分享:
分享到微信朋友圈
X
综述
心脏磁共振特征追踪技术评估右室心肌应变的研究进展
李瑞 黄钰迅 陈梓娴 曹亮 刘峰 胡瑞 郭顺林

Cite this article as: Li R, Huang YX, Chen ZX, et al. Evaluation of right ventricular strains by cardiac magnetic resonance feature tracking[J]. Chin J Magn Reson Imaging, 2021, 12(10): 98-100, 104.本文引用格式:李瑞, 黄钰迅, 陈梓娴, 等. 心脏磁共振特征追踪技术评估右室心肌应变的研究进展[J]. 磁共振成像, 2021, 12(10): 98-100, 104. DOI:10.12015/issn.1674-8034.2021.10.025.


[摘要] 右室功能准确评价在多种心肺疾病的诊断分级和预后评估中的价值不断被发现。心肌应变技术逐渐发展为一项优于射血分数,且能定量分析心脏整体及局部心肌运动功能改变的方法。本文就心脏磁共振特征追踪技术在右室心肌应变评估及预后方面的应用进行全面的总结与分析。
[Abstract] Accurate evaluation of right ventricular function plays an important role in the diagnosis, grading and prognosis evaluation various cardiopulmonary diseases. Cardiac magnetic resonance feature tracking (CMR-FT) has gradually developed into a method which is superior to ejection fraction and can quantitatively analyze the changes of global and regional myocardial motor function.This paper makes a comprehensive summary and analysis of the application of cardiac magnetic resonance feature tracking technique in right ventricular strains assessment and prognosis.
[关键词] 心脏;磁共振成像;特征追踪技术;右心室;应变;心血管疾病
[Keywords] heart;magnetic resonance imaging;feature tracking;right ventricle;strains;cardiovascular disease

李瑞 1   黄钰迅 1   陈梓娴 2   曹亮 2   刘峰 1   胡瑞 1   郭顺林 2*  

1 兰州大学第一临床医学院,兰州 730000

2 兰州大学第一医院放射科,兰州 730000

郭顺林,E-mail:guoshl@lzu.edu.cn

全体作者均声明无利益冲突。


基金项目: 甘肃省青年科技基金计划 18JR3RA364 兰州大学第一医院院内基金项目 ldyyyn2015-06
收稿日期:2021-05-19
接受日期:2021-06-28
DOI: 10.12015/issn.1674-8034.2021.10.025
本文引用格式:李瑞, 黄钰迅, 陈梓娴, 等. 心脏磁共振特征追踪技术评估右室心肌应变的研究进展[J]. 磁共振成像, 2021, 12(10): 98-100, 104. DOI:10.12015/issn.1674-8034.2021.10.025.

       右室功能的准确评价在多种心肺疾病的诊断分级和预后评估中起着重要作用[1]。心脏磁共振成像(cardiac magnetic resonance imaging,CMR)是临床研究中进行右室结构评价的金标准[2]。射血分数(ejection fraction,EF)是临床上最常用的反映心脏收缩功能的重要指标,但EF反映的是全心容积变化,不能反映心肌局部运动的改变,也无法反映心脏早期舒张功能受损情况。心脏磁共振特征追踪(cardiac magnetic resonance-feature tracking,CMR-FT)技术逐渐发展为一项优于EF,且能定量分析心脏整体及局部心肌运动功能改变的方法。既往究集中于左室,但是不容忽视右室功能的评估在亚临床心肌损害的诊断及预后评估上具有重要的潜在价值。基于此,对于CMR-FT技术评估右室心肌应变的深入探讨与研究有着重要的实用价值。

1 应变的概念

       心脏的形变最早于1973年提出3。应变(strain)也称应力或应变力,指在外力作用下物体相对变形的能力,心肌应变是指在指定方向上心脏节段从原始形状(L0,即舒张末期)延展至最大长度(L,即收缩末期)的变形程度,并以百分数表示[4],用于分析心肌局部或整体在径向、周向、纵向3个方向的应变及应变率,反映不同走行方向的心肌纤维的收缩力。径向应变向量垂直于心外膜朝向心腔的中心;周向应变向量沿圆周方向与心外膜壁相切;纵向应变向量沿心腔长轴方向与心肌壁相切[5]。Lagrangian计算公式为:ε=ΔL/L0=(L-L0)/L0。ε为正值表示长轴方向上的伸长或短轴方向上的增厚;ε为负值表示长轴方向上的缩短或短轴方向上的变薄,所以径向应变(radial strain,RS)值常为正值,周向应变(circumferential strain,CS)及纵向应变(longitudinal strain,LS)值常为负数。应变率(strain rate,SR)是心肌组织在单位时间内的变形速度(单位:s-1)。

2 CMR-FT常用测量软件、方法及右室应变参数指标

2.1 CMR-FT常用测量软件

       目前,常用的商用软件TomTec、Circle、Medis和Medviso提供CMR-FT后处理分析。TomTec、Medis和Circle利用光流技术区分心内外膜边界,Medviso使用弹性算法进行图像配准和分割。TomTec和Medis的应变分析时间较短。Medviso进行应变分析所需的时间(长轴>50 s,短轴>100 s)明显长于其他后处理软件(均<10 s),可能与轮廓绘制程序的设计、轮廓校正的次数以及所使用的CMR-FT算法的复杂性相关[6]

2.2 CMR-FT测量方法

       CMR-FT技术基于稳态自由进动(steady-state free pulse,SSFP)序列,采集包括二腔心、四腔心及短轴电影,利用后处理软件勾画心动周期中右室心内膜及心外膜边界上体素的相对运动与位移,得到右室局部或整体在径向、周向、纵向的应变及应变率[7]。但是对于右室整体应变(right ventricular global longitudinal strain,RVGLS)是否应包括室间隔目前尚无明确共识[8]

2.3 CMR-FT的右室应变参数指标

       目前,尚未有指南提供CMR-FT右室整体及节段的应变及应变率的正常值参考范围。Qu等[9]利用CMR-TT技术测量150名健康志愿者的右室游离壁整体纵向应变(right ventricular free wall-longitudinal strain,RVFW-LS):-24.9%±5.2%;基底段LS:-27.1%±7.2%;中间段LS:-27.2%±4.9%;男性RVGLS:-23.7%±4.9%女性RVGLS:-26.1%±5.2%。国内的一项包括120例健康志愿者的多中心研究得出中国健康人群的右室收缩期峰值应变正常值参考范围为(LS:-24.3%±4.7%;CS:-13.3%±4.1%;RS:-23.0%±8.5%)[10],其中LS、CS与国外结果接近,但RS相差较大。

       右室的收缩运动主要依赖于右室游离壁的纵向缩短,且国外研究表明识别亚临床右室功能障碍时LS的降低早于RS及CS[11, 12],所以国内外目前右室研究的较多参数是右心室游离壁的长轴应变及长轴应变率,反映心肌局部功能改变。

3 临床应用

3.1 肺动脉高压

       肺动脉高压(pulmonary arterial hypertension,PAH)是肺循环中的血管阻力和动脉压升高超过一定阈值而导致血流动力学及肺部脏器病理性变化。临床主要症状为呼吸障碍、疲劳乏力、晕厥、心绞痛等,病情发展到后期会影响患者的右心功能和结构,增大右室负荷,继而造成右心衰竭[13]。Li等[14]根据WHO功能分级(FC)将66例肺动脉高压患者分为FCⅠ/Ⅱ组(1组)和Ⅲ/Ⅳ组(2组),运用二维斑点追踪超声心动图(two-dimensional speckle tracking echocardiography,2D-STE)发现2组间的右室整体纵向应变、右室游离壁整体纵向应变差异有显著统计学意义(P<0.01),提示肺动脉高压患者分级越高,右室功能下降越明显。RVLS是评价PAH患者的右室收缩期功能及预测不良预后的指标[15]

3.2 法洛四联症

       法洛四联症(tetralogy of Fallot,TOF)是最常见的紫绀型先天性心脏病,其基本病理解剖改变为右室流出道狭窄、室间隔缺损、主动脉骑跨和右室肥厚。Bernard等[16]发现TOF患者RVGLS:15.5%±4.2%,RVFW-LS:15.1%±6.3%。Weng等[17]发现与正常对照组相比,修补术后的TOF患者右室整体和节段的纵向应变和应变率均显著受损。RVLS是预测TOF患者死亡或心力衰竭的独立预测因子[18]

3.3 心肌梗死

       心肌梗死(myocardial infarction,MI)是冠状动脉血管狭窄或阻塞、心肌血供中断导致心肌细胞发生缺血、缺氧、坏死等一系列病理改变。大多数人群左室下壁和右室主要靠右冠状动脉供血,因此左室下壁心肌梗死常合并右室的心肌梗死[19]。RVFW-LS为早期右室功能敏感指标,是恶性心律失常的独立预测因子,提高了EF对心梗再灌注后患者死亡的预测能力[20]

3.4 心肌病

3.4.1 致心律失常性右室心肌病

       致心律失常性右室心肌病(arrhythmogenic right ventricular cardiomyopathy,ARVC)是一种遗传性心肌疾病,病理学以脂肪组织、纤维组织等逐渐替代右室正常的心肌组织为特征[21],临床上以心室功能不全和心律不齐为主要表现。Taha等[22]通过STE和CMR-FT测量整体和局部右室纵向峰值应变发现,与ARVC亲属(未确诊为ARVC)相比,两种技术均显示ARVC患者的纵向峰值应变降低(STE整体峰值应变:19.7%±5.7% vs. 25.1%±3.4%;FT-CMR整体峰值应变:27.9%±6.7% vs. 33.6%±5.2%)。RVFW-LS明显减少的ARVC患者(>-20%)发生右室流出道内径增加风险是无明显RVFW-LS减少ARVC患者的18倍(P=0.002),因此右室游离壁应变可预测ARVC患者的右心室结构(右室流出道内径增加)的进展情况[23]

3.4.2 肥厚型心肌病

       肥厚型心肌病(hypertrophic cardiomyopathy,HCM)是最常见的常染色体单基因遗传性心血管疾病,多由室间隔及左室室壁增厚,引起左室流出道减小,患者常出现胸闷,呼吸困难,胸痛和晕厥等临床症状。心脏磁共振研究发现30%HCM患者伴有右室肥厚[24]。Yang等[25]利用CMR-FT技术研究发现HCM组的LV和RV整体及局部应变和应变率较健康对照组显著降低。右室出现细微的收缩功能障碍时,超声心动图测量参数通常在正常范围内,但是RVGLS已明显受损[26]

3.4.3 扩张型心肌病

       扩张型心肌病(dilated cardiomyopathy,DCM)是一种异质性心肌病,以心室扩大和心肌收缩功能降低为特征。常表现为心衰,室性和室上性心律失常,代谢系统异常,血栓栓塞和猝死。RVFW-LS是窦性心律的DCM患者预后的独立预测因子[27]。Liu等[28]利用CMR-FT发现RVGLS>-8.5%的患者发生心脏不良事件的风险较高。Seo等[29]发现识别DCM患者不良心血管事件最佳RV-FWLS临界值为-16.5% (曲线下面积=0.703,P=0.003),将受试者以RV-FWLS:-16.5%为界分为两组时,RV-FWLS<-16.5%的患者比RV-FWLS≥-16.5%的患者有更好的临床转归(P<0.001)。梁科研等[30]发现4D-STE测量右室整体应变参数能有效地提示DCM患者右室结构细微变化,应变参数的变化早于右室收缩功能障碍之前,所以及时治疗右室病变是至关重要的。

3.5 阻塞性睡眠呼吸暂停

       阻塞性睡眠呼吸暂停(obstructive sleep apnea,OSA)是常见的睡眠呼吸障碍性疾病,以呼吸道衰竭而反复出现的低氧血症发作为特征,与心血管疾病的发病率和死亡率风险增加有关[31]。Altekin等[32]应用3D-STE发现中度OSA患者的RVLS及SR降低,这表明应变参数的变化早于心脏功能障碍和PAH发展之前。Li等[33]发现与健康对照组相比,轻度OSA患者的RVLS和右心室心尖应变率明显降低。

3.6 新型冠状病毒肺炎

       新型冠状病毒肺炎(coronavirus disease 2019,COVID-19)由严重急性呼吸综合征-冠状病毒2 (SARS-CoV-2)引起的,目前全球170多个国家有确诊病例。COVID-19诱导全身性炎症反应,导致右室超负荷和损伤,最终发展为右心衰竭[34]。Li等[35]应用2D-STE技术观察患者右室游离壁纵向应变为23.5%±4.7%,幸存患者RVFW-LS (24.4%±4.4%)明显高于死亡患者RVFW-LS (18.5%±3.1%),且RVFW-LS降低与COVID-19患者的死亡率密切相关。

4 局限性

       与左室应变测量相比,右室应变测量目前存在以下挑战:(1)右室心肌壁薄;(2)右室的解剖结构复杂;(3)肺动脉的存在可能对最终结果产生影响[36]。最近有研究表明[37],与常规CMR特征追踪技术相比,通过追踪标准CMR序列中的3个解剖点(三尖瓣内侧、外侧及RV心尖),可以快速获得可重复性、更短的分析时间以及类似的诊断和预后能力,此技术需进一步验证。此外,CMR-FT技术依赖于第三方后处理软件,不同的商业软件测量的应变值一致性欠佳,需要指南和共识声明统一的参考标准,使CMR-FT技术发挥更大的临床优势。

       综上所述,心脏磁共振特征追踪技术是一种简单便捷的心肌变形的新技术,无创性定量分析心脏整体及局部心肌的收缩及舒张功能,比EF更敏感,在亚临床心肌损害患者的右室心肌受损评估、危险分层及治疗效果等方面具有较高的临床应用价值。但基于CMR-FT技术研究应变值的一致性欠佳,有待进一步验证与完善。

[1]
Penny DJ, Redington AN. Function of the Left and Right Ventricles and the Interactions Between Them[J]. Pediatr Crit Care Med, 2016, 17(8Suppl 1): S112-S118. DOI: 10.1097/PCC.0000000000000794.
[2]
Il'Giovine ZJ, Mulder H, Chiswell K, et al. Right Ventricular Longitudinal Strain Reproducibility Using Vendor-Dependent and Vendor-Independent Software[J]. J Am Soc Echocardiogr, 2018, 31(6): 721-732.e5. DOI: 10.1016/j.echo.2018.01.008.
[3]
李嵘娟, 孙研, 杨娅, 等.三维超声斑点追踪成像技术对冠心病患者左心室整体应变的评价[J].心肺血管病杂志,2014,33(05): 633-636+673.
Li RJ, Sun Y, Yang Y, et al. Evaluation of left ventricular global strain in patients with coronary heart disease by three-dimensional ultrasound speckle tracking imaging[J]. Journal of Cardiopulmonary Vascular Diseases, 2014, 33(05): 633-636+673.
[4]
Ishizu T, Seo Y, Atsumi A, et al. Global and Regional Right Ventricular Function Assessed by Novel Three-Dimensional Speckle-Tracking Echocardiography[J]. J Am Soc Echocardiogr, 2017, 30(12): 1203-1213. DOI: 10.1016/j.echo.2017.08.007.
[5]
刘娟娟, 孙丹丹, 白洋, 等. 超声心动图评价肺动脉高压患者右房功能的研究进展[J]. 临床超声医学杂志, 2019, 21(5): 263. DOI: 10.16245/j.cnki.issn1008-6978.2019.06.015.
Liu JJ, Sun DD, Bai Y, et al. Progress in evaluation of right atrial function in patients with pulmonary hypertension by echocardiography[J]. Journal of Clinical Ultrasound Medicine, 2019, 21(5): 263. DOI: 10.16245/j.cnki.issn1008-6978.2019.06.015.
[6]
Barreiro-Pérez M, Curione D, Symons R, et al. Left ventricular global myocardial strain assessment comparing the reproducibility of four commercially available CMR-feature tracking algorithms[J]. Eur Radiol, 2018, 28(12): 5137-5147. DOI: 10.1007/s00330-018-5538-4.
[7]
Xia H, Yeung DF, Di Stefano C, et al. Ventricular strain analysis in patients with no structural heart disease using a vendor-independent speckle-tracking software[J]. BMC Cardiovasc Disord, 2020, 20(1): 274. DOI: 10.1186/s12872-020-01559-1.
[8]
Lin K, Collins JD, Chowdhary V, et al. Heart deformation analysis for automated quantification of cardiac function and regional myocardial motion patterns: A proof of concept study in patients with cardiomyopathy and healthy subjects[J]. EurjRadiology, 2016, 85(10): 1811-1817. DOI: 10.1016/j.ejrad.2016.08.005.
[9]
Qu YY, Li H, Rottbauer W, et al. Right ventricular free wall longitudinal strain and strain rate quantification with cardiovascular magnetic resonance based tissue tracking[J]. Int J Cardiovasc Imaging, 2020, 36(10): 1985-1996. DOI: 10.1007/s10554-020-01895-5.
[10]
Liu T, Wang CC, Li S, et al. Age- and gender-related normal references of right ventricular strain values by tissue tracking cardiac magnetic resonance: results from a Chinese population[J]. Quant Imaging Med Surg, 2019, 9(8): 1441-1450. DOI: 10.21037/qims.2019.08.13.
[11]
de Siqueira ME, Pozo E, Fernandes VR, et al. Characterization and clinical significance of right ventricular mechanics in pulmonary hypertension evaluated with cardiovascular magnetic resonance feature tracking[J]. J Cardiovasc Magn Reson. 2016, 18(1): 39. DOI: 10.1186/s12968-016-0258-x.
[12]
Wu L, Germans T, Güçlü A, et al. Feature tracking compared with tissue tagging measurements of segmental strain by cardiovascular magnetic resonance[J]. J Cardiovasc Magn Reson, 2014, 16(1): 10. DOI: 10.1186/1532-429X-16-10.
[13]
张雪梅, 郑晓, 郑桂敏, 等. 结缔组织病相关肺动脉高压患者临床特点比较[J]. 河北医药, 2019, 41(2): 178-181. DOI: 10.3969/j.issn.1002-7386.2019.02.004.
Zhang XM, Zheng X, Zheng GM, et al. Comparison of clinical characteristics of patients with connective tissue disease-related pulmonary hypertension [J]. Hebei Medicine, 2019, 41 (2): 178-181. DOI: 10.3969/j.issn.1002-7386.2019.02.004.
[14]
Li YD, Wang YD, Meng XL, et al. Assessment of right ventricular longitudinal strain by 2D speckle tracking imaging compared with RV function and hemodynamics in pulmonary hypertension[J]. Int J Cardiovasc Imaging, 2017, 33(11): 1737-1748. DOI: 10.1007/s10554-017-1182-3.
[15]
Li YM, Wang T, Haines P, et al. Prognostic Value of Right Ventricular Two-Dimensional and Three-Dimensional Speckle-Tracking Strain in Pulmonary Arterial Hypertension: Superiority of Longitudinal Strain over Circumferential and Radial Strain[J]. J Am Soc Echocardiogr, 2020, 33(8): 985-994.e1. DOI: 10.1016/j.echo.2020.03.015.
[16]
Bernard Y, Morel M, Descotes-Genon V, et al. Value of speckle tracking for the assessment of right ventricular function in patients operated on for tetralogy of fallot[J]. Comparison with magnetic resonance imaging. Echocardiography, 2014, 31(4): 474-482. DOI: 10.1111/echo.12386.
[17]
Weng KP, Hung YC, Huang SH, et al. Abnormal biventricular performance in asymptomatic adolescents late after repaired Tetralogy of Fallot: Combined two-dimensional speckle tracking and three-dimensional echocardiography study[J]. J Chin Med Assoc, 2018, 81(2): 170-177. DOI: 10.1016/j.jcma.2017.09.012.
[18]
van Grootel RWJ, van den Bosch AE, Baggen VJM, et al. The Prognostic Value of Myocardial Deformation in Adult Patients With Corrected Tetralogy of Fallot[J]. J Am Soc Echocardiogr, 2019, 32(7): 866-875.e2. DOI: 10.1016/j.echo.2019.03.014.
[19]
李阳, 马春燕, 刘爽, 等.二维斑点追踪成像技术评价左心室不同部位心肌梗死患者右心室心肌功能[J].中国医学影像技术, 2016, 32(07): 1047-1051. DOI: 10.13929/j.1003-3289.2016.07.015.
Li Y, Ma CY, Liu S, et al. Two-dimensional speckle tracking imaging in evaluation of right ventricular myocardial function in patients with different region myocardial infarction in left ventricle[J]. Chinese Medical Imaging Technology, 2016, 32(07): 1047-1051. DOI: 10.13929/j.1003-3289.2016.07.015.
[20]
王笑男, 侯阳. 磁共振特征追踪技术评估心肌应变的应用进展[J].磁共振成像, 2019, 10(11): 869-872. DOI: 10.12015/issn.1674-8034.2019.11.017.
Wang XN, Hou Y. The application progress of magnetic resonance future tracking technique to evaluate myocardial strain[J]. Chin J Magn Reson Imaging, 2019, 10(11): 869-872. DOI: 10.12015/issn.1674-8034.2019.11.017.
[21]
宋晶, 孔祥闯, 崔越, 等. 心肌应变技术评价右室功能的研究进展[J]. 临床心血管病杂志, 2019, 35(4): 386-390. DOI: 10.13201/j.issn.1001-1439.2019.04.022.
Song J, Kong XC, Cui Y, et al. Advances in the evaluation of right ventricular function by myocardial strain technique [J]. Journal of Clinical Cardiovascular Diseases, 2019, 35(4): 386-390. DOI: 10.13201/j.issn.1001-1439.2019.04.022.
[22]
Taha K, Bourfiss M, Te Riele ASJM, et al. A head-to-head comparison of speckle tracking echocardiography and feature tracking cardiovascular magnetic resonance imaging in right ventricular deformation [published online ahead of print, 2020 May 27][J]. Eur Heart J Cardiovasc Imaging, 2020, jeaa088. DOI: 10.1093/ehjci/jeaa088.
[23]
Malik N, Win S, James CA, et al. Right Ventricular Strain Predicts Structural Disease Progression in Patients With Arrhythmogenic Right Ventricular Cardiomyopathy[J]. J Am Heart Assoc, 2020, 9(7): e015016. DOI: 10.1161/JAHA.119.015016.
[24]
Maron MS, Hauser TH, Dubrow E, et al. Right ventricular involvement in hypertrophic cardiomyopathy[J]. Am J Cardiol, 2007, 100(8): 1293-1298. DOI: 10.1016/j.amjcard.2007.05.061.
[25]
Yang LP, Zhang LB, Cao SD, et al. Advanced myocardial characterization in hypertrophic cardiomyopathy: feasibility of CMR-based feature tracking strain analysis in a case-control study[J]. Eur Radiol, 2020, 30(11): 6118-6128. DOI: 10.1007/s00330-020-06922-6.
[26]
Keramida K, Lazaros G, Nihoyannopoulos P. Right ventricular involvement in hypertrophic cardiomyopathy: Patterns and implications[J]. Hellenic J Cardiol, 2020, 61(1): 3-8. DOI: 10.1016/j.hjc.2018.11.009.
[27]
Seo J, Jung IH, Park JH, et al. The prognostic value of 2D strain in assessment of the right ventricle in patients with dilated cardiomyopathy[J]. Eur Heart J Cardiovasc Imaging, 2019, 20(9): 1043-1050. DOI: 10.1093/ehjci/jez015.
[28]
Liu T, Gao YF, Wang H, et al. Association between right ventricular strain and outcomes in patients with dilated cardiomyopathy [published online ahead of print, 2020 Nov 2][J]. Heart, 2020, heartjnl-2020-317949. DOI: 10.1136/heartjnl-2020-317949.
[29]
Seo J, Jung IH, Park JH, et al. The prognostic value of 2D strain in assessment of the right ventricle in patients with dilated cardiomyopathy[J]. Eur Heart J Cardiovasc Imaging, 2019, 20(9):1043-1050, DOI: 10.1093/ehjci/jez015.
[30]
梁科研, 杨芳, 褚静洁. 四维超声心动图评价扩张型心肌病右心室整体收缩功能及其临床意义[J]. 心血管病学进展, 2020, 41(05): 547-550. DOI: 10.16806/j.cnki.issn.1004-3934.2020.05.025.
Liang KY, Yang F, Chu JJ. Evaluation of global right ventricular systolic function in patients with dilated cardiomyopathy by four-dimensional echocardiography and its clinical significance. Advances in Cardiology, 2020, 41(05): 547-550. DOI: 10.16806/j.cnki.issn.1004-3934.2020.05.025.
[31]
Tadic M, Cuspidi C, Grassi G, et al. Obstructive sleep apnea and cardiac mechanics: how strain could help us?[J]. Heart Fail Rev, 2021, 26(4): 937-945. DOI: 10.1007/s10741-020-09924-0.
[32]
Altekin RE, Karakas MS, Yanikoglu A, et al. Determination of right ventricular dysfunction using the speckle tracking echocardiography method in patients with obstructive sleep apnea[J]. Cardiol J, 2012, 19(2): 130-139. DOI: 10.5603/cj.2012.0024.
[33]
Li JF, Wang ZB, Li Y, et al. Assessment of regional right ventricular systolic function in patients with obstructive sleep apnea syndrome using velocity vector imaging[published correction appears in Medicine (Baltimore), 2017, 96(7): e6211][J]. Medicine (Baltimore), 2016, 95(37): e4788. DOI: 10.1097/MD.0000000000004788.
[34]
Wibowo A, Pranata R, Astuti A, et al. Left and right ventricular longitudinal strains are associated with poor outcome in COVID-19: a systematic review and meta-analysis[J]. J Intensive Care, 2021, 9(1): 9. DOI: 10.1186/s40560-020-00519-3.
[35]
Li YM, Li H, Zhu SS, et al. Prognostic Value of Right Ventricular Longitudinal Strain in Patients With COVID-19[J]. JACC Cardiovasc Imaging, 2020, 13(11): 2287-2299. DOI: 10.1016/j.jcmg.2020.04.014.
[36]
Lee JH, Park JH. Strain Analysis of the Right Ventricle Using Two-dimensional Echocardiography[J]. J Cardiovasc Imaging, 2018, 26(3): 111-124. DOI: 10.4250/jcvi.2018.26.e11.
[37]
Leng S, Tan RS, Guo J, et al. Cardiovascular magnetic resonance-assessed fast global longitudinal strain parameters add diagnostic and prognostic insights in right ventricular volume and pressure loading disease conditions[J]. J Cardiovasc Magn Reson, 2021, 23(1): 38. DOI: 10.1186/s12968-021-00724-5.

上一篇 心血管磁共振弥散张量成像及弥散频谱成像研究进展
下一篇 乳腺硬化性腺病的影像学表现及其研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2