分享:
分享到微信朋友圈
X
经验交流
不同类型原发性青光眼的扩散张量成像研究
王春节 王宇桐 翟方兵 李静敏 董洋

Cite this article as: Wang CJ, Wang YT, Zhai FB, et al. The study of different kinds of primary glaucoma by diffusion tensor imaging[J]. Chin J Magn Reson Imaging, 2022, 13(1): 114-117.本文引用格式:王春节, 王宇桐, 翟方兵, 等. 不同类型原发性青光眼的扩散张量成像研究[J]. 磁共振成像, 2022, 13(1): 114-117. DOI:10.12015/issn.1674-8034.2022.01.023.


[摘要] 目的 探讨不同类型原发性青光眼视觉通路白质纤维束扩散张量成像(diffusion tensor imaging,DTI)特征及其与青光眼严重程度相关性。材料与方法 收集慢性闭角型青光眼(chronic angle-closure glaucoma,CACG)、急性闭角型青光眼(acute angle-closure glaucoma,AACG)、开角型青光眼(primary open-angle glaucoma,POAG)各10例(每组20只眼);正常对照组10例(20只眼)。行视野平均缺损(mean defect,MD)及磁共振DTI检查,测量并比较各组视神经、视辐射区部分各向异性(fractional anisotropy,FA)、平均扩散系数(average diffusion coefficient,ADC),并行统计学分析。结果 CACG、AACG、POAG视神经区FA值低于自身视辐射区(P<0.05),正常对照组视神经与自身视辐射FA值差异无统计学意义(P>0.05);与正常对照组相比,三组青光眼双侧视神经、视辐射FA值降低(P<0.05),CACG、AACG双侧视神经及AACG右侧视辐射ADC值升高(P<0.05);AACG右侧视神经FA值较CACG、POAG为低(P=0.015、0.005),AACG双侧视神经ADC值较POAG为高(P=0.011、0.040),AACG右侧视辐射ADC值较POAG为高(P=0.003);CACG、AACG右侧视神经FA值与MD呈正相关(r=0.844,P=0.002;r=0.648,P=0.043)。结论 DTI能够量化评价原发性青光眼视神经纤维通路的微观损伤,可为青光眼早期诊断、疗效评价提供信息。
[Abstract] Objective To evaluate the microscopic changes of optic pathway in different kinds of primary glaucoma by diffusion tensor imaging (DTI), and investigate the relationship to the severity of glaucoma.Materials and Methods: There were 10 cases (20 eyes in each group) in each group of chronic angle-closure glaucoma (CACG), acute angle-closure glaucoma (AACG) and primary open-angle glaucoma (POAG). And 10 cases (20 eyes) of control subjects were recruited in this study. The mean defect (MD) of view was checked. All subjects underwent DTI examination. The fractional anisotropy (FA), average diffusion coefficient (ADC) of optic nerve and optic radiation were measured by MR post-processing software and were analyzed statistically. All these were analyzed by SPSS 22.0.Results FA of optic nerve were lower than that of optic radiation in CACG, AACG and POAG (P<0.05). There were no significant statistical difference in control group (P>0.05). FA of optic nerves and optic radiation in group CACG, AACG and POCG were significantly lower than the controls (P<0.05). The ADC values of optic nerve in group CACG, AACG and the right optic radiation in AACG were significantly higher than controls (P<0.05). FA of right optic nerves in group AACG were significantly lower than group CACG and POAG (P=0.015, 0.005), ADC of optic nerves in group AACG were higher than group POAG (P=0.011, 0.040), ADC of right optic radiation in group AACG were higher than group POAG (P=0.003). FA of right optic nerve in CACG and AACG were positively correlated with MD (r=0.844, P=0.002; r=0.648, P=0.043).Conclusions The parameters of DTI reflected the microstructures of the optic pathway in different kinds of primary glaucoma, which wouldbe helpful in the diagnosis, curative effect evaluation of glaucoma.
[关键词] 青光眼;视神经;视辐射;视野平均缺损;磁共振成像;扩散张量成像
[Keywords] glaucoma;optic nerve;optic radiation;mean defect of visual field defects;magnetic resonance imaging;diffusion tensor imaging

王春节 1   王宇桐 2   翟方兵 1   李静敏 2   董洋 1*  

1 大连医科大学附属第二医院放射科,大连 116027

2 大连医科大学附属第二医院眼科,大连 116027

董洋,E-mail:23121546@qq.com

全体作者均声明无利益冲突。


基金项目: 大连市医学科学研究计划项目 1812042
收稿日期:2021-07-15
接受日期:2021-12-17
中图分类号:R445.2  R775 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2022.01.023
本文引用格式:王春节, 王宇桐, 翟方兵, 等. 不同类型原发性青光眼的扩散张量成像研究[J]. 磁共振成像, 2022, 13(1): 114-117. DOI:10.12015/issn.1674-8034.2022.01.023.

       青光眼是全球第二位不可逆性致盲性眼病,致盲率约10%[1, 2],它以视网膜神经节细胞丢失、视神经进行性萎缩、变性为特征[3],是累及视觉通路的多因素神经退行性疾病,机制尚未完全阐明。磁共振扩散张量成像(diffusion tensor imaging,DTI)能够通过各向异性分数(fractional anisotropy,FA)、平均扩散系数(average diffusion coefficient,ADC),反映神经纤维束的脱髓鞘及轴突膜微观结构损伤,目前已有研究采用DTI技术评价视神经损伤[4, 5],其对青光眼的研究多集中于开角型及正常眼压性青光眼[6, 7, 8]。然而,闭角型青光眼是亚洲人群青光眼主要类型,在我国,闭角型青光眼占青光眼总人数的54.42%,占全球闭角型青光眼84%[9, 10],引起视力障碍比率远高于开角型,是造成广泛视力丧失的主要原因[11]。Zhang等[10]报道闭角型青光眼DTI参数变化具有规律性,但不同类型闭角型青光眼DTI特征的分类研究及与开角型青光眼DTI特征对比尚未得到充分阐述。本研究将原发性青光眼深入分类,探讨DTI在原发性急、慢性闭角型青光眼及开角型青光眼神经纤维束损伤评价中的应用价值,评估其与青光眼严重程度的相关性,为DTI在不同类型青光眼临床诊治中的应用提供依据。

1 材料与方法

1.1 研究对象

       本研究为前瞻性研究,经过大连医科大学附属第二医院医学伦理委员会批准(批准文号:2017第140号),受试者均已签署知情同意书。纳入2018年1月至2020年1月大连医科大学附属第二医院眼科就诊并诊断为原发性青光眼的患者。

       纳入标准:原发性慢性闭角型青光眼(chronic angle-closure glaucoma,CACG)组:(1)具备闭角型青光眼的解剖特征(前房较浅、角膜较小、眼轴较短等);(2)房角入口狭窄或不同程度关闭;(3)青光眼性的视盘损害以及特征性视野缺损;(4)未见严重眼部症状,例如头痛或眼痛,恶心呕吐,虹视雾视等;(5)眼前段未见高眼压遗留的缺血性损害特征;原发性急性闭角型青光眼(acute angle-closure glaucoma,AACG)组:(1)至少包含以下两种症状:眼痛或眼眶痛,恶心或呕吐,间歇性虹视或视力下降;(2)至少包含以下三种体征:结膜充血,角膜上皮水肿,浅前房,青光眼斑,瞳孔扩大,虹膜萎缩,对光发射迟钝或消失;(3)有急性眼压升高史,眼压大于30 mmHg (1 mmHg=0.1333 kPa);原发性开角型青光眼(primary open-angle glaucoma,POAG)组:(1)眼压大于21 mmHg (角膜偏薄者需按照公式换算);(2)具有典型的青光眼性视盘损害或视网膜神经纤维层变薄及缺损;(3)具有青光眼特征性的视野缺损;(4)眼压增高时房角处于开放状态。正常对照组:招募年龄相匹配[12]的健康志愿者。排除标准:(1)神经系统、视神经及视网膜等相关疾病患者;(2)弱视、近视等眼科相关疾病患者;(3)高血压、糖尿病等系统性疾病患者;(4)因假牙、运动等原因所致图像伪影、无法满足图像分析要求者。

1.2 仪器设备和扫描参数

       采用3.0 T磁共振扫描仪(Siemens Magneton Verio 3.0 T)及8通道头部线圈进行检查。常规轴位T2WI、T1加权液体反转恢复序列(T1 Flair)排除颅内神经系统相关疾病;矢状位T1WI用于视神经DTI扫描定位。DTI扫描基线平行于视神经,参数如下:TR 7100 ms,TE 87 ms,b值=0、1000 s/mm²,30个方向,层厚2 mm,层间距0 mm,矩阵128×128,NEX=3,FOV:23 cm×23 cm。MR检查于视野检查前或后3日内完成。采用德国蔡司公司Humphrey-750型全自动视野计行视野检查,记录视野平均缺损(mean defect,MD)值,用以描述青光眼严重程度。

1.3 数据和图像后处理

       将磁共振原始数据传送至西门子Syngo Multimodality Workplace (版本VE40A)平台nero 3D软件行后处理,生成FA、ADC灰阶图,并在图中视神经最大层面走行区选择3个感兴趣区(region of interest,ROI) (图1A1C);双侧侧脑室后角水平周围视辐射区(图1B1D)放置3个ROI,ROI面积约为5~10 mm2,获得并记录FA、ADC值,分别求取视神经、视辐射区3个ROI的平均值作为该区域FA、ADC值。后处理过程由一位具有两年工作经验的住院医师完成,并由一名具有15年工作经验的副主任医师审核。

图1  青光眼视神经通路ROI选取示意图。A~D:同一患者视神经(A)、视辐射区(B) FA示意图,视神经(C)、视辐射区(D) ADC示意图。

1.4 统计学分析

       应用SPSS 22.0软件包进行统计学处理。计算四组受试者双侧视神经、视辐射ROI的FA及ADC值,符合正态分布以均数±标准差(x¯±s)表示,否则以中位数±四分位数间距(M±Q)表示。CACG、AACG、POAG、正常对照组间DTI参数比较采用单因素方差分析,两两比较以LSD方法,不符合正态分布采用非参数Kruskal-Wallis H秩和检验,并进行两两比较。比较采用配对t检验、两独立样本t检验及Mann-Whitney U检验,性别采用卡方检验。视神经及视辐射区FA、ADC值与MD行相关性分析,符合正态分布采用Pearson相关性检验,不符合正态分布采用Spearman相关性检验。检验标准:α=0.05,P<0.05为差异具有统计学意义。

2 结果

2.1 研究对象一般资料

       本研究收集CACG 12例、AACG 11例、POAG 11例及正常对照组10例,均为双眼发病、右眼优势;排除假牙伪影1例,移动伪影2例,排除CACG初次发现血糖升高者1例,最终纳入CACG、AACG、POAG及正常对照组各10例(每组20只眼)。各组间性别(χ2=2.762,P=0.430)及年龄(F=1.490,P=0.234)差异无统计学意义,见表1

表1  研究对象的基线特征

2.2 DTI参数比较

       CACG、AACG、POAG及正常对照组双侧视神经、视辐射FA、ADC值见表23,各组自身双侧DTI参数比较差异无统计学意义(P>0.05)。CACG、AACG、POAG视神经区FA值显著低于自身视辐射区(P<0.05);正常对照组视神经与自身视辐射区FA值差异无统计学意义(P>0.05);CACG、AACG、POAG及正常对照组视神经区ADC值均高于视辐射区(P<0.05),见表4。CACG、AACG、POAG双侧视神经、视辐射区FA值较正常对照组显著减低(P<0.05);AACG、CACG双侧视神经及AACG右侧视辐射ADC值较正常对照组升高(P<0.05),见表2~3。AACG右侧视神经FA值较CACG、POAG减低(P=0.015、0.005),AACG双侧视神经ADC值较POAG升高(P=0.011、0.040),AACG右侧视辐射ADC值较POAG升高(P=0.003),见表2~3。三组青光眼MD值差异无统计学意义(统计量=0.985,P=0.611)。

表2  各组视神经及视辐射FA值
表3  各组视神经及视辐射ADC值(×10-3 mm²/s)
表4  各组视神经及视辐射参数值比较

2.3 DTI参数与MD值相关性

       CACG、AACG组受试者右侧视神经FA值与右侧MD值呈正相关(r=0.844,P=0.002;r=0.648,P=0.043);其余参数与MD相关性均不显著(P>0.05),见图2

图2  慢性闭角型青光眼(CACG)、急性闭角型青光眼(AACG)右侧视神经FA与视野缺损平均缺损(mean defect,MD)值分布散点图。

3 讨论

       本研究表明磁共振DTI技术可用于评价CACG、AACG及POAG视神经纤维通路微观损伤情况,并与青光眼视野缺损具有一定相关性;不同类型原发性青光眼神经损害模式不尽相同,DTI可对其进行量化评估,有望成为青光眼诊断及评价的非侵入性磁共振标记。

3.1 不同类型原发性青光眼视神经、视辐射区DTI参数分析

       FA、ADC值分别代表水分子沿神经纤维束的运动方向及速度,是临床常用的DTI指标,既往研究报道青光眼视神经纤维通路DTI参数变化具有规律性[13, 14]。本研究中,CACG、AACG、POAG视神经、视辐射区均发生FA值降低、ADC值升高,提示DTI可用于反映青光眼视神经纤维通路神经纤维束细胞膜及神经鞘膜发生脱髓鞘及轴突膜结构破坏的程度[15, 16],这与既往研究报道相一致[17, 18]。本研究中,CACG、AACG组视神经区FA值低于视辐射区,ADC值高于视辐射区,这在以往的研究中较少提及,可能与闭角型青光眼发病机制密切相关;目前关于青光眼机制研究的主流学说认为,闭角型青光眼多由眼压升高引起视网膜节细胞变性,随疾病进展向视神经及颅内视神经纤维通路蔓延,是造成视力丧失的主要原因[11,19]。而开角型青光眼发病机制更多倾向于中枢神经系统病变逆突触发展,最终累及视网膜神经节细胞[20, 21],对视力损伤的影响低于闭角型青光眼[11];本研究中POAG组视神经FA值亦低于视辐射区、ADC值高于视辐射区,考虑可能与POAG病情较重有关,而其视神经、视辐射区FA、ADC差值小于CACG、AACG组。因此,CACG、AACG及POAG全视路神经纤维束DTI分析有益于青光眼病情评估的全面性。

       一项关于灵长类动物的研究报道,在单侧视力剥夺后,双侧视神经纤维束FA值均发生一定程度降低,其原因可能为青光眼神经变性可沿神经纤维束顺行及逆行性蔓延,最终累及双眼[22]。本研究中,不同类型青光眼双侧视神经、视辐射区FA、ADC对比无显著差异,支持青光眼是一种复杂的神经退行性疾病这一观点[23]

3.2 急性闭角型青光眼DTI参数分析

       研究报道,AACG眼压急骤升高时,首先发生视神经轴突运输功能受损,眼部血流自动调节功能障碍[24],视神经乳头及周围组织受压发生变形、水肿;当眼压升高程度、持续时间低于一定范围时[25, 26],视神经节细胞功能在眼压恢复正常后的一段时间内部分可逆。FA值是评价青光眼神经纤维通路较为敏感的指标。本研究中,AACG右侧视神经FA值较CACG、POAG为低(P=0.015、0.005),这可能与本研究所有MR图像采集均在眼科检查后7日内完成[27],未考虑眼压急骤升高对DTI参数的影响所致,这在以往的研究报道中较少提及,AACG视觉通路DTI检查避开眼压急骤升高时,可避免可复性神经轴突功能改变对预后判断的影响,或可为AACG磁共振检测时间点的选择提供参考。

3.3 不同类型原发性青光眼DTI参数与视野缺损相关性分析

       MD值是青光眼确诊及病情严重程度评价的重要指标,然而青光眼早期症状不典型,MD值敏感性较低、稳定性欠佳,通常当视野缺损被明确诊断时,已有近一半的视网膜神经节细胞结构遭到破坏[28],视觉功能发生不可逆性损害。本研究中,CACG、AACG右侧视神经的FA值与青光眼MD值呈正相关,与Kaushik[29]及Takahashi[30]等的报道相似,提示DTI-FA有望成为闭角型青光眼早期诊断、临床分期影像学标记之一,或可为青光眼早期诊断、与成人单纯性高眼压(非青光眼)鉴别、青光眼疗效评估提供有价值的信息。

3.4 本研究的局限性

       本研究的局限性主要有以下几个方面:(1)本研究样本量相对较小,仅进行视野缺损MD值测量及相关性统计,未对青光眼进行临床分期研究;(2)本研究受扫描分辨率所限,仅选取视神经、视辐射作为感兴趣区,测量节点相对较少,未能实现全视路分析;(3)手工选择ROI并行纤维束示踪对测量节点进行验证,但测量误差难以避免。

       综上所述,DTI可对不同类型原发性青光眼视神经通路神经纤维束损伤进行量化评估,可为青光眼机制研究及青光眼诊治方案制订随访提供量化依据。

[1]
Quigley HA. Number of people with glaucoma worldwide[J]. Br J Ophthalmol, 1996, 80(5): 389-393. DOI: 10.1136/bjo.80.5.389.
[2]
Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020[J]. Br J Ophthalmol, 2006, 90(3): 262-267. DOI: 10.1136/bjo.2005.081224.
[3]
Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis[J]. Ophthalmology, 2014, 121(11): 2081-2090. DOI: 10.1016/j.ophtha.2014.05.013.
[4]
田勤, 史大鹏, 郭慧丽, 等. 糖尿病视神经病变磁共振扩散张量成像诊断价值探讨[J]. 磁共振成像, 2012, 3(1): 12-14. DOI: 10.3969/j.issn.1674-8034.2012.01.004.
Tian Q, Shi DP, Guo HL, et al. Study of magnetic resonance diffusion tensor imaging in diabetic optic neuropathy[J]. Chin J Magn Reson Imaging, 2012, 3(1): 12-14. DOI: 10.3969/j.issn.1674-8034.2012.01.004.
[5]
Miller N, Liu Y, Krivochenitser R, et al. Linking neural and clinical measures of glaucoma with diffusion magnetic resonance imaging (dMRI)[J]. PLoS One, 2019, 14(5): e0217011. DOI: 10.1371/journal.pone.0217011.
[6]
Wang R, Tang Z, Sun X, et al. White Matter Abnormalities and Correlation With Severity in Normal Tension Glaucoma: A Whole Brain Atlas-Based Diffusion Tensor Study[J]. Invest Ophthalmol Vis Sci, 2018, 59(3): 1313-1322. DOI: 10.1167/iovs.17-23597.
[7]
李婷, 缪文, 何晖光, 等. 原发性开角型青光眼患者视放射的扩散张量成像价值分析[J]. 中华医学杂志, 2017, 97(5): 347-352. DOI: 10.3760/cma.j.issn.0376-2491.2017.05.006.
Li T, Miao W, He HG, et al. Diffusion tensor imaging value analysis of visual radiation in patients with primary open Angle glaucoma[J]. Natl Med J China, 2017, 97(5): 347-352. DOI: 10.3760/cma.j.issn.0376-2491.2017.05.006.
[8]
Haykal S, Curcic Blake B, Jansonius NM, et al. Fixel-based analysis of visual pathway white matter in primary open-angle glaucoma[J]. Invest Ophthalmol Vis Sci, 2019, 60(12): 3803-3812. DOI: 10.1167/iovs.19-27447.
[9]
Song P, Wang J, Bucan K, et al. National and subnational prevalence and burden of glaucoma in China: A systematic analysis[J]. J Glob Health, 2017, 7(2): 020705. DOI: 10.7189/jogh.07.020705.
[10]
Zhang QJ, Wang D, Bai ZL, et al. Diffusion tensor imaging of optic nerve and optic radiation in primary chronic angle-closure glaucoma using 3T magnetic resonance imaging[J]. Int J Ophthalmol, 2015, 8(5): 975-979. DOI: 10.3980/j.issn.2222-3959.2015.05.22.
[11]
Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review[J]. JAMA, 2014, 311(18): 1901-1911. DOI: 10.1001/jama.2014.3192.
[12]
Tatewaki Y, Mutoh T, Thyreau B, et al. Phase Difference-Enhanced Magnetic Resonance (MR) Imaging (PADRE) Technique for the Detection of Age-Related Microstructural Changes in Optic Radiation: Comparison with Diffusion Tensor Imaging (DTI)[J]. Med Sci Monit, 2017, 23: 5495-5503. DOI: 10.12659/msm.905571.
[13]
Omodaka K, Murata T, Sato S, et al. Correlation of magnetic resonance imaging optic nerve parameters to optical coherence tomography and the visual field in glaucoma[J]. Clin Exp Ophthalmol, 2014, 42(4): 360-3688. DOI: 10.1111/ceo.12237.
[14]
Michelson G, Engelhorn T, Wärntges S, et al. DTI parameters of axonal integrity and demyelination of the optic radiation correlate with glaucoma indices[J]. Graefes Arch Clin Exp Ophthalmol, 2013, 251(1): 243-253. DOI: 10.1007/s00417-011-1887-2.
[15]
Le Bihan D, Iima M. Diffusion Magnetic Resonance Imaging: What Water Tells Us about Biological Tissues[J]. PLoS Biol, 2015, 13(7): e1002203. DOI: 10.1371/journal.pbio.1002203.
[16]
Colbert MK, Ho LC, van der Merwe Y, et al. Diffusion Tensor Imaging of Visual Pathway Abnormalities in Five Glaucoma Animal Models[J]. Invest Ophthalmol Vis Sci, 2021, 62(10): 21. DOI: 10.1167/iovs.62.10.21.
[17]
Sun Z, Parra C, Bang JW, et al. Diffusion Kurtosis Imaging Reveals Optic Tract Damage That Correlates with Clinical Severity in Glaucoma[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2020, 1746-1749. DOI: 10.1109/EMBC44109.2020.9176192.
[18]
Nucci C, Garaci F, Altobelli S, et al. Diffusional Kurtosis Imaging of White Matter Degeneration in Glaucoma[J]. J Clin Med, 2020, 9(10): 3122. DOI: 10.3390/jcm9103122.
[19]
Wang Q, Chen W, Wang H, et al. Reduced Functional and Anatomic Interhemispheric Homotopic Connectivity in Primary Open-Angle Glaucoma: A Combined Resting State-fMRI and DTI Study[J]. Invest Ophthalmol Vis Sci, 2018, 59(5): 1861-1868. DOI: 10.1167/iovs.17-23291.
[20]
Haykal S, Jansonius NM, Cornelissen FW. Progression of Visual Pathway Degeneration in Primary Open-Angle Glaucoma: A Longitudinal Study[J]. Front Hum Neurosci, 2021, 15: 630898. DOI: 10.3389/fnhum.2021.630898.
[21]
Li M, Ke M, Song Y, et al. Diagnostic utility of central damage determination in glaucoma by magnetic resonance imaging: An observational study[J]. Exp Ther Med, 2019, 17(3): 1891-1895. DOI: 10.3892/etm.2018.7134.
[22]
Chan JW, Chan NCY, Sadun AA. Glaucoma as Neurodegeneration in the Brain[J]. Eye Brain, 2021, 13: 21-28. DOI: 10.2147/EB.S293765.
[23]
You M, Rong R, Zeng Z, et al. Transneuronal Degeneration in the Brain During Glaucoma[J]. Front Aging Neurosci, 2021, 13: 643685. DOI: 10.3389/fnagi.2021.643685.
[24]
Salinas-Navarro M, Alarcón-Martínez L, Valiente-Soriano FJ, et al. Ocular hypertension impairs optic nerve axonal transport leading to progressive retinal ganglion cell degeneration[J]. Exp Eye Res, 2010, 90(1): 168-183. DOI: 10.1016/j.exer.2009.10.003.
[25]
Abbott CJ, Choe TE, Lusardi TA, et al. Evaluation of retinal nerve fiber layer thickness and axonal transport 1 and 2 weeks after 8 hours of acute intraocular pressure elevation in rats[J]. Invest Ophthalmol Vis Sci, 2014, 55(2): 674-687. DOI: 10.1167/iovs.13-12811.
[26]
Tribble JR, Otmani A, Kokkali E, et al. Retinal Ganglion Cell Degeneration in a Rat Magnetic Bead Model of Ocular Hypertensive Glaucoma[J]. Transl Vis Sci Technol, 2021, 10(1): 21. DOI: 10.1167/tvst.10.1.21.
[27]
Li M, Ke M, Song Y, et al. Diagnostic utility of central damage determination in glaucoma by magnetic resonance imaging: An observational study[J]. Exp Ther Med, 2019, 17(3): 1891-1895. DOI: 10.3892/etm.2018.7134.
[28]
Yucel YH, Gupta N. A framework to explore the visual brain in glaucoma with lessons from models and man[J]. Exp Eye Res, 2015, 141: 171-178. DOI: 10.1016/j.exer.2015.07.004.
[29]
Kaushik M, Graham SL, Wang C, et al. A topographical relationship between visual field defects and optic radiation changes in glaucoma[J]. Invest Ophthalmol Vis Sci, 2014, 55(9): 5770-5775. DOI: 10.1167/iovs.14-14733.
[30]
Takahashi N, Matsunaga N, Natsume T, et al. A longitudinal comparison in cynomolgus macaques of the effect of brimonidine on optic nerve neuropathy using diffusion tensor imaging magnetic resonance imaging and spectral domain optical coherence tomography[J]. Heliyon, 2021, 7(4): e06701. DOI: 10.1016/j.heliyon.2021.e06701.

上一篇 正常儿童嗅球体积的磁共振成像研究
下一篇 基于MRI 影像组学列线图预测乳腺癌腋窝淋巴结转移
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2