分享:
分享到微信朋友圈
X
基础研究
3.0 T磁共振钆延迟强化技术评价小型猪慢性阻塞性肺病模型心肌纤维化的实验研究
刘智 郭丹丹 李春平 李睿

Cite this article as: Liu Z, Guo DD, Li CP, et al. Evaluation of myocardial fibrosis in miniature pig model of COPD by the 3.0 T magnetic resonance LGE techniques: An experimental study[J]. Chin J Magn Reson Imaging, 2021, 12(8): 49-54.引用本文:刘智, 郭丹丹, 李春平, 等. 3.0 T磁共振钆延迟强化技术评价小型猪慢性阻塞性肺病模型心肌纤维化的实验研究[J]. 磁共振成像, 2021, 12(8): 49-54. DOI:10.12015/issn.1674-8034.2021.08.010.


[摘要] 目的 利用3.0 T心脏磁共振(cardiovascular magnetic resonance,CMR)钆延迟强化(late gadolinium enhancement,LGE)技术评估巴马小型猪慢性阻塞性肺病(chronic obstructive pulmonary disease,COPD)模型左心室(left ventricle,LV)心肌纤维化,为评估COPD心肌组织学损伤提供影像学依据。材料与方法 选用20头健康巴马小型猪,随机分成COPD模型组(16头,蛋白酶制备COPD模型)及正常对照组(4头)。分别于造模前及造模不同阶段(4周、8周及20周)行多模态CMR扫描。对比各组小型猪之间常规心脏参数的差异;分析各组LV心肌LGE发生率、分布及类型。结果 模型组共有14头小型猪COPD模型构建成功。造模早期及中期(4周、8周)模型组与对照组的基线资料差异均无统计学意义(P>0.05);而造模后期(20周)呼吸频率及心率均明显加快(P分别为0.003、0.002);体质量降低(P=0.007)。造模早、中期各组小型猪心功能参数之间差异无统计学意义(P>0.05)。与造模前及对照组比较,造模后期右心室前壁(right ventricular anterior wall,RVAW) (P均<0.001)均有所增厚,右心室舒张末横径(right ventricular end diastolic diameter,RVDd) (P<0.001)及左心室后壁(left ventricular posterior wall,LVPW) (P=0.018)较造模前有所增厚,左心室舒张末横径(left ventricular end diastolic diameter,LVDd) (P=0.05)及左心室舒张末容积(left ventricular end diastolic volume,LVEDV) (P=0.005)较造模前有所减低。右心室射血分数(right ventricular ejection fraction,RVEF)较造模前及对照组均降低(P<0.001及为0.001);左心室射血分数(left ventricular ejection fraction,LVEF)差异无统计学意义(P均>0.05)。造模后模型组有5头小型猪共23个心肌节段(23/85)发生LGE,与对照组及造模前比较均出现显著差异(P均<0.01)。LGE主要位于左室基底部及中间部,其分布差异有统计学意义(P<0.05),且LGE以肌壁间型最为多见。结论 COPD早期即可出现RVEF降低,但仍在正常范围内;少部分LV心肌可出现心肌纤维化,但LVEF未见明确改变。基于CMR的LGE技术可为COPD患者早期干预、诊疗计划的制定以及预后的评估提供影像学依据。
[Abstract] Objective To explore the feasibility of 3.0 T cardiovascular magnetic resonance (CMR) late gadolinium enhancement (LGE) techniques in assessing early left ventricular (LV) myocardial fibrosis in miniature pig COPD model, so as to provide imaging basis for detecting early myocardial injury in COPD. Materials andMethods Twenty healthy Bama miniature pigs were divided into COPD model group (16 pigs, COPD model was prepared by protease) and normal control group (4 pigs). Before modeling and at different stages of modeling (4 weeks, 8 weeks and 20 weeks), multimodal CMR scanning was performed. The differences of conventional cardiac parameters among the groups were compared, and the incidence, distribution and types of LV myocardial LGE were analyzed.Results The COPD model of 14 miniature pigs in the model group was successfully constructed. There was no significant difference in baseline data between the model group and the control group in the early and middle stage of modeling (4 weeks and 8 weeks) (P> 0.05); however, in the late stage of modeling (20 weeks), respiratory rate and heart rate were significantly increased (P=0.003 and 0.002 respectively); body weight was decreased (P=0.007). There was no significant difference in heart function parameters between groups in the early and middle stages of modeling (P>0.05). The right ventricular anterior wall (RVAW) (all P<0.001) was thickened, while the right ventricular end diastolic diameter (RVDd) (P<0.001) and left ventricular posterior wall (LVPW) (P=0.018) was only thicker than before modeling, left ventricular end diastolic diameter (LVDD) (P=0.05) and left ventricular end diastolic volume (LVEDV) (P=0.005) were decreased than before modeling. The right ventricular ejection fraction (RVEF) was lower than that before modeling and in the control group (P<0.001 and 0.001); the left ventricular ejection fraction (LVEF) had no statistical difference (P>0.05). LGE was found in 23 myocardial segments (23/85) of 5 minipigs in the model group after modeling, which was significantly different from that in the control group and before modeling (all P<0.01). LGE was mainly located in the basal and middle slices of left ventricle, and the distribution was statistically significant (P<0.05), and the most common type of LGE was intramural type.Conclusions In the early stage of COPD, decreased RVEF, but still in the normal range could be observed. Myocardial fibrosis occurred in a small part of LV myocardium, accompanied with normal LVEF. LGE technology based on CMR could provide imaging basis for early intervention, diagnosis and treatment planning and prognosis evaluation of COPD patients.
[关键词] 慢性阻塞性肺疾病;心脏磁共振;小型猪;钆延迟强化;心肌损伤;纤维化
[Keywords] chronic obstructive pulmonary disease;cardiovascular magnetic resonance;miniature pigs;late gadolinium enhancement;myocardial injury;fibrosis

刘智 1, 2   郭丹丹 2   李春平 2   李睿 2*  

1 重庆市中医院放射科,重庆 400021

2 川北医学院附属医院放射科,医学影像四川省重点实验室,南充 637000

李睿,E-mail:ddtwg_nsmc@163.om

全体作者均声明无利益冲突。


基金项目: 国家自然科学基金 81801674 四川省科技厅应用基础研究 2021YJ0242 四川省卫生健康委员会科研课题 19PJ201
收稿日期:2021-03-23
接受日期:2021-05-24
DOI: 10.12015/issn.1674-8034.2021.08.010
引用本文:刘智, 郭丹丹, 李春平, 等. 3.0 T磁共振钆延迟强化技术评价小型猪慢性阻塞性肺病模型心肌纤维化的实验研究[J]. 磁共振成像, 2021, 12(8): 49-54. DOI:10.12015/issn.1674-8034.2021.08.010.

       近年来,我国的慢性阻塞性肺病(chronic obstructive pulmonary disease,COPD)发病率逐年升高,根据2018年流行病学调查研究及中国肺健康研究显示,我国COPD的患病人数已近1亿人[1, 2]。除了呼吸系统的改变,COPD还常继发肺源性心脏病、肺栓塞、缺血性心肌病等心血管疾患,最终导致心力衰竭,给人们的生命财产安全带来巨大的负担。

       一般情况下,COPD患者因双肺气流受限、肺静脉面积减小,病变持续发展引起肺动脉高压,右心室后负荷增加导致右心室重塑并最终引起肺源性心脏病及右心衰竭;左心功能受损一般继发于右心衰后室间隔依赖等引起的血流动力学改变,最终演变为全心衰[3, 4, 5]。但也有研究表明COPD早期即可导致左心的损伤,并且可能与右心损伤同步;除了血流动力学,COPD引起的冠状动脉疾病等其他因素也可能导致左心室心肌损伤,此外,当COPD合并肺动脉高压及肺心病可导致心肌损伤组织纤维化[6, 7, 8, 9]。心脏磁共振(cardiovascular magnetic resonance,CMR)多模态、多维度成像,能无创、准确地评价心脏结构和功能,基于CMR的钆延迟强化(late gadolinium enhancement,LGE)技术还能观察心肌内部的纤维化改变,且这一异常通常发生于左心室射血分数(left ventricular ejection fraction,LVEF)下降之前。因此,本研究旨在利用基于心脏磁共振LGE技术检测巴马小型猪COPD模型心肌纤维化,为评估COPD左室心肌损伤提供影像学依据。

1 材料与方法

1.1 实验动物

       选用6月龄健康巴马小型猪20头,雌性和雄性各半,体质量(25±2) kg,由川北医学院实验动物中心提供并饲养。

1.2 实验方法

1.2.1 COPD模型制作

       将小型猪按4∶1的比例分为COPD模型组(16头)及正常对照组(4头)。模型组小型猪使用3%的木瓜蛋白酶溶液(6 U/kg)及胰蛋白酶溶液(300 U/kg)构建COPD模型。造模时将麻醉好的巴马小型猪仰卧于操作台上,使用喉镜开放气道,进行气管插管,向气管插管内插入自制塑料软管,使用5 mL一次性注射器往塑料软管内注入胰蛋白酶溶液,2 d后用同样的方法向气管内注入木瓜蛋白酶溶液。以此循环操作20周来构建巴马小型猪的COPD模型。对照组不作处理。造模前、造模早期(第4周)、造模中期(第8周)及造模后期(第20周)对小型猪行胸部CT检查,通过双肺的CT表现观察COPD造模情况。该实验经川北医学院动物伦理委员会批准,批文编号:NSMC伦理动物审[2021]37号。

1.2.2 CT及CMR扫描

       分别于检查前12 h及4 h禁食、禁水。首先于小型猪臀部注射陆眠宁对其进行前期诱导麻醉,再通过Matrx VME2动物专用吸入麻醉机用异氟烷对小型猪进行气体麻醉。待其麻醉稳定后用一次性留置针于小型猪耳缘静建立静脉通道。最后将小型猪以仰卧位固定于自制的木质“U”形固定槽内。

       所有小型猪分别于造模前、造模早期(4周)、中期(8周)及后期(20周)行胸部CT平扫及CMR扫描。胸部CT扫描使用美国GE公司64排螺旋CT扫描仪,扫描参数如下:管电压:120 kv,管电流:35~67 mAs,螺距:1.375,层厚:5 mm,以层厚1.25 mm、层距0.625 mm进行图像重建。CMR扫描使用美国GE公司3.0 T磁共振扫描仪,扫描线圈为32通道体部线圈,联合前瞻性VCG向量式心电门控,采用快速自由稳态平衡进动序列(fast imaging employing steady-state acquisition,FIESTA)及反转恢复梯度回波序列(reverse recovery gradient echo train,RRGET)行心脏磁共振电影(cardiovascular magnetic resonance cine,CMR-Cine)及LGE成像。CMR-Cine成像参数如下,TR:3.0~3.8 ms;TE:1.5~1.7 ms;FA:45°;FOV:35 cm×35 cm,重建矩阵:224×224;NEX:3次;VPS:10~12;层厚:8.0 mm,层间距:2 mm;Phase:20个。CMR-LGE成像参数如下,TE:3.2 ms,TR:7.2 ms,TI:200 ms,FA:20°,FOV:35 cm×35 cm,NEX:3次,重建矩阵:256×192。完成常规CMR-Cine成像后,以4 mL/s的速度从静脉通道注入钆双胺对比剂(Gd-DTPA) 0.2 mmol/kg,随后立即注入等量生理盐水,对比剂注入完毕后10~15 min开始CMR-LGE成像。

1.2.3 图像分析

       将小型猪胸部CT图像传至ADW4.3后处理工作站行三维重建。观察分析双肺情况(图1),以-950 Hu作为CT定量诊断肺气肿的阈值,按Goddard法对双肺肺气肿低衰减区占全肺比例的百分比(the percentage of the low attenuation area,LAA%)进行评分,同时观察支气管壁是否增厚来综合判断COPD造模是否成功[10, 11]。随后将CMR-Cine及LGE图像(图2、3)导入商用心血管图像后处理软件(cvi42;Circle Cardiovascular Imaging,Inc.,Calgary,Canada)进行图像后处理分析(图4)。按照美国心脏病协会(American Heart Association,AHA)建议采用的17节段分析法将LV基底部、中间部、心尖部及心尖帽分成17个节段(图5)。由2名高年资MRI诊断医师分别对每个心肌节段进行图像观察分析,遇到分歧时,通过协商讨论达成一致。分析、测量及计算各小型猪左心室舒张末横径(left ventricular end diastolic diameter,LVDd)、右心室舒张末横径(right ventricular end diastolic diameter,RVDd)、左心室后壁(left ventricular posterior wall,LVPW)、右心室前壁(right ventricular anterior wall,RVAW)、左房前后径(left atrium anteroposterior diameter,LAAPd)、左心室舒张末容积(left ventricular end diastolic volume,LVEDV)、LVEF及右心室射血分数(right ventricular ejection fraction,RVEF);观察CMR-LGE图像是否存在异常强化,分析LGE的心肌节段数量、分布及类型。

图1  COPD模型组小型猪造模前后胸部CT图:造模前双肺未见异常,造模后期双肺出现肺气肿征象,双肺散在感染
Fig. 1  CT images of minipigs in COPD model group before and after modeling: no abnormality was found in both lungs before modeling, emphysema and scattered infection were appeared in both lungs after modeling.
图2  造模后期慢性阻塞性肺病小型猪CMR-Cine成像:RVDd未见显著增大,RVAW稍增厚,室间隔未见偏移 图3 造模后期小型猪CMR-LGE成像:LV壁基底部、中间部多处出现线状、条片状延迟强化较高信号影 图4 CMR-LGE图像CVI42分析软件自动分析图, LV壁粉红色圈内为软件自动认定的LGE区
Fig. 2  CMR-Cine imaging of chronic obstructive pulmonary disease minipigs in the late modeling stage: RVDd did not increase significantly, RVAW slightly thickened, and ventricular septum did not shift. Fig. 3 CMR-LGE imaging of minipigs in the late modeling stage: linear and strip delayed enhancement high signal shadow appeared at the bottom and middle part of LV wall base. Fig. 4 CMR-LGE image was automatically analyzed by CVI42 analysis software, and LGE area was automatically identified by software in the pink circle of LV wall.
图5  LV心肌17节段牛眼图及LGE分布比例图,心肌节段由粉红色至深红色,颜色越深,LGE所占比例越多
Fig. 5  LV myocardium 17 segment bull's eye plot and LGE distribution map, myocardial segments from pink to deep red, the darker the color, the more proportion of LGE occupied.

1.3 统计学分析

       使用SPSS 25.0软件进行统计学分析。记录造模前、造模早期、中期及造模后期所有小型猪的基本资料;统计分析两组小型猪的LVDd、RVDd、LVPW、RVAW、LAAPd、LVEDV、LVEF、RVEF、LV心肌的LGE的节段数量、分布及其类型。计量资料用均数±标准差表示,计数资料用所占本组的百分比表示。计量资料采用独立样本t检验或方差分析,非连续性变量的计数资料采用卡方检验,P<0.05被认为差异有统计学意义。

2 结果

       造模前所有小型猪胸部CT扫描显示双肺均未见异常。造模前行CMR检查时及造模过程中(造模第19周),因麻醉剂量过大及肺部感染致使模型组2头小型猪死亡。

       造模20周后,模型组小型猪均出现不同程度COPD征象,造模前、造模早期、中期及后期的一般特征参数见表1。造模前模型组小型猪与对照组在性别、呼吸频率、心率、体质量、胸部CT平扫征象差异也均无统计学意义,造模早期、中期模型组小型猪与对照组比较,一般特征差异也均无统计学意义(P>0.05)。与对照组及造模前比较,造模后期模型组呼吸频率(68.14±2.83 vs. 58.50±3.11 vs. 58.56±2.87,P均<0.01)和心率(90.14±2.41 vs. 80.25±4.03 vs. 80.31±2.82,P均<0.01)均有明显增加;造模后期模型组小型猪体质量(24.54±0.49 vs. 25.93±0.35,P<0.01)较对照组减低。

       造模前、造模早期、中期及造模后期小型猪CMR表现详见表2。造模前两组小型猪LVDd、RVDd、LVPW、RVAW、LAAPd、LVEDV、RVEF及LVEF差异均无统计学意义(P均>0.05),造模早期、中期模型组小型猪与造模前及对照组比较差异均无统计学意义(P均>0.05)。造模后期小型猪RVAW (3.30±0.09 vs. 2.99±0.09 vs. 2.99±0.30,P均<0.01)较造模前及对照组比较均有增加;而LVPW (6.58±0.06 vs. 6.50±0.12,P<0.01)较造模前有所增加,但与对照组差异无统计学意义。造模后期小型猪RVDd较造模前(2.79±0.05 vs.2.68±0.07,P<0.01)有所增加,与对照组比较差异无统计学意义;LVDd较造模前及对照组(3.98±0.06 vs.4.03±0.06 vs. 4.06±0.07,P均<0.05)均有所减少;LVEDV (62.98±0.41 vs. 63.45±0.43 vs. 63.61±0.25,P均<0.05)较造模前及对照组也均有所减少。造模后期模型组小型猪RVEF与造模前及对照组比较(50.71±1.59 vs. 54.31±1.40 vs. 54.25±1.26,P均<0.01)均有所降低,但仍然比正常值50%略高,而LVEF差异则均无统计学意义(P>0.05)。

       造模完成后模型组有5头小型猪LV共有23个心肌节段出现了LGE。模型组小型猪的LGE具体分布及类型见表3。23个发生LGE心肌节段,基底部和中间部各11个(36.7%),心尖部1个(4.0%),其分布差异有统计学意义(P<0.01)。LGE各类型中,肌壁间型(74.0%)最为常见,其次是心内膜下型(17.4%),未见心外膜下型LGE。

表1  造模前后巴马小型猪的一般资料比较
Tab. 1  Comparison of general data from minipigs before and after modeling
表2  造模前后巴马小型猪的CMR比较
Tab. 2  CMR comparison of minipigs before and after modeling
表3  慢性阻塞性肺病模型组巴马小型猪LGE各类型心肌节段分布比较(n/%)
Tab. 3  Comparison of the distribution of different types of myocardial segments of LGE in COPD model group (n/%)

3 讨论

3.1 COPD与心脏损伤

       COPD患者常合并心血管疾患,也是COPD患者死亡的主要原因之一[12, 13]。心血管疾病与COPD之间的关系复杂,可能涉及多种生物因素(低氧血症、内皮功能障碍、动脉硬化)、机械和(或)功能因素、神经体液和遗传因素[3]。由于COPD患者的肺循环血液动力学异常,既往大部分针对COPD的心脏异常的研究均集中于右室[14, 15, 16],左室受累往往被忽略。部分既往研究显示,COPD早期即可发生心肌纤维化[6, 7],原因可能与COPD可通过血管和全身炎症、C反应蛋白及氧化应激的增加,致使心肌慢性缺氧,导致心肌损伤并发生纤维化[317]。此外,左心功能异常一般出现在重度COPD及病程较长患者中[3],患者早期左心受累往往被忽视。因此,早期、准确评估COPD患者左心组织学改变有着较为重要的临床意义。

3.2 CMR的临床价值

       多模态CMR成像无创,无辐射,一次检查即可综合评估心脏形态、功能及组织学改变,基于CMR-Cine心功能分析还是评估心脏功能的金标准[18, 19]。部分COPD患者只有在发生心衰后才出现明显的心脏形态及功能改变,因此利用常规CMR影像学指标评估COPD心肌损伤价值有限。CMR-LGE技术能准确显示心肌组织特性,与组织病理观察到的心肌纤维化区域分布一致[16, 17],是目前无创性评估心肌纤维化的首选方法。鉴于心肌纤维化可先于形态学及功能学异常之前发生,CMR-LGE技术能够早期评估COPD患者的心肌组织学异常[18]

3.3 COPD模型心脏形态及功能改变

       不同阶段COPD患者右心功能可有不同程度的降低[14, 15],轻、中度COPD患者RV壁可代偿性肥厚弥补RV功能的下降。本研究中造模早、中期RV的形态及功能未见明显异常变化,造模后期RVAW出现代偿性增厚,RVEF有所减低,但仍位于正常值范围内。LV舒张功能可因严重的肺气肿及RV容积增大室间隔向LV偏移而降低[35],并随COPD程度及RV后负荷增加而增加[1222]。本研究与之前的部分研究[523]结果一致,即LVEF未发生明显降低,仅造模后期LVDd及LVEDV稍有减低,提示左心整体收缩功能仍在正常范围之内。Vonk等[16]研究发现肺气肿患者LVEF整体降低,且随RV肥厚程度增加而增加。其原因可能是本研究模型为COPD早期,肺气肿程度及RV后负荷较轻,仅表现为LVDd及LVEDV轻度减低,且肺气肿、RV后负荷及容积增加可帮助LV射血,使LVEF维持在正常范围内。

3.4 COPD模型心肌损伤及特征

       COPD能增大心肌损伤风险[17]。COPD患者发生心肌纤维化,与其病理性心肌肥厚程度、低氧状态或临床心力衰竭无关,而与心肌缺血或梗死有关,并且晚期缺血性心脏病患者LV心肌纤维化明显增加[7]。Selvanayagam等[24]发现40%的COPD患者可出现一定程度的心肌损伤,本研究中有35.7%的小型猪发生心肌损伤纤维化。但Murphy等[25]研究发现,在排除其他心血管危险因素的情况下,即使是严重的COPD,心肌纤维化的发生率也很低。其原因可能是该研究纳入样本量过小(25例COPD患者),不能反映真实情况下COPD患者心肌纤维化发生率。

       本研究中LGE多分布于基底部、中间部的室间隔区以及下壁,与部分研究[1326]发现COPD及肺部疾病伴肺动脉高压患者的心肌LGE主要分布于室间隔、下壁及右室插入点结果相一致。此外,本研究还发现COPD模型LGE大部分位于肌壁间,可能原因与COPD患者易发生右冠状动脉、左回旋支和钝缘支中更易冠状动脉狭窄,引起心肌慢性缺血及微循环障碍[27]。而有研究显示,心肌微循环障碍可表现为肌壁间LGE[28, 29, 30]

       本研究仍存在许多不足。首先,本研究研究样本量较小,COPD心肌LGE分布及特征尚需扩大样本量进行验证。其次,本研究对心肌纤维化的评估方式过于单一,基于CMR心肌组织学新技术,如T1 mapping及ECV能早期发现心肌间质纤维化,并对心肌纤维化程度进行定量评估。最后,本研究目前尚未进行病理检验,心肌纤维化缺乏准确的检验标准。

4 结论

       本次动物实验研究表明COPD可以引起心肌损伤纤维化,且发生于LVEF明显下降之前,与右心功能的减低几乎同步发生。心脏CMR-LGE成像可为COPD患者早期干预、诊疗计划的制定以及预后的评估提供影像学依据。

1
Fang L, Gao P, Bao H, et al. Chronic obstructive pulmonary disease in China: a nationwide prevalence study[J]. Lancet Respir Med, 2018, 6(6): 421-430. DOI: 10.1016/S2213-2600(18)30103-6.
2
Wang C, Xu J, Yang L, et al. Prevalence and risk factors of chronic obstructive pulmonary disease in China (the China Pulmonary Health [CPH] study): a national cross-sectional study[J]. Lancet, 2018, 391(10131): 1706-1717. DOI: 10.1016/S0140-6736(18)30841-9.
3
Portillo K, Abad-Capa J, Ruiz-Manzano J. Chronic obstructive pulmonary disease and left ventricle[J]. Arch Bronconeumol, 2015, 51(5): 227-234. DOI: 10.1016/j.arbres.2014.03.012.
4
Alter P, van de Sand K, Nell C, et al. Airflow limitation in COPD is associated with increased left ventricular wall stress in coincident heart failure[J]. Respir Med, 2015, 109(9): 1131-1137. DOI: 10.1016/j.rmed.2015.07.012.
5
SchÄfer M, Humphries S, Stenmark KR, et al. 4D-flow cardiac magnetic resonance-derived vorticity is sensitive marker of left ventricular diastolic dysfunction in patients with mild-to-moderate chronic obstructive pulmonary disease[J]. Eur Heart J Cardiovasc Imaging, 2018, 19(4): 415-424. DOI: 10.1093/ehjci/jex069.
6
Murphy ML, de Soyza N, Thenabadu PN. Quantitation of fibrosis of the heart in chronic obstructive pulmonary disease with and without cor pulmonale[J]. Chest, 1983, 84(5): 535-538. DOI: 10.1378/chest.84.5.535.
7
Özyılmaz S, AlıŞır MF, Serdar OA, et al. The value of coronary artery calcium score in the early diagnosis of coronary artery disease in patients with stable chronic obstructive pulmonary disease[J]. Anatol J Cardiol, 2016, 16(4): 283-289. DOI: 10.5152/AnatolJCardiol.2015.6020.
8
Xia YJ, Sun HY, Jiang L, et al. Evaluation of the effects of right ventricular pressure load on left ventricular myocardial mechanics in patients with chronic obstructive pulmonary disease by ultrasound speckle tracking imaging[J]. Eur Rev Med Pharmacol Sci, 2018, 22(15): 4949-4955. DOI: 10.26355/eurrev_201808_15634.
9
Johns CS, Rajaram S, Capener DA, et al. Non-invasive methods for estimating mPAP in COPD using cardiovascular magnetic resonance imaging[J]. Eur Radiol, 2018, 28(4): 1438-1448.
10
Wang Z, Gu S, Leader JK, et al. Optimal threshold in CT quantification of emphysema[J]. Eur Radiol, 2013, 23(4): 975-984. DOI: 10.1007/s00330-017-5143-y.
11
Crossley D, Renton M, Khan M, et al. CT densitometry in emphysema: a systematic review of its clinical utility[J]. Int J Chron Obstruct Pulmon Dis, 2018, 13: 547-563. DOI: 10.2147/COPD.S143066.
12
Inoue S, Shibata Y, Kishi H, et al. Decreased left ventricular stroke volume is associated with low-grade exercise tolerance in patients with chronic obstructive pulmonary disease[J]. BMJ Open Respir Res, 2017, 4(1): e158. DOI: 10.1136/bmjresp-2016-000158.
13
Agoston-Coldea L, Lupu S, Mocan T. Pulmonary artery stiffness by cardiac magnetic resonance imaging predicts major adverse cardiovascular events in patients with chronic obstructive pulmonary disease[J]. Sci Rep, 2018, 8(1): 14447. DOI: 10.1038/s41598-018-32784-6.
14
Tannus-Silva DG, Rabahi MF. State of the art review of the right ventricle in COPD patients: It is time to look closer[J]. Lung, 2017, 195(1): 9-17. DOI: 10.1007/s00408-016-9961-5.
15
Kanar BG, Ozmen I, Yildirim EO, et al. Right ventricular functional improvement after pulmonary rehabilitation program in patients with COPD determined by speckle tracking echocardiography[J]. Arq Bras Cardiol, 2018, 111(3): 375-381. DOI: 10.5935/abc.20180123.
16
Vonk NA, Marcus JT, Roseboom B, et al. The effect of right ventricular hypertrophy on left ventricular ejection fraction in pulmonary emphysema[J]. Chest, 1997, 112(3): 640-645. DOI: 10.1378/chest.112.3.640.
17
Rothnie KJ, Yan R, Smeeth L, et al. Risk of myocardial infarction (MI) and death following MI in people with chronic obstructive pulmonary disease (COPD): a systematic review and meta-analysis[J]. BMJ Open, 2015, 5(9): e7824. DOI: 10.1136/bmjopen-2015-007824.
18
Rahaghi FN, Vegas-Sanchez-Ferrero G, Minhas JK, et al. Ventricular geometry from non-contrast non-ECG-gated CT scans: An imaging marker of cardiopulmonary disease in smokers[J]. Acad Radiol, 2017, 24(5): 594-602. DOI: 10.1016/j.acra.2016.12.007.
19
Rijnierse MT, van der Lingen A, de Haan S, et al. Value of CMR and PET in predicting ventricular arrhythmias in ischemic cardiomyopathy patients eligible for ICD[J]. JACC Cardiovasc Imaging, 2020, 13(8): 1755-1766. DOI: 10.1016/j.jcmg.2020.01.026.
20
Moccia S, Banali R, Martini C, et al. Development and testing of a deep learning-based strategy for scar segmentation on CMR-LGE images[J]. MAGMA, 2019, 32(2): 187-195. DOI: 10.1007/s10334-018-0718-4.
21
Ferreira VM, Piechnik SK. CMR parametric mapping as a tool for myocardial tissue characterization[J]. Korean Circ J, 2020, 50(8): 658-676. DOI: 10.4070/kcj.2020.0157.
22
Alter P, JÖrres RA, Watz H, et al. Left ventricular volume and wall stress are linked to lung function impairment in COPD[J]. Int J Cardiol, 2018, 261: 172-178. DOI: 10.1016/j.ijcard.2018.02.074.
23
Vonk-Noordegraaf A, Marcus JT, Holverda S, et al. Early changes of cardiac structure and function in COPD patients with mild hypoxemia[J]. Chest, 2005, 127(6): 1898-1903. DOI: 10.1378/chest.127.6.1898.
24
Selvnayagam JB, Jerosch-Herold M, Porto I, et al. Resting myocardial blood flow is impaired in hibernating myocardium: a magnetic resonance study of quantitative perfusion assessment[J]. Circulation, 2005, 112(21): 3289-3296. DOI: 10.1161/CIRCULATIONAHA.105.549170.
25
Murphy CA, Blyth KG, Chaudhuri R, et al. Assessment of the presence of occult myocardial infarction in chronic obstructive pulmonary disease using contrast-enhanced cardiac magnetic resonance imaging[J]. Respiration, 2009, 78(3): 263-269. DOI: 10.1159/000203354.
26
Bessa LG, Junqueira FP, Bandeira ML, et al. Pulmonary arterial hypertension: use of delayed contrast-enhanced cardiovascular magnetic resonance in risk assessment[J]. Arq Bras Cardiol, 2013, 101(4): 336-343. DOI: 10.5935/abc.20130168.
27
Hong Y, Graham MM, Southern D, et al. The association between chronic obstructive pulmonary disease and coronary artery disease in patients undergoing coronary angiography[J]. COPD, 2019, 16(1): 66-71. DOI: 10.1080/15412555.2019.1566894.
28
Vancheri F, Longo G, Vancheri S, et al. Coronary microvascular dysfunction[J]. J Clin Med, 2020, 9(9): 36-39. DOI: 10.3390/jcm9092880.
29
Nakamori S, Onishi K, Ishida M, et al. Myocardial perfusion reserve is impaired in patients with chronic obstructive pulmonary disease: a comparison to current smokers[J]. Eur Heart J Cardiovasc Imaging, 2014, 15(2): 180-188. DOI: 10.1093/ehjci/jet131.
30
Breuckmann F, Nassenstein K, Bucher C, et al. Systematic analysis of functional and structural changes after coronary microembolization: a cardiac magnetic resonance imaging study[J]. JACC Cardiovasc Imaging, 2009, 2(2): 121-130. DOI: 10.1016/j.jcmg.2008.10.011.

上一篇 多参数MRI 放射组学预测上皮性卵巢癌患者术前腹膜转移
下一篇 维生素D干预四氧嘧啶诱导兔糖尿病骨髓脂肪含量的定量MRI分析研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2