分享:
分享到微信朋友圈
X
临床研究
首诊精神分裂症和首诊强迫症患者静息态脑功能低频振幅分数的对比研究
郁晓曼 黄海峡 田霖 左翔 汪帅 张洋洋 周振和

Cite this article as: Yu XM, Huang HX, Tian L, et al. Contrast study using the resting-state fractional amplitude of low-frequency fluctuations between treatment-naive patients with schizophrenia and obsessive-compulsive disorder[J]. Chin J Magn Reson Imaging, 2021, 12(6): 16-21.本文引用格式:郁晓曼, 黄海峡, 田霖, 等. 首诊精神分裂症和首诊强迫症患者静息态脑功能低频振幅分数的对比研究[J]. 磁共振成像, 2021, 12(6): 16-21. DOI:10.12015/issn.1674-8034.2021.06.004.


[摘要] 目的 探讨首诊精神分裂症(schizophrenia,SZ)和首诊强迫症(obsessive-compulsive disorder,OCD)患者静息态脑功能低频振幅分数(fractional amplitude of low-frequency fluctuations,fALFF)的变化特征。材料与方法 招募22例首诊SZ、27例首诊OCD患者和60例正常对照组(normal controls,NC),采集被试3.0 T磁共振扫描数据,比较3组被试的fALFF值,在协方差分析的基础上进行Post hoc分析,结果均采用AlphaSim校正。对差异脑区fALFF值分别与两组患者临床症状和病程进行偏相关分析,将年龄、性别和教育年限作为协变量。结果 3组间fALFF有差异的脑区为右额中回/额上回、右舌回/小脑4、5区、右角回/缘上回、右楔前叶/后扣带回/中扣带回、颞上回/颞中回/海马(AlphaSim校正,P均<0.01)。和正常对照组相比,SZ组右额中回、右颞上回/海马/颞中回、右缘上回、右楔前叶、右舌回、右角回fALFF值减低;OCD组右角回、右额上回、右额中回fALFF值增高,右舌回fALFF值减低(AlphaSim校正,P均<0.01)。和SZ组相比,OCD组右额上回/额中回、右缘上回/角回、右海马/颞上回/颞中回、右后扣带回、右中扣带回fALFF值增高,右小脑4、5区fALFF值减低(AlphaSim校正,P均<0.01)。偏相关分析结果显示SZ患者右角回/缘上回fALFF值与病程呈正相关(r=0.507,P=0.027)。结论 首诊SZ和首诊OCD患者在静息状态下表现出不同模式的fALFF改变,和OCD患者相比,SZ患者自发性脑活动受损脑区更广泛。
[Abstract] Objective To explore the traits of fractional amplitude of low-frequency fluctuations (fALFF) in treatment-naive patients with schizophrenia (SZ) and obsessive-compulsive disorder (OCD). Materials andMethods In this study, 22 treatment-naive patients with SZ, 27 treatment-naive patients with OCD and 60 healthy controls were recruited and scanned with a 3.0 T MRI scanner. The fALFF values of the three groups of subjects were compared, and Post-hoc analysis was performed based on covariance analysis. The results were all corrected by AlphaSim multiple comparisons. The partial correlation analyses were conducted between fALFF values of significant differences in brain regions and the clinical symptoms and course of disease of the two patient groups, and age, sex and years of education were taken as covariates.Results The brain regions showing significant differences among three groups were located in the right middle frontal gyrus/superior frontal gyrus, right lingual gyrus/cerebellum 4—5, right angular gyrus/supramarginal gyrus, right precuneus/posterior cingulate cortex/middle cingulate cortex, superior temporal gyrus/middle temporal gyrus/hippocampus (AlphaSim corrected, P<0.01). Compared with the healthy group, the SZ group showed significantly decreased fALFF in the right middle frontal gyrus, right superior temporal gyrus/hippocampus/middle temporal gyrus, right supramarginal gyrus, right precuneus, right lingual gyrus and right angular gyrus (AlphaSim corrected, P<0.01). Compared with the healthy group, the OCD group showed significantly increased fALFF in the right angular gyrus, right superior frontal gyrus and right middle frontal gyrus, and significantly decreased fALFF in the right lingual gyrus (AlphaSim corrected, P<0.01). Compared with the SZ group, the OCD group showed significantly increased fALFF in the right superior frontal gyrus/middle frontal gyrus, right supramarginal gyrus/angular gyrus, right hippocampus/superior temporal gyrus/middle temporal gyrus, right posterior cingulate gyrus and right middle cingulate cortex, and significantly decreased fALFF in the right cerebellum 4—5 (AlphaSim corrected, P<0.01). The results of partial correlation analysis showed that the fALFF values of the right angular gyrus/supramarginal gyrus in SZ patients were positively correlated with the course of the disease (r=0.507, P=0.027).Conclusions Treatment-naive patients with SZ and OCD showed different patterns of fALFF changes in resting state. Compared with patients with OCD, patients with SZ had more impaired brain regions of spontaneous brain activity.
[关键词] 精神分裂症;强迫症;低频振幅分数;静息态功能磁共振成像
[Keywords] schizophrenia;obsessive-compulsive disorder;fractional amplitude of low-frequency fluctuations;resting-state functional magnetic resonance imaging

郁晓曼 1   黄海峡 2   田霖 1   左翔 2   汪帅 1   张洋洋 1   周振和 1*  

1 南京医科大学附属无锡精神卫生中心精神科,无锡 214151

2 华东疗养院影像科,无锡 214100

周振和,E-mail:zhouzh@njmu.edu.cn

全体作者均声明无利益冲突。


基金项目: 国家自然科学基金 81871081,81301148 无锡市“双百”中青年医疗卫生拔尖人才资助
收稿日期:2021-02-09
接受日期:2021-03-19
DOI: 10.12015/issn.1674-8034.2021.06.004
本文引用格式:郁晓曼, 黄海峡, 田霖, 等. 首诊精神分裂症和首诊强迫症患者静息态脑功能低频振幅分数的对比研究[J]. 磁共振成像, 2021, 12(6): 16-21. DOI:10.12015/issn.1674-8034.2021.06.004.

       精神分裂症(schizophrenia,SZ)和强迫症(obsessive-compulsive disorder,OCD)是常见的两种不同类型的精神障碍疾病,但它们有诸多相似的人口统计学和临床特征,且在病理生理学水平上密切相关[1, 2, 3, 4]。临床上SZ和OCD的共病率较高[5, 6]。一项发表在JAMA杂志的研究发现,OCD患者及其后代罹患SZ和SZ谱系障碍的风险明显增加,提示它们可能有共同的病因学基础[6]。近年来,SZ和OCD之间的关系一直受到越来越多的关注,但目前它们间的神经生物学底物和病因学关系仍未明确[3]。静息态功能磁共振成像(resting-state functional magnetic resonance imaging,rs-fMRI)技术已被广泛用于多种精神疾病的研究[7, 8],低频振幅分数(fractional amplitude of low-frequency fluctuations,fALFF)有效反映出静息状态脑自发性神经活动,具有较高的敏感度和特异度[9]。既往已有一些研究,基于同一研究框架和方法比较了SZ和OCD的结构和功能MRI成像特征[1410]。目前直接比较SZ和OCD脑功能磁共振成像特征的研究仍较少,本研究采用rs-fMRI技术探讨了首诊精神分裂症和首诊强迫症患者fALFF的特征性表现。

1 材料与方法

1.1 研究对象

       前瞻性收集2012年11月至2015年2月在无锡市精神卫生中心就诊的SZ和OCD的患者,同时期招募正常对照组。SZ和OCD患者需分别符合美国精神疾病的诊断和统计手册第4版中精神分裂症和强迫症的诊断标准,患者均为首次就诊,且既往未经过抗精神病治疗。此外,患者需满足以下条件:(1)父母均是汉族;(2)右利手;(3)年龄16~60岁。排除标准:(1)物质滥用致精神障碍;(2)癫痫史、高热惊厥史、脑外伤史;(3) MRI检查禁忌证;(4)脑器质性疾病、智力发育障碍或其他可引起神经系统病变的严重躯体疾病;(5)怀孕或计划妊娠。正常对照组(normal controls,NC)的入组标准:(1)父母均是汉族;(2)右利手;(3)年龄16~60岁;(4)无任何精神疾病或神经系统疾病病史;(5)无精神疾病家族史。排除标准:同患者组排除标准。7例SZ,2例OCD,5例NC因扫描不够配合或头动大于3 mm/3°被剔除,最终纳入22例SZ,27例OCD和60例NC进行统计分析,见表1。本研究已获无锡市精神卫生中心伦理委员会的伦理学审批(伦理批号:WXMHCIRB2012LLKY001),患者均已签署知情同意书。

表1  3组受试者一般人口学资料和临床资料的比较(x¯±s)
Tab. 1  Comparison of general demographic and clinical data of three groups of subjects (x¯±s)

1.2 方法

1.2.1 量表评估

       被试MRI扫描的当天对被试进行量表评估。采用阳性与阴性症状量表(Positive and Negative Syndrome Scale,PANSS)评估SZ患者的症状严重程度;采用耶鲁-布朗强量表(Yale-Brown Obsessive Compulsive Scale,Y-BOCS)评估OCD患者的强迫症状;分别采用汉密尔顿焦虑量表(Hamilton Anxiety Rating Scale,HARS)、汉密尔顿抑郁量表(24-item Hamilton Rating Scale for Depression,24-HDRS)评估OCD患者的焦虑和抑郁症状。

1.2.2 磁共振数据采集

       由无锡市人民医院影像科使用德国西门子3.0 T MRI仪器(3.0 Tesla Magnetom Trio Tim)和12通道相控阵头线圈采集大脑三维高分辨率T1加权序列和rs-fMRI图像。T1扫描参数:TR/TE=2530/3.44 ms,翻转角度(flip angle)=7°,视野(field of view,FOV)=256 mm×256 mm,矩阵大小=256×256,层厚=1 mm,体素大小=1 mm×1 mm×1 mm,层厚1 mm,层数192,扫描时间649 s。rs-fMRI采用梯度回波-回波平面成像(gradient-echo echo planar imaging,GRE-EPI)序列采集,具体参数:TR=2000 ms,TE=30 ms,翻转角90°,FOV=220 mm×220 mm,矩阵大小=64×64,层厚4 mm,层数33,体素大小=3.4 mm×3.4 mm×4 mm,共采集240个时间点。采集后图像均由至少两名影像科医生审阅和诊断,排除具有脑器质性疾病的被试。

1.2.3 磁共振数据处理

       基于MATLAB(R2013b)平台,采用DPABI(DPABI_V4.3)和SPM12 (http://www.fil.ion.ucl.ac.uk/spm/softwar-e/spm12)软件对数据进行处理和分析。处理步骤:(1)将数据从DICOM转换为NIFTI格式。(2)剔除前10个时间点。(3)时间层校正。(4)头动校正,剔除头动大于3 mm/3°的被试。(5)利用结构像(T1)分割功能像(EPI),空间标准化到蒙特利尔研究所(Montreal Neurological Institute,MNI)脑图谱,重采样为3 mm×3 mm×3 mm。(6)平滑(采用6 mm×6 mm×6 mm高斯核进行)。(7)去线性漂移(Detrend)和去除脑白质、脑脊液和头动参数等协变量。(8)应用DPABI计算fALFF指标值。fALFF是低频(0.01~0.08 Hz)范围内的信号振幅总和与整个频段的振幅总和之比,是对低频振幅方法的一种改进,可减少生理噪声的干扰,有效抑制非特异性信号[9]。为减少个体间变异,在统计分析之前对fALFF值进行Fisher’s z转换来获得近似正态分布,即得到zfALFF[11]

1.3 统计学方法

       采用SPSS 25.0软件对被试的一般人口学资料以及临床资料进行统计分析。对3组被试的年龄、受教育年限进行单因素方差分析(ANOVA),对性别使用卡方检验。SZ和OCD两组间病程的比较使用双样本t检验。以P<0.05为差异有统计学意义。影像学数据应用SPM12软件对被试的fALFF值作协方差分析(ANCOVA),以年龄、受教育年限和性别作为协变量,两组之间差异比较采用Post-hoc分析,使用REST(http://restfmri.net/)工具对统计结果进行蒙特卡罗模拟法(AlphaSim)校正。ANCOVA的结果以体素水平P<0.01,团块大小K≥46,校正后P<0.01的区域为差异有统计学意义;Post-hoc分析以P均<0.01,K≥5,认为两组间差异有统计学意义。提取SZ组和OCD组被试在3组间显著差异团块的fALFF均值,分别与PANSS量表、Y-BOCS 量表、HARS和24-HDRS量表评分和患者病程进行偏相关分析,将年龄、受教育年限、性别作为协变量,以P<0.05为差异有统计学意义。

2 结果

2.1 一般临床资料比较

       3组被试的年龄和受教育年限差异有统计学意义(P<0.05),性别、患者的病程时长差异无统计学意义(P>0.05)。见表1

2.2 3组被试fALFF显著差异的脑区

       ANCOVA结果显示,3组间fALFF值有差异的脑区为右额中回/额上回、右舌回/小脑4、5区、右角回/缘上回、右楔前叶/后扣带回/中扣带回、右颞上回/颞中回/海马(AlphaSim校正,K≥46,P均<0.01)。见表2图1A

图1  A:首诊SZ、首诊OCD和NC 3组间fALFF差异的脑区(AlphaSim校正,K≥46,P均<0.01),色条所示为F值大小;B:首诊SZ组和OCD组fALFF存在差异的脑区(AlphaSim校正,K≥5,P均<0.01),色条所示为t值大小;C:首诊OCD组和NC组fALFF存在差异的脑区(AlphaSim校正,K≥5,P均<0.01),色条所示为t值大小;D:首诊SZ组和NC组fALFF存在差异的脑区(AlphaSim校正,K≥5,P均<0.01),色条所示为t值大小
Fig.1  A: Brain regions of the fALFF differences among schizophrenia, first-episode obsessive-compulsive disorder and normal control group (AlphaSim corrected, K≥46, P<0.01), the color bar shows the F value; B: Brain regions of the fALFF differences between SZ group and OCD group (AlphaSim corrected, K≥5, P<0.01), the color bar shows the t value; C: Brain regions of the fALFF differences between OCD group and NC group (AlphaSim corrected, K≥5, P<0.01), the color bar shows the t value; D: Brain regions of the fALFF differences between SZ group and NC group (AlphaSim corrected, K≥5, P<0.01), the color bar shows the t value.
表2  3组受试者fALFF值显著差异的脑区分布
Tab. 2  Distribution of brain regions with significant differences in fALFF values among three groups of subjects

2.3 Post-hoc两两比较结果

       Post-hoc分析两两比较(AlphaSim校正,K≥5,P均<0.01)结果显示,和SZ组相比,OCD组右额上回/额中回、右缘上回/角回、右海马/颞上回/颞中回、右后扣带回、右中扣带回fALFF值增高,右小脑4、5区fALFF值减低,见表3图1B。和正常对照组相比,OCD组右角回、右额上回、右额中回fALFF值增高,右舌回fALFF值减低,见表4图1C。和正常对照组相比,SZ组fALFF值减低的脑区为右额中回、右颞上回/海马/颞中回、右缘上回、右楔前叶、右舌回、右角回,见表5图1D

表3  精神分裂症组较强迫症组fALFF值显著差异的脑区
Tab. 3  Brain regions with significant difference in the value of fALFF between schizophrenia group and obsessive-compulsive disorder group
表4  强迫症组较对照组fALFF值显著差异的脑区
Tab. 4  Brain regions with significant difference in the value of fALFF between the obsessive-compulsive disorder group and the control group
表5  精神分裂症组较对照组fALFF值显著差异的脑区
Tab. 5  Brain regions with significant difference in the value of fALFF between the schizophrenic group and the control group

2.4 相关分析

       偏相关分析结果显示,SZ患者右角回/缘上回fALFF值与患者病程之间呈正相关(r=0.507,P=0.027),见图2。OCD患者fALFF值与患者临床症状和病程之间无显著相关(P>0.05)。

图2  精神分裂症患者右角回/缘上回fALFF值与患者病程相关性
Fig.2  Correlations between fALFF values of right angular gyrus / supramarginal gyrus and course of disease in patients with schizophrenia.

3 讨论

       本研究基于rs-fMRI的方法,直接比较了首诊SZ和首诊OCD患者fALFF值的变化特征,为探索这两种疾病相同和特异的生物学标志物提供了新的证据,增进了对SZ和OCD神经机制的理解。结果显示,和对照组相比,SZ组存在多个脑区fALFF值减低,OCD组右角回、右额上回、右额中回fALFF值增高,右舌回fALFF值减低。SZ和OCD组相比,多个脑区fALFF值均存在差异。

3.1 与NC组相比,首诊SZ和OCD患者各自存在fALFF异常的脑区

       神经振荡是大脑正常工作期间协调大脑功能活动的基本机制,内在连贯性的神经元信号对于脑功能的发育和维持至关重要[12]。既往研究发现,精神分裂症与广泛脑区如额颞顶枕叶及边缘叶等低频振荡振幅的改变有关[12, 13]。本研究SZ患者多个脑区fALFF减低,与既往研究结果部分一致,如Xu等[13]通过大样本研究和Meta分析发现,SZ患者双侧枕叶、颞上回、后顶叶皮层、眶额叶等脑区ALFF/fALFF降低。但本研究中SZ患者右侧额中回、颞中回、海马fALFF减低与既往研究结果有差异,考虑可能与样本量、研究方法、病程等不同有关。皮质-纹状体-丘脑-皮质(cortico-striato-thalamo-cortical,CSTC)环路功能障碍是OCD的核心病理生理特征,最近越来越多的研究证据表明,OCD患者在CSTC环路之外的脑区(如小脑、顶叶和颞叶等)也可出现功能异常[14, 15]。既往fMRI研究比较一致的发现是OCD患者在眶额回和前扣带回等脑区出现过度激活[15]。本研究仅发现OCD患者右角回、额上中回、舌回fALFF值有异常,结果差异考虑可能与研究方法以及OCD的异质性等因素有关。

3.2 首诊SZ和OCD患者均存在fALFF异常的脑区

       OCD患者右额中回和角回fALFF增高,而SZ患者这两个脑区fALFF减低。额中回在工作记忆、情绪调节、社会知觉和记忆检索等中均发挥重要的作用[16]。诸多研究提示,SZ和OCD患者都常伴有前额叶结构和功能的异常[17, 18]。有研究发现OCD患者在额中回、顶枕叶等脑区表现出过度激活模式[19]。顶下小叶的角回是默认网络(default mode network,DMN)的重要组成部分,参与感知觉、记忆和多种认知功能的处理过程[20]。Ren等[21]发现首诊SZ患者顶下小叶fALFF减低。Li等[7]发现角回等DMN内脑区fALFF值变化与SZ患者的阴性症状和暴力行为有关。Meng等[22]研究只入组女性OCD患者,结果发现患者右角回fALFF增高。和上述研究结果基本一致,本研究提示了首诊SZ和OCD患者在右额中回和角回均存在自发性神经活动的异常,可能与SZ和OCD患者的感知觉、记忆和多种认知功能等相关功能受损有关。

       舌回参与视觉信息的加工和处理过程。Hoptman等[23]发现SZ患者右舌回同时伴有ALFF和fALFF减低。既往本课题组研究发现首诊OCD患者左舌回fALFF减低[14]。与这些研究结果一致,本研究发现和NC相比,首诊SZ和首诊OCD患者均有右舌回fALFF减低,推测可能与SZ和OCD的视觉信息加工处理受损有关。

3.3 首诊SZ和OCD患者fALFF具有显著差异的脑区

       和OCD相比,SZ患者fALFF异常的脑区更广泛,且SZ患者在多个脑区fALFF值更低。与既往多个研究报道一致,与OCD相比,SZ患者通常伴有更广泛和更严重的神经生物学受损[424, 25]。强迫症患者可表现出执行功能、视觉空间和语言记忆以及情绪处理等方面的障碍,受损脑区主要位于CSTC环路以及部分位于环路外的脑区[26]。精神分裂症的病因复杂,通常与严重的功能障碍有关,并影响广泛分布的神经环路[13]。既往本课题组直接比较了两患者组的脑白质网络拓朴属性,发现SZ和OCD分别表现出不同程度的解剖学损伤和一些独特的拓扑结构异常,SZ的脑白质网络具有更严重和更广泛的破坏[4]。但Zhang等[10]直接比较了SZ和OCD患者的脑灰质体积和局部一致性的特征发现,两组患者共同表现为右前扣带回、左楔叶和内侧额上回等脑区的结构或功能异常,提示它们可能有共同的潜在病理生理机制。本研究结果显示首诊SZ和首诊OCD患者具有不同的自发性脑活动受损模式,SZ比OCD患者自发性神经活动异常的脑区更广泛,提示SZ和OCD可能具有不同的潜在神经生物学机制。

3.4 相关分析

       缘上回和角回均位于顶下小叶。顶下小叶是默认DMN、腹侧注意网络、额顶网络等脑网络中的重要节点,参与自身感觉和执行功能等多种功能,已被证实在精神分裂症患者中该脑区结构和功能均受到严重损害[27]。本研究偏相关分析结果发现SZ患者右角回/缘上回fALFF值与患者病程之间呈正相关,即病程越短,fALFF值越小。本研究结果提示缘上回和角回的自发性脑活动异常可能在精神分裂症的病理生理机制中发挥重要作用。

       综上所述,本研究基于同一研究框架和研究方法,发现首诊SZ与首诊OCD表现出不同的自发神经活动异常模式,SZ比OCD自发性神经活动受损脑区更广泛和更严重,提示了SZ和OCD可能具有不同的潜在神经生物学机制。本研究不足之处是样本量小,未考虑样本异质性、未做随访研究和未纳入伴强迫症状精神分裂症(schizo-obsessive)[3]组。未来将扩大样本量、纳入伴强迫症状精神分裂症组并结合多模态磁共振的方法,更深入探讨SZ和OCD的病理生理机制。

1
Hawco C, Voineskos AN, Radhu N, et al. Age and gender interactions in white matter of schizophrenia and obsessive compulsive disorder compared to non-psychiatric controls: commonalities across disorders[J]. Brain Imaging Behavior, 2017, 11(6): 1836-1848. DOI: 10.1007/s11682-016-9657-8.
2
Cheng YF, Chen VC, Yang YH, et al. Risk of schizophrenia among people with obsessive-compulsive disorder: A nationwide population-based cohort study[J]. Schizophrenia Res, 2019, 209: 58-63. DOI: 10.1016/j.schres.2019.05.024.
3
Poyurovsky M, Zohar J, Glick I, et al. Obsessive-compulsive symptoms in schizophrenia: implications for future psychiatric classifications[J]. Comprehensive Psychia, 2012, 53(5): 480-483. DOI: 10.1016/j.comppsych.2011.08.009.
4
Qin J, Sui J, Ni H, et al. The shared and distinct white matter networks between drug-naive patients with obsessive-compulsive disorder and schizophrenia[J]. Front Neurosci, 2019, 13: 96. DOI: 10.3389/fnins.2019.00096.
5
Wang YM, Zou LQ, Xie WL, et al. Altered functional connectivity of the default mode network in patients with schizo-obsessive comorbidity: A comparison between schizophrenia and obsessive-compulsive disorder[J]. Schizophrenia Bulletin, 2019, 45(1): 199-210. DOI: 10.1093/schbul/sbx194.
6
Meier SM, Petersen L, Pedersen MG, et al. Obsessive-compulsive disorder as a risk factor for schizophrenia: a nationwide study[J]. JAMA Psychiatry, 2014, 71(11): 1215-1221. DOI: 10.1001/jamapsychiatry.2014.1011.
7
李颖娜, 范丰梅, 冯志远, 等. 伴有暴力倾向的精神分裂症患者低频振幅与分数低频振幅静息态功能影像学研究[J]. 中华精神科杂志, 2020, 53(1): 16-22. DOI: 10.3760/cma.j.issn.1006-7884.2020.01.004.
Li YN, Fan FM, Feng ZY, et al. Resting state functional magnetic resonance imaging study of amplitude of low-frequency fluctuation and fractional amplitude of low-frequency fluctuation in schizophrenia with violent behaviors[J]. Chin J Psychiatry, 2020, 53(1): 16-22. DOI: 10.3760/cma.j.issn.1006-7884.2020.01.004.
8
Moreira PS, Marques P, Magalhães R, et al. The resting-brain of obsessive-compulsive disorder[J]. Psychiatry Res Neuroimaging, 2019, 290: 38-41. DOI: 10.1016/j.pscychresns.2019.06.008.
9
Zou QH, Zhu CZ, Yang Y, et al. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF[J]. J Neurosci Method, 2008, 172(1): 137-141. DOI: 10.1016/j.jneumeth.2008.04.012.
10
张晓晰, 李静, 廖金敏, 等. 精神分裂症和强迫障碍患者的全脑灰质体积及静息态脑功能局部一致性[J]. 中国心理卫生杂志, 2017, 31(10): 768-774. DOI: 10.3969/j.issn.1000-6729.2017.10.004.
Zhang XX, Li J, Liao JM, et al. Abnormal gray matter volume and regional homogeneity of resting fMRI in patients with schizophrenia and obsessive-compulsive disorder[J]. Chin Mental Health J, 2017, 31(10): 768-774. DOI: 10.3969/j.issn.1000-6729.2017.10.004.
11
Egorova N, Veldsman M, Cumming T, et al. Fractional amplitude of low-frequency fluctuations (fALFF) in post-stroke depression[J]. NeuroImage Clin, 2017, 16(C): 116-124. DOI: 10.1016/j.nicl.2017.07.014.
12
Yu R, Chien YL, Wang HL, et al. Frequency-specific alternations in the amplitude of low-frequency fluctuations in schizophrenia[J]. Hum Brain Mapping, 2014, 35(2): 627-637. DOI: 10.1002/hbm.22203.
13
Xu Y, Zhuo C, Qin W, et al. Altered spontaneous brain activity in schizophrenia: A meta-analysis and a large-sample study[J]. BioMed Res Int, 2015, 2015: 204628. DOI: 10.1155/2015/204628.
14
Qiu L, Fu X, Wang S, et al. Abnormal regional spontaneous neuronal activity associated with symptom severity in treatment-naive patients with obsessive-compulsive disorder revealed by resting-state functional MRI[J]. Neurosci Lett, 2017, 640: 99-104. DOI: 10.1016/j.neulet.2017.01.024.
15
Zhang H, Wang B, Li K, et al. Altered functional connectivity between the cerebellum and the cortico-striato-thalamo-cortical circuit in obsessive-compulsive disorder[J]. Front Psychiatry, 2019, 10: 522. DOI: 10.3389/fpsyt.2019.00522.
16
Wang Y, Zhu W, Xiao M, et al. Hostile attribution bias mediates the relationship between structural variations in the left middle frontal gyrus and trait angry rumination[J]. Front Psychology, 2018, 9: 526. DOI: 10.3389/fpsyg.2018.00526.
17
Liang Y, Shao R, Zhang Z, et al. Amplitude of low-frequency fluctuations in childhood-onset schizophrenia with or without obsessive-compulsive symptoms: a resting-state functional magnetic resonance imaging study[J]. Arch Med Sci, 2019, 15(1): 126-133. DOI: 10.5114/aoms.2018.73422.
18
Gonçalves OF, Sousa S, Carvalho S, et al. Alterations of gray and white matter morphology in obsessive compulsive disorder[J]. Psicothema, 2017, 29(1): 35-42. DOI: 10.7334/psicothema2016.86.
19
Gonçalves ÓF, Soares JM, Carvalho S, et al. Brain activation of the defensive and appetitive survival systems in obsessive compulsive disorder[J]. Brain Imaging Behavior, 2015, 9(2): 255-263. DOI: 10.1007/s11682-014-9303-2.
20
van Kemenade BM, Arikan BE, Kircher T, et al. The angular gyrus is a supramodal comparator area in action-outcome monitoring[J]. Brain Struct Function, 2017, 222(8): 3691-3703. DOI: 10.1007/s00429-017-1428-9.
21
Ren W, Lui S, Deng W, et al. Anatomical and functional brain abnormalities in drug-naive first-episode schizophrenia[J]. Am J Psychiatry, 2013, 170(11): 1308-1316. DOI: 10.1176/appi.ajp.2013.12091148.
22
Meng Z, Zhang Z, Fan Q, et al. Altered fractional amplitude of low frequency fluctuations in unmedicated female patients with obsessive-compulsive disorder[J]. Annual Int Confer IEEE Engineering in Med Biology Soc, 2018, 2018: 1144-1147. DOI: 10.1109/embc.2018.8512490.
23
Hoptman MJ, Zuo XN, Butler PD, et al. Amplitude of low-frequency oscillations in schizophrenia: a resting state fMRI study[J]. Schizophrenia Res, 2010, 117(1): 13-20. DOI: 10.1016/j.schres.2009.09.030.
24
Ha TH, Yoon U, Lee KJ, et al. Fractal dimension of cerebral cortical surface in schizophrenia and obsessive-compulsive disorder[J]. Neurosci Lett, 2005, 384(1-2): 172-176. DOI: 10.1016/j.neulet.2005.04.078.
25
Riffkin J, Yücel M, Maruff P, et al. A manual and automated MRI study of anterior cingulate and orbito-frontal cortices, and caudate nucleus in obsessive-compulsive disorder: comparison with healthy controls and patients with schizophrenia[J]. Psychiatry Res, 2005, 138(2): 99-113. DOI: 10.1016/j.pscychresns.2004.11.007.
26
Picó-Pérez M, Moreira PS, de Melo Ferreira V, et al. Modality-specific overlaps in brain structure and function in obsessive-compulsive disorder: Multimodal meta-analysis of case-control MRI studies[J]. Neurosci Biobehavioral Reviews, 2020, 112: 83-94. DOI: 10.1016/j.neubiorev.2020.01.033.
27
Torrey EF. Schizophrenia and the inferior parietal lobule[J]. Schizophrenia Res, 2007, 97(1-3): 215-225. DOI: 10.1016/j.schres.2007.08.023.

上一篇 基于计算流体动力学大脑中动脉粥样硬化性急性缺血性脑卒中功能预后的相关性研究
下一篇 0~6岁儿童脑深部灰质核团铁的变化:定量磁敏感图与R2*的比较
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2