分享:
分享到微信朋友圈
X
综述
钆塞酸二钠增强磁共振成像评估肝脏储备功能的研究进展
丁聪 柏根基

Cite this article as: Ding C, Bai GJ. Advances in the evaluation of liver reserve function by Gd-EOB-DTPA-MRI[J]. Chin J Magn Reson Imaging, 2021, 12(8): 104-107.引用本文:丁聪, 柏根基. 钆塞酸二钠增强磁共振成像评估肝脏储备功能的研究进展[J]. 磁共振成像, 2021, 12(8): 104-107. DOI:10.12015/issn.1674-8034.2021.08.024.


[摘要] 钆塞酸二钠(gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid,Gd-EOB-DTPA)是一种肝细胞特异性对比剂,可以同时对肝脏的形态及功能进行评估,而准确的肝储备功能评估有利于减少肝切除术后并发症及改善慢性肝病的预后。笔者系统阐述了Gd-EOB-DTPA在评估肝脏功能的原理及现状并对未来研究方向进行展望。
[Abstract] Gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) is a hepatocyte specific contrast agent, which can evaluate the liver morphology and function at the same time, while the accurate assessment of liver reserve function is helpful to reduce postoperative complications of hepatectomy and improves the prognosis of chronic liver disease. This paper systematically expounds the principle and current situation of Gd-EOB-DTPA in the evaluation of liver function and forecasts the future research direction of Gd-EOB-DTPA.
[关键词] 钆塞酸二钠;肝储备功能;磁共振成像;慢性肝病
[Keywords] Gd-EOB-DTPA;liver reserve function;magnetic resonance imaging;chronic liver disease

丁聪    柏根基 *  

南京医科大学附属淮安第一医院,淮安 223300

柏根基,E-mail:hybgj0451@163.com

全体作者均声明无利益冲突。


基金项目: 北京医卫健康公益基金 B20240ES
收稿日期:2021-02-05
接受日期:2021-03-05
DOI: 10.12015/issn.1674-8034.2021.08.024
引用本文:丁聪, 柏根基. 钆塞酸二钠增强磁共振成像评估肝脏储备功能的研究进展[J]. 磁共振成像, 2021, 12(8): 104-107. DOI:10.12015/issn.1674-8034.2021.08.024.

       迄今为止,我国约1.3亿的人口携带有乙肝病毒,且全球约半数的肝癌发生在我国[1]。肝癌的最佳治疗手段为肿瘤切除,而肝切除术的术前准备未将肝储备功能考虑在内。肝功能的准确评估不仅有助于对慢性肝脏疾病患者进行肝功能的早期评价及制定相应的诊疗方案,而且对于需要外科手术的患者,可更好地对其进行对手术耐受程度的评估以改善患者的预后。目前常用的临床评分系统远远无法达到各类肝脏手术对肝脏局部功能的精确要求。钆塞酸二钠(gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid,Gd-EOB-DTPA)为一种常用的肝细胞特异性对比剂,相较于其他方法,Gd-EOB-DTPA增强磁共振扫描可以直观地观察肝脏的解剖信息,并且对于肝脏储备功能做出评估。笔者就Gd-EOB-DTPA评估肝脏储备功能的原理、方法及应用进行综述。

1 临床评估肝功能的常用方法

1.1 吲哚菁绿血浆清除率

       研究发现ICG-R15比临床评分系统更准确地评估肝切除术前的肝储备功能[2],因为它只被肝脏从循环中移除,但胆道梗阻或肝血流受阻等会降低其评估的准确性。吲哚氰绿(indocyanine green,ICG)清除试验无法精确到肝段预估,并且还可能导致患者发生过敏反应。

1.2 临床综合评分系统

       Child-Pugh分级较为粗略,其中部分评分具有主观性。Gu等[3]提出的肝硬化严重程度评分(cirrhotic severity scoring,CSS)可更准确地评估Child A级患者的肝脏储备功能。终末期肝病模型(model for end-stage liver disease,MELD)评分中的指标更为客观,但易受肝外因素的影响。白蛋白-胆红素(Albumin-Bilirubin,ALBI)评分更适应现有肝细胞性肝癌(hepatocellular carcinoma,HCC)分期,是肝癌患者生存判别模型中最为准确的[4, 5, 6, 7, 8]。但目前临床评分系统对于术后并发症的评估可靠性较低,仅作为术前切除的指导标准。

1.3 13C-美沙西丁呼气试验

       13C-美沙西丁呼气试验测得的肝切除术后剩余的LImax(肝脏最大功能容量)和剩余肝体积之间的相关性比ICGR15更好,故可对整体肝功能进行评估,但其无法进行精确的肝段评估[9]

1.4 影像学评估方法

1.4.1 超声在肝功能的评估中的应用

       许多临床研究都发现超声弹性成像技术、脉冲成像及超声造影检查可定量评估肝储备功能,并可预测肝切除术后并发症的发生率[10, 11, 12, 13, 14, 15]。但超声检查受腹水、肥胖等因素的影响,不能为外科医生确定肿瘤部位提供直观的切面及为肝切除术前的决策提供参考。

1.4.2 CT肝功能评估的应用

       CT可通过测得残余肝体积及非肿瘤体积等参数来评估肝储备功能,同APRL评分联合可更准确预估重度肝切除术后肝衰竭的危险性[8,16]。但是CT检查存在射线辐射,且肝硬化患者肝体积增大使评估的准确性降低。

1.4.3 核素显像对于肝功能评估

       99mTc-GSA核素显像与CT结合得到的融合图像可获得相应的代谢信息及解剖信息来评估局部肝脏储备功能[17]。但由于门静脉左右支血流量不均,其测得的肝左叶功能较右叶明显减低[18]。同时68Ga-NOTA-ICG也有作为放射性肝功能显像剂的潜力[19]

2 Gd-EOB-DTPA应用原理

       作为一种顺磁性肝脏对比剂,Gd-EOB-DTPA通过静脉注射后由肝细胞窦状间隙膜的有机阴离子转运多肽(organic anion transporting polypeptides,OATP)特异性吸收,然后通过多种抗药性蛋白质排泄到胆汁中或者由肾小球滤过后随尿液排出,且两种途径消除的量几乎相等。Gd-EOB-DTPA的使用极为安全,因为其肝肾两条代谢途径可以互为代偿。在受损的肝脏中,OATP功能整体减退,肝细胞在Gd-EOB-DTPA特殊作用时向肝胆特异期摄取对比剂的能力减低,故其在肝胆特异期的强化程度下降[20]。Gd-EOB-DTPA与Gd-DTPA区别在于添加了亲脂基团EOB,于是具有更加稳定的分子结构,并且具有不同于细胞外对比剂的药代动力学和药效学特点,而肝胆特异期更是其特征性的作用时期。部分临床研究认为Gd-EOB-DTPA同其他钆对比剂相比有着更低的临床推荐使用剂量与更低的不良事件发生率,且两者存在一定的相关性[21]

3 Gd-EOB-DTPA评估肝储备功能的应用方法及现状

3.1 通过肝实质信号噪声值评估肝储备功能

       Gd-EOB-DTPA被肝脏特异性摄取的值与肝细胞的活性相关。当肝细胞受损时,摄取能力下降,信号强度随之减低,故肝脏储备功能可通过测量肝胆特异期肝脏的信号强度(signal intensity,SI)值来实现,包括肝脏摄取分数(hepatic extraction fraction,HEF)及信号噪声比值等。

3.1.1 肝脏摄取分数

       Yamada等[22]研究时引入特征值HEF并发现其有助于提高节段性肝脏功能的评估水平。然而Haimerl等[23]研究发现Yamada等[22]对于肝脏体积的测量仍然是模棱两可的,并且可能低估了HEF与ICG-PDR的相关性。Araki等[24]通过对于脾的SI值、残肝的平均SI及体积的计算得出FRLV,标准化后发现计算得出的FRLV可作为预测肝切除术后肝功能衰竭(posthepatectomy liver failure,PHLF)的有效工具,并且不受肝脏病变的手术或肝脏背景的影响。故利用肝脏摄取分数进行评估肝储备功能的同时,还可对肝切除术后患者的转归进行预测。

3.1.2 信号噪声比值

       因其无需额外的后处理便可对肝实质SI的测量与计算,故作为目前使用最为广泛的方法。但扫描参数、感兴趣区的选择等易影响其准确性,并且肝血流因素的影响并未考虑在定量计算中。Tajima等[25]比较各个时间段峰值的平均肝信噪比,同实验室指标进行多元分析后发现肝信噪比均值逐渐升高并在注射对比剂后30 min达到峰值。在峰值时间点,ICGR15是唯一对肝脏信号强度有显著影响的因素,故可通过测量肝胆期肝脏信号强度来评估整体和局部肝储备功能。故影像及临床医生可快速地对肝储备功能进行评估。

3.2 Gd-EOB-DTPA灌注扫描

       目前对于组织微血管的分布及血流灌注可通过磁共振灌注成像的血流动力学参数的测量来实现。灌注扫描可以通过灌注参数和数学模型了解对比剂在肝脏内的分布情况。通过将不同分级的肝纤维化的患者进行成像后,Xie等[26]发现可将ROI的时间-信号强度曲线分为3段,显示Tout (信号峰值到信号下降斜率的转折点之间的间隔时间)为其中预测进展期肝硬化的最佳指标,并且Tout值和Kup (信号下降斜率改变后的斜率)值可一定程度预测晚期肝纤维化。Yoon等[27]通过将测得肝实质区的时间-信号强度曲线与主动脉区的时间-信号强度曲线绘制成肝脏响应函数曲线,并定义此函数在Y轴的截距为HEF,结果发现HEF可以同时提供肝脏整体和局部的功能信息。故临床医生在得到肝整体储备功能的同时,还可进一步对肝段功能进行评估,从而更加精确地进行临床诊疗。

3.3 胆道的强化程度评估肝储备功能

       约半数的Gd-EOB-DTPA在体内通过胆道系统排泄,当胆道系统无梗阻时,可通过对于肝内外胆管内对比剂的显影信号强度对肝功能进行评估。Okada等[28]研究发现重度肝硬化患者肝胆特异期的肝脏和胆管在Gd-EOB-DTPA增强扫描上的显示率降低且肝功能正常者肝实质的强化更明显,并且肝实质及胆道强化程度上升速率更快。Tschirch等[29]研究发现肝功能正常组可更早地获得满意的胆道图像,并且肝功能异常组仅不足一半的患者可得到清晰的胆道图像,同临床评分系统及相关检查结果进行对比分析后发现胆道系统的显影情况同肝脏受损程度密切相关,故可通过胆道系统强化程度来评估肝功能。

3.4 细胞内蓄积量

       Fahlenkamp等[30]研究发现细胞内蓄积量(intracellular accumulation,IAC)可以作为一种新的肝功能成像标志物。目前已经有研究证明用细胞外对比剂计算ECV的方法可以转移到使用Gd-EOB-DTPA的肝脏成像中的细胞内空间的计算中[31]。为了进一步评价IAC的诊断价值,Fahlenkamp等[30]将其与血清白蛋白进行了相关性研究,发现IAC与白蛋白的相关性更高,因此IAC可成为评估肝功能的一种基于图像的新的参数。

       但是目前Gd-EOB-DTPA评估肝储备功能存在些许不足。首先是扫描时间过长,易产生运动伪影,且对于肝脏感兴趣区的勾画依赖于操作者手动绘制,易产生偏差。其次是内源性物质如初级、次级胆汁酸及外源性药物利福平等也利用OATP转运,与Gd-EOB-DTPA存在竞争性抑制,故胆汁淤积的患者,胆汁排除受阻,可导致Gd-EOB-DTPA摄取减少,增强扫描时强化不明显,造成评估偏差,此类患者扫描前应进行充分的胆道引流[20]。并且扫描后测得的T1值也受肝脏炎症及铁水平的影响,T1弛豫时间随着炎症和细胞水肿的进展而增加,随着铁、铜、锰及蛋白质的沉积而减少,故利用其计算出的肝储备功能会存在偏差[32]

4 Gd-EOB-DTPA的临床应用

       Gd-EOB-DTPA对肝功能的评估在临床上主要应用于残肝功能的术前评估、纤维化以及肝移植功能障碍。

4.1 残余肝功能的术前评估

       目前肝胆外科的研究热点在于如何减少肝切除术后各种术后并发症的发生,并且Gd-EOB-DTPA已经展现出了在预测PHLF方面的价值[33, 34, 35]。PHLF是造成患者的术后并发症和致死的主要病因,且其发生主要取决于患者的肝脏储备功能,与手术方式无关。有研究表明Gd-EOB-DTPA增强MRI比ICG清除试验更好地对肝脏的整体甚至局部的储备功能进行评估的同时预估PHLF的发生率[35]。有研究通过Gd-EOB-DTPA增强扫描测得RLE和多层CT (multi-slice CT,MSCT)上的体积测量计算得出的未来残肝功能同公认的临床测试相比,更准确地预估PHLF的发生,并且发现剩余肝脏体积(future liver reserve, FLR)功能的降低与肝切除后肝衰竭发生密切相关。还有研究发现Gd-EOB-DTPA-MRI评估fFRLV可作为评估伴有门静脉瘤栓(portal vein tumor thrombus,PVTT)的肝癌患者局部功能肝储备的有用工具[36]。这种方法可以更准确地为肝切除术前的决策提供参考从而减少肝切除患者的术后相关并发症的发生[33]

4.2 肝纤维化

       作为肝脏自身的一种愈合反应,肝纤维化是慢性肝病(chronic liver disease,CLD)患者病程中的重要因素,并且其可以影响患者的预后、监测和治疗[37]。尽管肝活检不适合长期监测,但仍是检测肝脏纤维化的金标准[38, 39]。目前已有许多研究表明Gd-EOB-DTPA可应用于肝纤维化的分期[38]。目前研究指出RLE可对于肝纤维化进行预测且准确地对F2期纤维化和肝硬化进行分期[38]。还有研究发现肝胆期T1弛豫时间对3期纤维化诊断较为准确,但其对3级坏死性炎症活动的诊断可靠性较低[40]

4.3 肝硬化

       肝硬变是肝纤维化的终末期,许多研究表明Gd-EOB-DTPA增强MRI中肝实质摄取和胆汁排泄的程度有助于评估肝硬化进展过程中的肝功能[41, 42],这对于肝硬化患者的临床治疗非常重要,因为可利用其区分CLD患者是否失代偿,当患者由代偿期转入失代偿期,将很难避免肝功能衰竭的发生[41]

5 总结及展望

       目前临床上常用的评分系统及生化指标只能提供肝脏整体的评估而没有考虑到肝实质功能分部的异质性,而Gd-EOB-DTPA增强扫描具有高空间分辨率,且在一次检查中可提供肝脏的形态信息同时结合肝脏病变的诊断对肝功能进行详细的评估。与核素扫描相比,MRI检查更加安全且具有良好的时间及空间分辨率,并且Gd-EOB-DTPA增强MRI在观察肝脏形态的同时测得的定量参数与场强、检查参数等无关,但Gd-EOB-DTPA增强扫描易产生短暂性剧烈运动伪影。对于肝脏体积的测量有时仍需借助CT,且目前暂无利用MR来计算肝脏体积的软件。并且对于肝功能的定量评估没有统一的标准,也未形成完善的体系。但因其检测的无创性及高分辨率,在肝储备功能应用方面、检测慢性肝病的进展、决定治疗策略及改善慢性肝病预后仍有着广泛的应用前景。

1
Yang T, Wu MC. Discrimination against hepatitis B carriers in China[J]. Lancet, 2011, 378(9796): 1059. DOI: 10.1016/S0140-6736(11)61460-8.
2
Wang YY, Zhao XH, Ma L, et al. Comparison of the ability of Child-Pugh score, MELD score, and ICG-R15 to assess preoperative hepatic functional reserve in patients with hepatocellular carcinoma[J]. J Surg Oncol, 2018, 118(3): 440-445. DOI: 10.1002/jso.25184.
3
Gu J, Zhang EL, Liang BY, et al. Effectiveness comparison of indocyanine green retention test with the cirrhotic severity scoring in evaluating the pathological severity of liver cirrhosis in patients with hepatocellular carcinoma and Child-Pugh grade A liver function[J]. World J Surg Oncol, 2020, 18(1): 79. DOI: 10.1186/s12957-020-01854-3.
4
Ho Shu-Yein, Po-Hong Liu, Hsu Chia-Yang, et al. Comparison of twelve liver functional reserve models for outcome prediction in patients with hepatocellular carcinoma undergoing surgical resection[J]. Sci Reports, 2018, 8(1): 4773. DOI: 10.1038/s41598-018-22923-4.
5
Zhao SJ, Wang MM, Yang ZY, et al. Comparison between Child-Pugh score and Albumin-Bilirubin grade in the prognosis of patients with HCC after liver resection using time-dependent ROC[J]. Annals Translat Med, 2020, 8(8): 539. DOI: 10.21037/atm.2020.02.85.
6
Hiraoka A, Kumada T, Michitaka K, et al. Newly proposed ALBI grade and ALBI-T score as tools for assessment of hepatic function and prognosis in hepatocellular carcinoma patients[J]. Liver Cancer, 2019, 8(5): 312-325. DOI: 10.1159/000494844.
7
Zou H, Wen Y, Yuan K, et al. Combining albumin-bilirubin score with future liver remnant predicts post-hepatectomy liver failure in HBV-associated HCC patients[J]. Liver Int, 2018, 38(3): 494-502. DOI: 10.1111/liv.13514.
8
Mai RY, Zeng J, Lu HZ, et al. Combining aspartate aminotransferase-to-platelet ratio index with future liver remnant to assess preoperative hepatic functional reserve in patients with hepatocellular carcinoma[J]. J Gastrointest Surg, 2020, 25(3): 688-697. DOI: 10.1007/s11605-020-04575-w.
9
Theilig D, Tsereteli A, Elkilany A, et al. Gd-EOB-DTPA-enhanced MRI T1 relaxometry as an imaging-based liver function test compared with (13)C-methacetin breath test[J]. Acta Radiol (Stockholm, Sweden: 1987), 2020, 61(3): 291-301. DOI: 10.1177/0284185119861314.
10
Rajakannu M, Cherqui D, Ciacio O, et al. Liver stiffness measurement by transient elastography predicts late posthepatectomy outcomes in patients undergoing resection for hepatocellular carcinoma[J]. Surgery, 2017, 162(4): 766-774. DOI: 10.1016/j.surg.2017.06.006.
11
Charing Ching-Ning Chong, Grace Lai-Hung Wong, Anthony Wing-Hung Chan, et al. Liver stiffness measurement predicts high-grade post-hepatectomy liver failure: A prospective cohort study[J]. J Gastroenterol Hepatology, 2017, 32(2): 506-514. DOI: 10.1111/jgh.13503.
12
Shen YH, Zhou CH, Zhu GD, et al. Liver stiffness assessed by shear wave elastography predicts postoperative liver failure in patients with hepatocellular carcinoma[J]. J Gastrointestinal Surg, 2017, 21(9): 1471-1479. DOI: 10.1007/s11605-017-3443-9.
13
Sugiura R, Kuwatani M, Nishida M, et al. Correlation between liver elasticity by ultrasound elastography and liver functional reserve[J]. Ultrasound in Med Biology, 2019, 45(10): 2704-2712. DOI: 10.1016/j.ultrasmedbio.2019.06.407.
14
Nishio T, Taura K, Koyama Y, et al. Prediction of posthepatectomy liver failure based on liver stiffness measurement in patients with hepatocellular carcinoma[J]. Surgery, 2016, 159(2): 399-408. DOI: 10.1016/j.surg.2015.06.024.
15
Yi HM, Cai BH, Ai X, et al. Value of contrast-enhanced ultrasound for preoperative assessment of liver reserve function in patients with liver tumors[J]. PLoS One, 2019, 14(9): e0222514. DOI: 10.1371/journal.pone.0222514.
16
Zheng JL, Xie W, Huang Y, et al. The technique of 3D reconstruction combining with biochemistry to build an equivalent formula of indocyanine green (ICG) clearance test to assess the liver reserve function[J]. BMC Surg, 2020, 20(1): 283. DOI: 10.1186/s12893-020-00952-z.
17
Beppu T, Hayashi H, Okabe H, et al. Liver functional volumetry for portal vein embolization using a newly developed 99mTc-galactosyl human serum albumin scintigraphy SPECT-computed tomography fusion system[J]. J Gastroenterol, 2011, 46(7): 938-943. DOI: 10.1007/s00535-011-0406-x.
18
Sumiyoshi T, Shima Y, Tokorodani R, et al. CT/99mTc-GSA SPECT fusion images demonstrate functional differences between the liver lobes[J]. World J Gastroenterol, 2013, 19(21): 3217-3225. DOI: 10.3748/wjg.v19.i21.3217.
19
Xia YX, Zhang L, Zhao YH, et al. Gallium-68-labelled indocyanine green as a potential liver reserve imaging agent[J]. Contrast Media & Molecular Imaging, 2019, 2019: 4201353. DOI: 10.1155/2019/4201353.
20
Katsube T, Okada M, Kumano S, et al. Estimation of liver function using T1 mapping on Gd-EOB-DTPA-enhanced magnetic resonance imaging[J]. Invest Radiol, 2011, 46(4): 277-283. DOI: 10.1097/RLI.0b013e318200f67d.
21
Zhang T, Runge JH, Lavini C, et al. A pharmacokinetic model including arrival time for two inputs and compensating for varying applied flip-angle in dynamic gadoxetic acid-enhanced MR imaging[J]. PLoS One, 2019, 14(8): e0220835. DOI: 10.1371/journal.pone.0220835.
22
Yamada A, Hara T, Li F, et al. Quantitative evaluation of liver function with use of gadoxetate disodium-enhanced MR imaging[J]. Radiology, 2011, 260(3): 727-33. DOI: 10.1148/radiol.11100586.
23
Haimerl M, Verloh N, Zeman F, et al. Gd-EOB-DTPA-enhanced MRI for evaluation of liver function: Comparison between signal-intensity-based indices and T1 relaxometry[J]. Sci Reports, 2017, 7: 43347. DOI: 10.1038/srep43347.
24
Araki K, Harimoto N, Kubo N, et al. Functional remnant liver volumetry using Gd-EOB-DTPA-enhanced magnetic resonance imaging (MRI) predicts post-hepatectomy liver failure in resection of more than one segment[J]. HPB (Oxford), 2020, 22(2): 318-327. DOI: 10.1016/j.hpb.2019.08.002.
25
Tajima T, Takao H, Akai H, et al. Relationship between liver function and liver signal intensity in hepatobiliary phase of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging[J]. J Comput Assisted Tomography, 2010, 34(3): 362-366. DOI: 10.1097/RCT.0b013e3181cd3304.
26
Xie S, Sun YL, Wang L, et al. Assessment of liver function and liver fibrosis with dynamic Gd-EOB-DTPA-enhanced MRI[J]. Acade Radiol, 2015, 22(4): 460-466. DOI: 10.1016/j.acra.2014.11.006.
27
Yoon JH, Choi JI, Jeong YY, et al. Pre-treatment estimation of future remnant liver function using gadoxetic acid MRI in patients with HCC[J]. J Hepatol, 2016, 65(6): 1155-1162. DOI: 10.1016/j.jhep.2016.07.024.
28
Okada M, Ishii K, Numata K, et al. Can the biliary enhancement of Gd-EOB-DTPA predict the degree of liver function?[J]. HBPD Int, 2012, 11(3): 307-313. DOI: 10.1016/s1499-3872(12)60165-9.
29
Tschirch FTC, Struwe A, Petrowsky H, et al. Contrast-enhanced MR cholangiography with Gd-EOB-DTPA in patients with liver cirrhosis: visualization of the biliary ducts in comparison with patients with normal liver parenchyma[J]. Eur Radiol, 2008, 18(8): 1577-1586. DOI: 10.1007/s00330-008-0929-6.
30
Fahlenkamp UL, Ziegeler K, Adams LC, et al. Intracellular accumulation capacity of gadoxetate: initial results for a novel biomarker of liver function[J]. Sci Reports, 2020, 10(1): 18104. DOI: 10.1038/s41598-020-75145-y.
31
Luetkens JA, Klein S, Träber F, et al. Quantification of liver fibrosis at T1 and T2 mapping with extracellular volume fraction MRI: Preclinical results[J]. Radiology, 2018, 288(3): 748-754. DOI: 10.1148/radiol.2018180051.
32
Liu MT, Zhang XQ, Lu J, et al. Evaluation of liver function using the hepatocyte enhancement fraction based on gadoxetic acid-enhanced MRI in patients with chronic hepatitis B[J]. Abdominal Radiol (New York), 2020, 45(10): 3129-3135. DOI: 10.1007/s00261-020-02478-7.
33
Asenbaum U, Kaczirek K, Ba-Ssalamah A, et al. Post-hepatectomy liver failure after major hepatic surgery: not only size matters[J]. Eur Radiol, 2018, 28(11): 4748-4756. DOI: 10.1007/s00330-018-5487-y.
34
Theilig D, Steffen I, Malinowski M, et al. Predicting liver failure after extended right hepatectomy following right portal vein embolization with gadoxetic acid-enhanced MRI[J]. Eur Radiol, 2019, 29(11): 5861-5872. DOI: 10.1007/s00330-019-06101-2.
35
Kim DK, Choi JI, Choi MH, et al. Prediction of posthepatectomy liver failure: MRI with hepatocyte-specific contrast agent versus indocyanine green clearance test[J]. AJR Am J Roentgenol, 2018, 211(3): 580-587. DOI: 10.2214/AJR.17.19206.
36
Poetter-Lang S, Bastati N, Messner A, et al. Quantification of liver function using gadoxetic acid-enhanced MRI[J]. Abdominal Radiol (New York), 2020, 45(11): 3532-3544. DOI: 10.1007/s00261-020-02779-x.
37
Bernard E Van Beers, Garteiser P, Leporq B, et al. Quantitative imaging in diffuse liver diseases[J]. Seminars Liver Dis, 2017, 37(3): 243-258. DOI: 10.1055/s-0037-1603651.
38
Yang DW, Li D, Li JS, et al. Systematic review: The diagnostic efficacy of gadoxetic acid-enhanced MRI for liver fibrosis staging[J]. Eur J Radiol, 2020, 125: 108857. DOI: 10.1016/j.ejrad.2020.108857.
39
Feier D, Balassy C, Bastati N, et al. The diagnostic efficacy of quantitative liver MR imaging with diffusion-weighted, SWI, and hepato-specific contrast-enhanced sequences in staging liver fibrosis--a multiparametric approach[J]. Eur Radiol, 2016, 26(2): 539-546. DOI: 10.1007/s00330-015-3830-0.
40
Hoffman DH, Ayoola A, Nickel D, et al. T1 mapping, T2 mapping and MR elastography of the liver for detection and staging of liver fibrosis[J]. Abdominal Radiol (New York), 2020, 45(3): 692-700. DOI: 10.1007/s00261-019-02382-9.
41
Bastati N, Beer L, Mandorfer M, et al. Does the functional liver imaging score derived from gadoxetic acid-enhanced MRI predict outcomes in chronic liver disease?[J]. Radiology, 2020, 294(1): 98-107. DOI: 10.1148/radiol.2019190734.
42
Truhn D, Kuhl CK, Ciritsiset A, al. A new model for MR evaluation of liver function with gadoxetic acid, including both uptake and excretion[J]. Eur Radiol, 2019, 29(1): 383-391. DOI: 10.1007/s00330-018-5500-5.

上一篇 基于影像组学的肝细胞癌多中心研究进展
下一篇 影像组学在胰腺癌中的临床研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2