APCVs征的出现是否具有一致性也需要深入研究。

       本研究拟对单侧MCA供血区梗死患者FVH征与局部脑氧变化、美国国立研究院脑卒中评定表(National Institute of Health Stroke Scale,NIHSS)评分以及脑梗死体积相关性进行分析,以期进一步揭示FVH征形成与范围的影响因素及临床意义。

1 材料和方法

1.1 研究对象

       本研究经过本单位医学伦理委员会批准(批准文号:PJ-KS-KY-2018-56),受试者均已签署知情同意书。前瞻性研究2019年4月至2020年10月我院神经内科住院治疗的单侧大脑中动脉狭窄或闭塞引起的急性/亚急性脑梗死患者,共采集67例患者,15例因运动伪影而被排除,5例因幽闭恐惧症而中断扫描,13例为后循环梗死,最终有34例符合入组标准被纳入后续分析,其中男21例,女13例,年龄(64.47±12.57)岁。纳入标准:①结合临床资料及DWI证实的急性或亚急性脑梗死;②经头部CT血管造影术(CT angiography,CTA)和(或) 磁共振血管成像(MR angiography,MRA)检查证实单侧大脑中动脉狭窄或闭塞;③影像学资料齐全,包括T1WI、T2WI、T2 FLAIR、3D-TOF MRA和(或) CTA、DWI、SWI图像;④患者检查前无溶栓史。排除标准:①脑出血、脑外伤、脑肿瘤、代谢性疾病、变性性疾病等中枢神经系统疾病;② MRI图像存在严重伪影而影响图像分析。收集所有患者的临床资料,包括年龄、性别、病程(症状出现到磁共振检查的时间)、入院NIHSS评分(NIHSS入院)和出院NIHSS评分(NIHSS出院)。依据血管狭窄程度,将患者分为血管狭窄轻-中度组(0~69%),重度-闭塞组(70~100%)两组。

1.2 MR扫描

       应用Philips Ingenia 3.0 T CX (Philips Healthcare,Best,Netherlands) MRI扫描仪对患者进行扫描。扫描时患者取仰卧位,头先进,扫描基线与前-后联合连线相平行,上至颅顶,下至枕骨大孔水平。扫描序列包括常规序列及DWI、SWI图像。各序列扫描参数如表1所示。

表1  MR扫描参数
Tab. 1  MR scanning parameters

1.3 MRI图像处理

       图像后处理均采用Philips MRI工作站(Intelli Space Portal,ISP)完成,所有图像分析、测量由2位放射科医生独立完成,采用Kappa检验或组内相关检验分析一致性。MCA狭窄率:根据北美症状性颈动脉内膜切除术试验标准测量并分级:血管狭窄率=(1-最小残留管径/狭窄远端正常管径)×100%。FVH征的评分标准:根据阿尔伯塔脑卒中早期CT评分(ASPECTS)改良法[10]将FLAIR图像大脑中动脉供血区分为7个区域,其中尾状核头、豆状核、内囊后肢和岛叶为一个区域,M1、M2、M3、M4、M5、M6各为1个区域,每个区域出现FVH阳性则记为1分,评分范围为0~7分(图1)。APCVs评分依据Park等[11]的评分方法,将MCA供血区划分为8个区域:岛叶皮质;M1,前MCA皮质;M2,岛叶皮质外侧MCA皮质;M3,后MCA皮质;M4,M5,M6,前、侧、后MCA区;深部白质。每个区域出现皮质静脉征记为1分,评分范围为0~8分(图1)。

       扫描所得SWI原始数据自动重建,得到相位图(phase image,PI)和最小密度图(SWImin IP)。将图像数据以DICOM格式保存及传输至个人电脑,使用神经影像信号处理软件(signal process in neuroimaging,SPIN)[12]进行处理。结合DWI图像,在SWI相位图上测量梗死病灶周围脑静脉相位差值,即∆φ值(单位:spin)。测量时需要避开邻近磁敏感差异明显部位,测量线置于被测静脉的中段并与之垂直,测量梗死灶周围及对侧相应区域静脉血管的相位差,每个区域测量3支静脉的∆φ值,每支静脉测量3次,取其平均值即为最终∆φ值,最后计算r∆φ值,即梗死侧∆φ值和对侧∆φ值的比值(图2)。以DWI高信号区域定义为梗死核心(infarct core,IC)区,在ISP上半自动勾画每层IC边界,并融合成3D IC区,得到梗死体积。

图1  FVH征及APCVs征示意图。A:FLAIR序列图像上FVH征(箭);B:SWI序列上APCVs征象(箭) 图2 静脉∆φ值测量方法。A:在SWI滤波相位成像上选择梗死核心附近的静脉,测量脑静脉血的相位差∆φ,每条静脉需要沿血管从远到近连续测量3次,最后取测量值的平均值作为最终测量值;B:取对侧相应部位的静脉,用同样的方法求平均值
Fig. 1  Diagram of FVH sign and APCVs. A: FVH sign on FLAIR sequence images (arrow); B: APCVs on SWI sequence (arrow). Fig. 2 Measurement method of Δφ value. A: Selected three veins of the infarct core accessory on SWI filtered phase imaging, the phase difference (Δφ) was measured, each vein needs to be measured three times continuously from far to near along the blood vessel, and then the mean value was taken as the final; B: Selected the corresponding part of the contralateral vein, and the average value was obtained by the same method.

1.4 神经功能评分

       本研究中,由1名临床经验丰富的神经内科医生在患者入院后依据NIHSS进行评分(NIHSS入院),同样的方法获取出院时的NIHSS评分(NIHSS出院)。

1.5 统计学方法

       采用SPSS 20.0统计软件进行统计学处理。对于分类资料,2名观察者的一致性分析采用Kappa检验,Kappa值>0.60为一致性良好;2名观察者对连续资料之间的一致性分析采用组内相关系数检验(intraclass correlation coefficients,ICC)进行描述,ICC>0.75表示一致性良好。FVH、APCVs评分组间差异比较采用独立样本t检验,运用Spearman相关性分析分别研究3组(整体、轻-中度组、重度-闭塞组)FVH评分与APCVs评分、∆φ、r∆φ、NIHSS评分、梗死体积的关系,进一步采用多元线性回归分析探讨FVH征评分的影响因素。P<0.05为差异有统计学意义。

2 结果

2.1 临床资料统计

       轻-中度组22例,年龄(62.50±12.68)岁,病程(99.87±65.27) h,NIHSS入院为4.14±2.38,NIHSS出院为3.09±3.10;重度-闭塞组12例,年龄(68.08±12.05)岁,病程(105.08±71.37) h,NIHSS入院为5.33±3.14,NIHSS出院为3.67±3.87。所有患者的临床资料经One-Sample K-S检验,均符合正态分布(P>0.05)。

2.2 图像学数据统计

       2名放射科医生对FVH评分、APCVs评分、血管狭窄程度的评估具有良好的一致性(Kappa值均>0.60);所测∆φ、r∆φ、梗死体积一致性好(ICC>0.75)。所有患者的MRI测量参数经One-Sample K-S检验,均符合正态分布(P>0.05),见表2

表2  两组影像学数据(x¯±s)
Tab. 2  Imaging data of two groups (x¯±s)

2.3 FVH、APCVs评分组间差异

       血管狭窄重度-闭塞组的FVH、APCVs评分均高于轻-中度组,差异有统计学意义(t=2.29,P=0.03;t=4.89,P<0.001),见表3图3

图3  两组FVH、APCVs评分差异箱形图,显示重度-闭塞组FVH、APCVs评分均高于血管狭窄轻/中度组
Fig. 3  The difference map of FVH and APCVs scores between the two groups. The scores of FVH and APCVs in severe-occlusion group were higher than those in mild-moderate stenosis group.
表3  两组FVH、APCVs评分比较
Tab. 3  Comparison of FVH and APCVs scores between the two groups

2.4 FVH征评分与APCVs评分、∆φ、NIHSS评分、梗死体积的关系

       Spearman相关分析显示,整体比较显示FVH评分与APCVs评分、r∆φ、NIHSS入院评分之间呈明显正相关(r=0.55,P=0.001;r=0.35,P=0.04;r=0.39,P=0.02),与∆φ、NIHSS出院、梗死体积之间没有相关性。血管狭窄轻-中度组、重度-闭塞组分别进行分析显示FVH征评分与各参数无相关性(P>0.05)。详见表4图45

       将上述有统计学意义的结果进一步行多元线性回归,显示APCVs评分是影响FVH评分的主要因素(B=0.480,P=0.002),见表5

图4  FVH评分与各参数的相关性热点图(整体比较,*代表有统计学差异)
Fig. 4  Map of correlation between FVH score and parameters (* represents the statistical difference).
图5  男,63岁,左侧基底节区脑梗死。A:MRA显示左侧大脑中动脉闭塞;B:DWI示左侧基底节区急性脑梗死;C:T2 FLAIR图像示左外侧裂及脑沟条状高信号,即FVH征;D:SWI序列示左侧大脑半球静脉较对侧增粗、增多,即APCVs征
Fig. 5  MRI images of a 63-years-old man. A: MRA shows occlusion in left middle cerebral artery; B: DWI shows high signal in left basal ganglia; C: T2 FLAIR images shows strip high signal in the left lateral fissure and sulcus, which called FVH sign; D: SWI sequence shows that the veins in the left hemisphere were thicker and more than those in the contralateral hemisphere, which called APCVs.
表4  FVH评分与各参数的相关性
Tab. 4  Correlation between FVH score and imaging parameters
表5  FVH征评分与影像参数的多元线性回归
Tab. 5  Multiple linear regression between FVH score and imaging parameters

3 讨论

       本研究前瞻性比较了血管狭窄程度不同组FVH、APCVs评分的差异,分析了单侧大脑中动脉狭窄患者FVH征评分与APCVs评分、∆φ、r∆φ、临床评分以及梗死体积之间的关系,发现血管狭窄重度-闭塞组的FVH、APCVs评分均高于轻-中度组。此外,FVH征评分与APCVs评分、r∆φ、NIHSS入院评分之间正相关,表明FVH征的出现与脑氧代谢及患者入院时神经功能障碍严重程度有关系。

3.1 FVH、APCVs评分组间差异

       本研究表明,血管狭窄重度-闭塞组的FVH、APCVs评分均高于轻-中度组,说明血管狭窄程度越重,FVH征、APCVs征的范围越大。有研究[13]认为,存在FVH征、APCVs的脑组织依然灌注低下,FVH征常见于大血管闭塞的急性脑卒中患者[14],并且血管重度狭窄或闭塞是APCVs的独立危险因素[15],这与本研究结果相符,表明脑缺血缺氧越严重,侧枝循环开放越显著,脑组织氧摄取率越高,这两种征象越明显,从侧面反映脑组织灌注不足,提示脑血管病变越严重,需要引起人们注意。

3.2 FVH评分与APCVs评分的关系

       脑梗死的主要病理机制是急性脑梗死核心区域缺血缺氧、细胞水肿、氧代谢率降低、静脉减少,核心区周围的脑组织常伴有缺血缺氧,导致氧代谢率增加,病灶周围小静脉扩张增大[16]。关于APCVs在脑实质缺血时的作用机制,有研究认为是由于局部缺血导致静脉扩张,容积增加[17];另一种机制是低灌注组织的供氧和摄氧不耦合,导致脱氧血红蛋白相对增加和氧血红蛋白相对减少[8]。存在广泛的APCVs,再通患者有更好的预后[18],因此,可以认为缺血脑组织中的APCVs是对脑组织缺血缺氧的一种代偿反应。

       先前的研究表明,远端FVH征代表良好的侧支循环、较小的梗死体积、较大的缺血半暗带以及更少的与病变相关的神经功能缺损[14],与功能预后有关[19]。随着越来越多的研究,FVH征与侧支循环的关系得到了进一步的证实。目前已有一些研究对APCVs与侧支循环关系进行探讨,但是APCVs对脑梗死的预后预测仍有争议。有研究表明软脑膜侧支良好的患者APCVs明显多于软脑膜侧支不良的患者[20],SWI-DWI不匹配的存在与较好的预后相关[21],然而也有研究认为外周血APCVs减少可能提示预后良好[22]。FVH-ASPECT改良评分法评分和APCVs评分是基于ASPECTS的评分系统,可以简单、半定量评估这两个征象。Park等[11]研究显示,在TOF-MRA图像上,突出的APCVs和良好的侧支分级、广泛的FVH征有显著相关性,44例有显著的APCVs患者中29例出现突出的FVH征。在本研究中,整体比较发现梗死病灶侧FVH评分与SWI上APCVs评分之间具有相关性,而且APCVs评分是FVH征评分的影响因素,在一些病例中,FVH征与APCVs的位置一致。因此,可以认为梗死核心周围的脑组织,由于缺血缺氧,不仅会有侧支循环开放,同时伴有静脉的扩张,脱氧血红蛋白增加,脑摄氧量的增加,换句话说,当大脑大动脉闭塞时,增加的摄氧分数和良好的软脑膜侧支共同作用来补偿脑组织的缺血状态,FVH征和APCVs都可以描述侧支循环状态,而且这两个征象具有相关性。

3.3 FVH评分与脑氧状态的关系

       脑梗死发生时,首先侧支循环建立以保证病变区域脑血流量,当组织缺血缺氧进一步发展,氧摄取分数(oxygen extraction fraction,OEF)上升,当达到失代偿时病变区域发生梗死。所以当脑梗死发生时,缺血组织开始启动代谢储备,提高OEF弥补灌注不足,从而使相应引流静脉中脱氧血红蛋白的含量增加,静脉血中脱氧血红蛋白为顺磁性物质,可以缩短T2*时间,使静脉血管与周围组织的相位差增加,因此,脑组织缺血、缺氧越严重,脱氧血红蛋白含量越高,血氧饱和度越低,∆φ增加。本研究发现,FVH评分与r∆φ呈正相关,表明梗死核心周围脑组织FVH征范围越大,同时伴有脑摄氧增加,说明在缺血缺氧的刺激下,梗死核心周围脑组织不仅有侧枝循环开放,而且伴有脑氧代谢的改变,这两种机制共同代偿组织缺血缺氧,所以在临床工作中识别出FVH征,也可以帮助了解局部脑摄氧的变化,为进一步治疗提供更多信息。

3.4 FVH评分与神经功能状态的关系

       本次入选的患者为急性或亚急性脑梗死患者,在本研究中,发现NIHSS入院评分与FVH评分之间呈正相关。有研究[23]发现,对于急性缺血性脑梗死患者,FVH征与较大皮质脑梗死体积、颅内大动脉疾病和入院时更严重的中风有关。本研究也进一步证实脑梗死患者的FVH征评分越高,病变范围就越大,对患者的初始神经功能影响越明显,入院时NIHSS评分越高。

3.5 FVH评分与梗死体积关系

       目前对FVH与梗死体积关系的研究表明,FVH-DWI不匹配比FVH-DWI匹配更能预测预后[24],在超急性脑梗死中,FVH-DWI不匹配比FVH-DWI匹配组的初始梗死体积小[25]。也有研究认为,FVH-DWI不匹配对预后的影响与梗死体积有关系,在DWI-ASPECTS≤3中,FVH-DWI不匹配没有预后价值;而在DWI-ASPECTS≥8中,FVH-DWI不匹配具有最高的预后价值[26]。本研究发现FVH征评分与梗死体积没有相关性,可能与样本量少,不同个体之间梗死体积差异大有关,而且本研究梗死时间跨度较大,均可能影响最后的结果。

3.6 本研究的局限性

       首先,限于临床研究条件,符合纳入标准的患者样本量相对少;其次,本研究未对脑梗死进行动态观察,缺少FVH征评分及其相关因素的动态演变评估,在未来的研究中,需要结合病程进行动态随访,以期更加系统、全面、准确的评价。

       综上所述,本研究认为脑梗死患者责任动脉狭窄越明显,FVH征和APCVs征的范围相对越大,而局部脑缺氧越明显,神经功能受损越严重。

1
Kawashima M, Noguchi T, Takase Y, et al. Decrease in leptomeningeal ivy sign on fluid-attenuated inversion recovery images after cerebral revascularization in patients with moyamoya disease[J]. Am J Neuroradiol, 2010, 31(9): 1713-1718. DOI: 10.3174/ajnr.A2124.
2
Kim SE, Lee BI, Kim SE, et al. Clinical significance of fluid-attenuated inversion recovery vascular hyperintensities in borderzone infarcts[J]. Stroke, 2016, 47: 1548-1554. DOI: 10.1161/STROKEAHA.115.012285.
3
Paul A, Holger W, Johannes B, et al. FLAIR vascular hyperintensities indicate slow poststenotic blood flow in ICA stenosis[J]. Clin Neuroradiol, 2020, Aug 31. DOI: 10.1007/s00062-020-00941-y.
4
Yuan T, Ren GL, Hu XN, et al. Added assessment of middle cerebral artery and atrial fibrillation to FLAIR vascular hyperintensity-DWI mismatch would improve the outcome prediction of acute infarction in patients with acute internal carotid artery occlusion[J]. Neurol Sci, 2019, 40: 2617-2624. DOI: 10.1007/s10072-019-04029-5.
5
Zhou SB, Zhang XM, Gao Y, et al. Diffusion-weighted imaging volume and diffusion-weighted imaging volume growth in acute stroke: associations with fluid-attenuated inversion recovery hyperintensities-diffusion-weighted imaging mismatch and functional outcome[J]. Neuroreport, 2019, 30: 875-881. DOI: 10.1097/WNR.0000000000001291.
6
Tsui YK, Tsai FY, Hasso AN, et al. Susceptibility-weighted imaging for differential diagnosis of cerebral vascular pathology: A pictorial review[J]. J Neurological Sci, 2009, 287(1-2): 7-16. DOI: 10.1016/j.jns.2009.08.064.
7
李丹, 王效春. 定量磁敏感加权成像在急性缺血性脑卒中中的应用[J]. 磁共振成像, 2018, 9(4): 284-288. DOI: 10.12015/issn.1674-8034.2018.04.009.
Li D, Wang XC. Application of quantitative magnetic susceptibility weighted imaging in acute ischemic stroke[J]. Chin J Magn Reson Imaging, 2018, 9(4): 284-288. DOI: 10.12015/issn.1674-8034.2018.04.009.
8
Haacke EM, Mittal S, Wu Z, et al. Susceptibility-weighted imaging: technical aspects and clinical applications, part 1[J]. AJNR Am J Neuroradiol, 2009, 30: 19-30. DOI: 10.3174/ajnr.A1400.
9
祁宇, 薛静, 高培毅, 等. 磁敏感加权成像突出血管征对急性缺血性卒中缺血半暗带的评估价值[J]. 国际医学放射学杂志, 2017, 40(6):651-655. DOI: 10.19300/j.2017.L5736zt.
Qi Y, Xue J, Gao PY, et al. The value of prominent vessel sign on SWI in assessing ischemic penumbra in acute ischemic stroke[J]. Int J Med Radiol, 2017, 40(6): 651-655. DOI: 10.19300/j.2017.L5736zt.
10
Pexman JH, Barber PA, Hill MD, et al. Use of the alberta stroke program early CT score (ASPECTS) for assessing CT scans in patients with acute stroke[J]. AJNR Am J Neuroradiol, 2001, 22: 1534-1542.
11
Park MG, Yang TI, Oh SJ, et al. Multiple hypointense vessels on susceptibility-weighted imaging in acute ischemic stroke: Surrogate marker of oxygen extraction fraction in penumbra?[J]. Cerebrovas Dis, 2014, 38(4): 254-261. DOI: 10.1159/000367709.
12
Meng L, Jiani H, Yanwei M, et al. In vivo measurement of oxygenation changes after stroke using susceptibility weighted imaging filtered phase data[J]. PLoS One, 2013, 8(5): e63013. DOI: 10.1371/journal.pone.0063013.
13
Xu ZH, Duan Y, Yang BQ, et al. Asymmetric deep medullary veins in patients with occlusion of a large cerebral artery: Association with cortical veins, leptomeningeal collaterals, and prognosis[J]. Front Neurol, 2019, 10: 1292. DOI: 10.3389/fneur.2019.01292.
14
Lee KY, Latour LL, Luby M, et al. Distal hyperintense vessels on FLAIR: an MRI marker for collateral circulation in acute stroke?[J] .Neurology, 2009, 72: 1134-1139. DOI: 10.1212/01.wnl.0000345360.80382.69.
15
洪云, 朱幼玲, 黄治飞, 等. 急性前循环脑梗死患者病灶周围皮质静脉征的临床分析[J]. 中华老年心脑血管病杂志, 2019, 21(1): 36-40. DOI: CNKI:SUN:LNXG.0.2019-01-010.
Hong Y, Zhu YL, Huang ZF, et al. Cortical veins sign around lesions in acute anterior circulation cerebral infarction patients[J]. Chin J Geriatr Heart Brain Vessel Dis, 2019, 21(1): 36-40. DOI: CNKI:SUN:LNXG.0.2019-01-010.
16
Meoded A, Poretti A, Benson JE, et al. Evaluation of the ischemic penumbra focusing on the venous drainage: The role of susceptibility weighted imaging (SWI) in pediatric ischemic cerebral stroke[J]. J Neuroradiol, 2014, 41(2): 108-116. DOI: 10.1016/j.neurad.2013.04.002.
17
Rosso C, Belleville M, Pires C, et al. Clinical usefulness of the visibility of the transcerebral veins at 3T on T2*-weighted sequence in acute stroke patients[J]. Eur J Radiol, 2012, 81(6): 1282-1287. DOI: 10.1016/j.ejrad.2011.03.025.
18
Jiang HF, Zhang YQ, Pang JX, et al. Interactive effect of susceptibility- diffusion mismatch and recanalization status on clinical outcome in large vessel occlusion stroke[J]. J Stroke Cerebrovasc Dis, 2020, 29: 105072. DOI: 10.1016/j.jstrokecerebrovasdis.2020.105072.
19
Jiang L, Chen YC, Zhang H, et al. FLAIR vascular hyperintensity in acute stroke is associated with collateralization and functional outcome[J]. Eur Radiol, 2019, 29(9): 4879-4888. DOI: 10.1007/s00330-019-06022-0.
20
Verma RK, Hsieh K, Gratz PP, et al. Leptomeningeal collateralization in acute ischemic stroke: Impact on prominent cortical veins in susceptibility-weighted imaging[J]. Eur J Radiol, 2014, 83(8): 1448- 1454. DOI: 10.1016/j.ejrad.2014.05.001.
21
Payabvash S, Taleb S, Benson JC, et al. Susceptibility-diffusion mismatch in middle cerebral artery territory acute ischemic stroke: clinical and imaging implications[J]. Acta Radiol, 2017, 58: 876-882. DOI: 10.1177/0284185116675658.
22
Yuan T, Ren G, Quan G, et al. Fewer peripheral asymmetrical cortical veins is a predictor of favorable outcome in MCA infarctions with SWI-DWI mismatch[J]. J Magn Reson Imaging, 2018, 48(4): 964-970. DOI: 10.1002/jmri.25965.
23
Dong XY, Nao JF. Fluid-attenuated inversion recovery vascular hyperintensities in anterior circulation acute ischemic stroke: associations with cortical brain infarct volume and 90-day prognosis[J]. Neurol Sci, 2019, 40: 1675-1682. DOI: 10.1007/s10072-019-03909-0.
24
Mahdjoub E, Turc G, Legrand L, et al. Do fluid-attenuated inversion recovery vascular hyperintensities represent good collaterals before reperfusion therapy? [J]. AJNR Am J Neuroradiol, 2018, 39: 77-83. DOI: 10.3174/ajnr.A5431.
25
Legrand L, Tisserand M, Turc G, et al. Fluidattenuated inversion recovery vascular hyperintensities–diffusion-weighted imaging mismatch identifies acute stroke patients most likely to benefit from recanalization[J]. Stroke, 2016, 47: 424-427. DOI: 10.1161/STROKEAHA.115.010999.
26
Song L, Lu C, Shen GQ, et al. Application of FLAIR vascular hyperintensity-DWI mismatch in ischemic stroke depending on semi-quantitative DWI-alberta stroke program early CT score[J]. Front Neurol, 2019, 10: 994. DOI: 10.3389/fneur.2019.00994.

上一篇 基于DTI对白质微结构介导发病年龄和抑郁症严重程度的研究
下一篇 基于计算流体动力学大脑中动脉粥样硬化性急性缺血性脑卒中功能预后的相关性研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2