分享:
分享到微信朋友圈
X
基础研究
颞叶内侧癫痫患者杏仁核体积变化的临床研究
顾昕 徐菲 张丽玲 王云玲 丁爽

Cite this article as: Gu X, Xu F, Zhang LL, et al. A clinical study of amygdala volume changes in medial temporal lobe epilepsy patients[J]. Chin J Magn Reson Imaging, 2022, 13(6): 36-39.本文引用格式:顾昕, 徐菲, 张丽玲, 等. 颞叶内侧癫痫患者杏仁核体积变化的临床研究[J]. 磁共振成像, 2022, 13(6): 36-39. DOI:10.12015/issn.1674-8034.2022.06.007.


[摘要] 目的 通过应用T1三维磁化强度预备梯度回波(T1 three dimensional magnetization prepared rapid acquisition gradient echo,3D-T1 MPRAGE)序列及FreeSufer软件测量海马及杏仁核体积,研究颞叶内侧癫痫(medial temporal lobe epilepsy,MTLE)患者的杏仁核体积变化。材料与方法 前瞻性纳入102例MTLE患者(病例组)和15例健康志愿者(对照组),分别测量双侧海马、杏仁核的体积,以对照组体积的平均值加减2倍标准差作为阈值来判断海马及杏仁核的异常。根据海马体积是否正常,将海马硬化(hippocampal sclerosis,HS)组、海马正常组中杏仁核肥大(amygdala enlargement,AE)患者按致癫侧分为L组、R组,使用配对t检验进行双侧杏仁核体积比较,并使用单因素方差分析将海马正常组-L组、海马正常组-R组及对照组同侧杏仁核进行比较;HS组-L组、HS组-R组及对照组同侧杏仁核进行比较。结果 研究发现,海马正常组-L组、海马正常组-R组双侧杏仁核体积差异有统计学意义(P<0.05),HS组-L组、HS组-R组双侧杏仁核体积差异有统计学意义(P<0.05);HS组-L组中右侧杏仁核体积大于HS组-R组及对照组同侧,差异有统计学意义(P<0.05),HS组-R组左侧杏仁核体积大于HS组-L组及对照组同侧,差异有统计学意义(P<0.05);海马正常组-L组中左侧杏仁核体积大于海马正常组-R组及对照组同侧,差异有统计学意义(P<0.05),海马正常组-R组右侧杏仁核体积大于海马正常组-L组及对照组同侧,差异有统计学意义(P<0.05)。结论 3D-T1 MPRAGE可以准确测量杏仁核体积,同时MTLE中海马正常患者存在致癫灶同侧的AE,HS患者存在致癫灶对侧AE,表明杏仁核可能参与了MTLE的发生与发展。
[Abstract] Objective The changes of hippocampus and amygdala volume in patients with medial temporal lobe epilepsy were studied by using T1 three dimensional magnetization prepared rapid acquisition gradient echo (3D-T1 MPRAGE) sequence and FreeSufer software to measure the volume of hippocampus and amygdala.Materials and Methods A total of 102 patients with medial temporal lobe epilepsy (case group) and 15 healthy volunteers (control group) were collected to measure the volume of bilateral hippocampus and amygdala respectively, and the abnormality was judged by taking the mean value of the control group plus or minus 2 times the standard deviation as the normal limit. According to whether the hippocampal volume is normal or not, the patients with amygdala enlargement (AE) in the hippocampal sclerosis (HS) group and the normal hippocampal group were divided into L group and R group according to the epilepsy side. Paired t-test was used to compare bilateral amygdala volumes. One-way ANOVA was used to compare the ipsilateral amygdala of the normal hippocampus-L group, the normal hippocampal-R group and the normal control group; the ipsilateral amygdala of the HS-L group, the HS-R group and the normal control group was compared.Results The study found that there was a statistically significant difference in the volume of bilateral amygdala between normal hippocampal-L group and normal hippocampal-R group (P<0.05). There was a statistically significant difference in the volume of bilateral amygdala between HS-L group and HS-R group (P<0.05). The volume of the right amygdala in the HS-L group was larger than that of the HS-R group and the same side of the control group (P<0.05). The volume of the left amygdala in the HS-R group was greater than that in the HS-L group and the same side of the control group (P<0.05). The volume of the left amygdala in the normal hippocampus-L group was larger than that in the normal hippocampus-R group and the ipsilateral side of the control group (P<0.05). The volume of the right amygdala in the normal hippocampus-R group was larger than that in the normal hippocampus-L group and control group on the same side (P<0.05).Conclusions 3D-T1 MPRAGE can accurately measure the volume of the amygdala. Meanwhile, patients with normal hippocampus in mesial temporal lobe epilepsy have amygdala enlargement on the same side of the epileptogenic foci, and HS patients have amygdala enlargement on the opposite side of the epileptic foci, indicating that the amygdala may be involved in the occurrence and development of mesial temporal lobe epilepsy.
[关键词] 颞叶内侧癫痫;海马;杏仁核体积;磁共振成像;T1三维磁化强度预备梯度回波序列
[Keywords] medial temporal lobe epilepsy;hippocampus;amygdala volume;magnetic resonance imaging;T1 three dimensional magnetization prepared rapid acquisition gradient echo sequence

顾昕    徐菲    张丽玲    王云玲    丁爽 *  

新疆医科大学第一附属医院磁共振室,乌鲁木齐 830054

丁爽,E-mail:dingshuangxxx@163.com

作者利益冲突声明:全体作者均声明无利益冲突。


基金项目: 新疆维吾尔自治区科技支疆项目计划(指令性)项目 2020E0275
收稿日期:2021-11-17
接受日期:2022-05-31
中图分类号:R445.2  R742.1  R338.26 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2022.06.007
本文引用格式:顾昕, 徐菲, 张丽玲, 等. 颞叶内侧癫痫患者杏仁核体积变化的临床研究[J]. 磁共振成像, 2022, 13(6): 36-39. DOI:10.12015/issn.1674-8034.2022.06.007.

       颞叶内侧癫痫(medial temporal lobe epilepsy,MTLE)是最常见的难治性癫痫,是由于大脑神经元异常放电引起的中枢神经功能异常[1],一些癫痫患者在治疗过程中具有耐药性,手术治疗是MTLE的主要治疗方法,但对于病灶的定位及定侧始终是癫痫病学最为关注的问题[2, 3],MTLE常起源于颞叶内侧结构如海马、杏仁核和内嗅皮层等,海马硬化(hippocampal sclerosis,HS)是MTLE常见原因及病理改变[4, 5]。但是近来发现MR检查阴性即没有HS及其他病灶的MTLE可表现出杏仁核肥大(amygdala enlargement,AE)[6],推断同样位于颞叶内侧结构的杏仁核可能参与MTLE的发病,但迄今为止杏仁核与MTLE的关系仍存在争议[7, 8],部分原因是常规MR图像上杏仁核的解剖界限难以辨认,手动勾画杏仁核体积存在主观性,本研究应用的T1三维磁化强度预备梯度回波(T1 three dimensional magntization prepared rapid acquisition gradient echo,3D-T1 MPRAGE)序列是一种三维MR扫描序列,能够更清晰地呈现颅内结构,再使用FreeSurfer软件自动测量分割海马及杏仁核体积,探究杏仁核是否参与MTLE的发生及发展。

1 材料与方法

1.1 研究对象

       本研究为前瞻性研究,纳入2019~2021年新疆医科大学第一附属医院收治的102例经脑电图检查及临床表现确诊为MTLE患者为病例组,同期做检查的15名健康志愿者为对照组。病例组纳入标准:(1)经脑电图检查及临床表现确诊为MTLE;(2)此次研究前未接受过癫痫相关的手术治疗;(3)常规颅脑MRI检查无阳性病灶,HS及AE征象除外。排除标准:(1)患有其他严重神经精神疾病及器官功能障碍不能配合者;(2)有明显的急性脑炎、严重的头部创伤或缺血性脑病病史。对照组纳入标准:(1)无神经及精神系统疾病史,且无长期服药史及脑手术史;(2)头部常规扫描未见明显异常(血肿、水肿及占位性病变等);(3)无癫痫家族史。

       以对照组海马及杏仁核体积的平均值加减2倍标准差作为阈值来判断海马及杏仁核的异常[9];将病例组海马体积正常患者记为海马正常组,海马体积萎缩患者记为HS组,再根据致癫侧将AE患者分为海马正常组-L组、海马正常组-R组、HS组-L组、HS组-R组。本研究经新疆医科大学第一附属医院伦理委员会审查通过,批准文号:20200320-33,所有受试者均签署知情同意书。

1.2 检查方法及图像后处理

       所有受试者扫描使用西门子Skyra 3.0 T超导磁共振仪,标准头部联合正交线圈16通道,定位线与患者眼眶与耳朵的连线相平行,进行常规轴位T1WI、T2WI、T2WI FLAIR、矢状位T2WI扫描及3D-T1 MPRAGE序列扫描。3D-T1 MPRAGE扫描选用轴位采集,TR=2300 ms,TI=1100 ms,TE=2.32 ms,层间隔=0.9 mm,层厚=1 mm,相位编码方向:A-P (读出方向:S-I),激励次数=1,视野=256 mm×256 mm,扫描时间6 min 3 s。

       所有受试者图像由同一副主任技师操作扫描并由两位具有10年以上癫痫诊断经验的影像科副主任医师进行图像质量判别,去除有图像伪影及其他阳性病灶的病例,再使用SPM12图像分析软件进行质量评估,将获得的3D-T1 MPRAGE图像导入Linux系统,需要使用MRIcro软件的dcm2nii插件把DICOM格式的图像文件转换为NIfTI (Neuroimaging Informatics Technology Initiative)格式图像,经格式转换后的图像由FreeSurfer软件进行全脑分割及各结构参数测量。FreeSurfer可全自动实现图像的标准化、校准、三维重建(包括皮层及皮层下结构)、分割等过程,获得各组杏仁核及海马体积测量值。

1.3 统计学分析

       使用SPSS 24.0软件进行统计学分析。首先对病例组、对照组的年龄(t检验)、性别(卡方检验)的差异性进行分析。海马正常组-L组、海马正常组-R组及对照组同侧杏仁核体积三者较及HS组-L组、HS组-R组及对照组同侧杏仁核体积三者比较使用单因素方差分析,组间两两比较用LSD-t法,L组、R组及对照组的双侧杏仁核体积比较使用配对t检验,以P<0.05为差异有统计学意义。

2 结果

2.1 病例组、对照组的临床资料比较

       102例癫痫患者(病例组)中男57例、女45例,年龄(28.11±8.98)岁,15名健康志愿者(对照组)中男8例、女7例,年龄(24.80±9.58)岁,病例组和对照组的年龄和性别差异无统计学意义(P>0.05)。

2.2 杏仁核体积测量结果比较以及体积变化在MTLE中的比例分析

       HS组L、R双侧海马体积分别为(3629.69±567.18) mm3、(3948.04±715.63) mm3,海马正常组中L、R侧海马体积分别为(4602.47±264.75) mm3、(4658.38±254.49) mm3,对照组双侧海马体积均为(4509.63±210.75) mm3

       将HS组、海马正常组中AE患者按照致癫侧分为L组、R组,进行双侧杏仁核体积比较,并分别将HS组-L、R组杏仁核与对照组比较,海马正常组-L、R组与对照组比较,结果见表12图1, 2, 3,海马正常组-L组、海马正常组-R组双侧杏仁核体积差异有统计学意义(P<0.05),HS组-L组、HS组-R组双侧杏仁核体积差异有统计学意义(P<0.05);HS组-L组中右侧杏仁核体积大于HS组-R组及对照组同侧,差异有统计学意义(P<0.05),HS组-R组左侧杏仁核体积大于HS组-L组及对照组同侧,差异有统计学意义(P<0.05);海马正常组-L组中左侧杏仁核体积大于海马正常组R组及对照组同侧,差异有统计学意义(P<0.05),海马正常组-R组右侧杏仁核体积大于海马正常组-L组及对照组同侧,差异有统计学意义(P<0.05)。HS组、海马正常组中所有萎缩的杏仁核与对照组杏仁核体积之间差异有统计学意义(t=9.12,P<0.05)。对照组与HS组、海马正常组中所有正常杏仁核体积之间差异无统计学意义(t=-1.192,P>0.05)。杏仁核体积变化在MTLE中构成比例见表3

图1~3  3D-T1 MPRAGE常规轴位图。图1:女,43岁,右侧颞叶癫痫患者,患侧海马缩小,对侧杏仁核肥大;图2:男,31岁,左侧颞叶内侧癫痫患者,左侧杏仁核肥大;图3:女,37岁,健康志愿者,双侧海马和杏仁核未见明显异常。3D-T1 MPRAGE:T1三维磁化强度预备梯度回波。
Fig. 1-3  The conventional axial map of 3D-T1 MPRAGE. Fig. 1: A 43-year-old female patient with right medial temporal lobe epilepsy, the hippocampus on the affected side is reduced and the amygdala enlargement is on the opposite side; Fig. 2:A31-year-old male with left MTLE, amygdala enlargement is on the left; Fig. 3: Female, 37 years old, healthy volunteer, there are no obvious abnormalities in the bilateral hippocampus and amygdala. 3D-T1 MPRAGE: T1 three dimensional magntization prepared rapid acquisition gradient echo.
表1  海马硬化组杏仁核肥大患者杏仁核体积比较
Tab. 1  Comparison of amygdala volume in patients with amygdala enlargement in hippocampal sclerosis group
表2  海马正常组杏仁核肥大的患者杏仁核体积比较
Tab. 2  Comparison of amygdala volume in patients with amygdala enlargement in normal hippocampus group
表3  杏仁核体积变化在颞叶内侧癫痫中构成比例(n=102)
Tab. 3  Comparison of proportions of amygdala volume changes in medial temporal lobe epilepsy (n=102)

3 讨论

       本研究采用3D-T1 MPRAGE技术及FreeSufer软件对MTLE患者的海马及杏仁核体积进行测量,分析海马正常及HS这两种不同情况下MTLE的杏仁核体积变化,发现MTLE患者有较大比例的AE。使用FreeSurfer可以减少手动勾画的误差,以无创的方式来量化杏仁核体积帮助MTLE的诊断及治疗。另外病例组中AE占很大比例,但作为MTLE的结果还是原因需要进一步分析,因此进一步根据海马不同情况来分析杏仁核体积的变化。MR检查阴性的MTLE中仅出现AE,推断其可能是MTLE致病的原因。此外,MTLE合并HS是一系列的病理变化,杏仁核体积的改变可能作为其结果。杏仁核体积的异常表现也进一步支持杏仁核可作为MTLE致痫网络的重要组成部分。

3.1 海马正常时杏仁核体积的变化

       海马正常时杏仁核的异常表现提高了对致痫灶定位的准确性[10],本研究结果显示海马体积正常组中有较多AE位于致癫灶同侧,推测癫痫的致病灶可能来源于杏仁核。既往研究证实发作间期痫样放电与AE偏侧具有显著的一致性并且AE可能在TLE患者亚组中作为致痫灶[11, 12]。目前有关癫痫患侧杏仁核体积大于对侧的研究多存在样本量小的局限性,不足以推断AE可能是唯一的致病灶[13]。在扩大样本的基础上,可进一步表明AE是MTLE中致癫网络的重要组成部分。AE可能与局灶性皮层发育不良、胶质神经元肿瘤有关[14]。既往研究认为MR检查阴性颞叶癫痫由于长期异常放电会有同侧的杏仁核及海马增大[15],但本组未发现海马增大,推测海马增大可能是AE的继发改变。另外海马体积正常组中有13.7%的患者AE位于致癫灶对侧,出现了与脑电图不一致的结果[16],可能是由于杏仁核受到异常癫痫放电发生细胞死亡最后胶质增生,表现为体积增大,推测是癫痫患病过程中的异常表现,但其比例较少,并且大脑的神经连接网络十分复杂,还有待扩大样本量及病理研究证实。本组中还有15.7%的患者存在杏仁核萎缩在致癫灶同侧,考虑杏仁核萎缩可能参与癫痫的发生。由于杏仁核在癫痫发生过程中发生代谢、炎症、神经传递和基因表达等变化,并伴增生性现象,最后,杏仁核复合体神经元细胞死亡而长期萎缩和功能丧失,最终导致了癫痫发作[17]。本组中AE占有较大比例,对于MR检查阴性的MTLE患者术后效果通常较差,从形态学角度寻找其可能的致病灶,可以帮助改善预后[18]

3.2 HS时杏仁核体积的变化

       在MTLE患者的致痫网络中海马和杏仁核的相互连接起着关键作用,除了海马损伤外,杏仁核也存在显著的神经病理改变[19]。MTLE患病过程中一些早期的缺氧损伤导致星形胶质细胞在近中颞结构增殖,进而导致AE,在HS组中发现52.9%的患者存在AE。此外HS组中有19.6%杏仁核萎缩位于海马萎缩的同侧,目前认为伴有HS的MTLE患者,杏仁核萎缩多发生在HS的同侧[20],杏仁核和海马共同构成致痫网络,因此当海马为致癫灶引发癫痫长期发作时可能导致杏仁核继发性萎缩[21, 22]。与非HS患者相比,患有HS的MTLE患者的脑功能网络受到更多的损伤,考虑HS并不是一个单因素的病变[23, 24]。本研究提示AE及杏仁核萎缩可能参与癫痫的发展,并且AE发挥更重要的作用。

3.3 局限性

       本研究的局限为杏仁核是否具有致痫性并未通过病理证实,并且没有结合深度电极监测脑内放电区域。今后研究将结合病理及深度电极研究杏仁核的病理生理机制。

       综上所述,杏仁核作为近颞叶的网络结构可能参与癫痫的发生和发展,肥大的杏仁核是研究MTLE的焦点。本文从形态学角度探讨了杏仁核是否参与了癫痫发作,这种非侵入性的方法可能会优化术前评估,以实现手术切除后较好地控制癫痫发作。

[1]
Marissal T. An inventory of basic research in temporal lobe epilepsy[J]. Rev Neurol, 2021, 177(9): 1069-1081. DOI: 10.1016/j.neurol.2021.02.390.
[2]
裴春梅, 高阳, 乔鹏飞, 等. 原发性癫痫的多模态磁共振成像研究进展[J]. 磁共振成像, 2016, 7(6): 464-468. DOI: 10.12015/issn.1674-8034.2016.06.013.
Pei CM, Gao Y, Qiao PF, et al. The study progress of multi-mode MRI in the idiopathic epilepsy[J]. Chin J Magn Reson Imaging, 2016, 7(6): 464-468. DOI: 10.12015/issn.1674-8034.2016.06.013.
[3]
Kohlhase K, Zöllner J P, Tandon N, et al. Comparison of minimally invasive and traditional surgical approaches for refractory mesial temporal lobe epilepsy: A systematic review and meta-analysis of outcomes[J]. Epilepsia, 2021, 62(4): 831-845. DOI: 10.1111/epi.16846.
[4]
Li W, Jiang Y, Qin Y, et al. Structural and functional reorganization of contralateral hippocampus after temporal lobe epilepsy surgery[J/OL]. NeuroImage: Clinical, 2021, 31 [2021-11-17]. https://www.sciencedirect.com/science/article/pii/S2213158221001583. DOI: 10.1016/j.nicl.2021.102714.
[5]
Tatekawa H, Uetani H, Hagiwara A, et al. Association of hypometabolic extension of 18F-FDG PET with diffusion tensor imaging indices in mesial temporal lobe epilepsy with hippocampal sclerosis[J]. Seizure, 2021, 88: 130-137. DOI: 10.1016/j.seizure.2021.04.007.
[6]
Beh SMJ, Cook MJ, D'Souza WJ. Isolated amygdala enlargement in temporal lobe epilepsy: a systematic review[J]. Epilepsy & Behav, 2016, 60: 33-41. DOI: 10.1016/j.yebeh.2016.04.015.
[7]
Reyes A, Thesen T, Kuzniecky R, et al. Amygdala enlargement: Temporal lobe epilepsy subtype or nonspecific finding?[J]. Epilepsy Res, 2017, 132: 34-40. DOI: 10.1016/j.eplepsyres.2017.02.019.
[8]
Jo H, Kim J, Kim D, et al. Lateralizing Characteristics of Morphometric Changes to Hippocampus and Amygdala in Unilateral Temporal Lobe Epilepsy with Hippocampal Sclerosis[J]. Medicina, 2022, 58(4): 480. DOI: 10.3390/medicina58040480.
[9]
Fuerst D, Shah J, Shah A, et al. Hippocampal sclerosis is a progressive disorder: a longitudinal volumetric MRI study[J]. Ann Neurol, 2003, 53(3): 413-416. DOI: 10.1002/ana.10509.
[10]
Capizzano AA, Kawasaki H, Sainju RK, et al. Amygdala enlargement in mesial temporal lobe epilepsy: an alternative imaging presentation of limbic epilepsy[J]. Neuroradiology, 2019, 61(2): 119-127. DOI: 10.1007/s00234-018-2109-y.
[11]
Perera T, Gaxiola-Valdez I, Singh S. Calgary Comprehensive Epilepsy Program collaborators. Localizing the seizure onset zone by comparing patient postictal hypoperfusion to healthy controls[J]. J Neurosci Res, 2020, 98(8): 1517-1531. DOI: 10.1002/jnr.24646.
[12]
朱莎, 徐宗胜, 夏晴, 等. 伴杏仁核肥大的颞叶癫痫的临床及病理特征[J]. 北京大学学报(医学版), 2019, 51(5): 824-828. DOI: 10.19723/j.issn.1671-167X.2019.05.006.
Zhu S, Xu ZS, Xia Q, et al. Clinico-pathological features of temporal lobe epilepsy with enlarged amygdala[J]. Journal of Peking University (Health Sciences), 2019, 51(5): 824-828. DOI: 10.19723/j.issn.1671-167X.2019.05.006.
[13]
Fan Z, Sun B, Lang L, et al. Diagnosis and surgical treatment of non-lesional temporal lobe epilepsy with unilateral amygdala enlargement[J]. Neurol Sci, 2021, 42(6): 2353-2361. DOI: 10.1007/s10072-020-04794-8.
[14]
Suzuki H, Sugano H, Nakajima M, et al. The epileptogenic zone in pharmaco‐resistant temporal lobe epilepsy with amygdala enlargement[J]. Epileptic Disord, 2019, 21(3): 252-264. DOI: 10.1684/epd.2019.1075.
[15]
Sone D, Ota M, Maikusa N, et al. White matter abnormalities in patients with temporal lobe epilepsy and amygdala enlargement: comparison with hippocampal sclerosis and healthy subjects[J]. Epilepsy Research, 2016, 127: 221-228. DOI: 10.1016/j.eplepsyres.2016.09.011.
[16]
Coan AC, Morita ME, Campos BM, et al. Amygdala enlargement occurs in patients with mesial temporal lobe epilepsy and hippocampal sclerosis with early epilepsy onset[J]. Epilepsy & Behav, 2013, 29(2): 390-394. DOI: 10.1016/j.yebeh.2013.08.022.
[17]
Tilelli CQ, Flôres LR, Cota VR, et al. Amygdaloid complex anatomopathological findings in animal models of status epilepticus[J/OL]. Epilepsy & Behav, 2021, 121 [2021-11-17]. https://www.epilepsybehavior.com/article/S1525-5050(19)30282-3/fulltext. DOI: 10.1016/j.yebeh.2019.106831.
[18]
Na HK, Lee HJ, Hong SJ, et al. Volume change in amygdala enlargement as a prognostic factor in patients with temporal lobe epilepsy: A longitudinal study[J]. Epilepsia, 2020, 61(1): 70-80. DOI: 10.1111//epi.16400.
[19]
Guo ZH, Zhao BT, Hu WH, et al. Effective connectivity among the hippocampus, amygdala, and temporal neocortex in epilepsy patients: A cortico-cortical evoked potential study[J/OL]. Epilepsy & Behav, 2021, 115 [2021-11-17]. https://www.epilepsybehavior.com/article/S1525-5050(20)30841-6/fulltext. DOI: 10.1016/j.yebeh.2020.107661.
[20]
Kullmann DM. What's wrong with the amygdala in temporal lobe epilepsy?[J]. Brain, 2011, 134(10): 2800-2801. DOI: 10.1093/brain/awr246.
[21]
Mégevand P, Groppe DM, Bickel S, et al. The hippocampus and amygdala are integrators of neocortical influence: a corticocortical evoked potential study[J]. Brain Connectivity, 2017, 7(10): 648-660. DOI: 10.1089/brain.2017.0527.
[22]
Mo J, Zhao B, Adler S, et al. Quantitative assessment of structural and functional changes in temporal lobe epilepsy with hippocampal sclerosis[J]. Quant Imag Med Surg, 2021, 11(5): 1782-1795. DOI: 10.21037/qims-20-624.
[23]
Lee DA, Lee HJ, Kim HC, et al. Temporal lobe epilepsy with or without hippocampal sclerosis: Structural and functional connectivity using advanced MRI techniques[J]. J Neuroimaging, 2021, 31(5): 973-980. DOI: 10.1111/jon.12898.
[24]
Bruxel EM, Bruno DCF, do Canto AM, et al. Multi-omics in mesial temporal lobe epilepsy with hippocampal sclerosis: Clues into the underlying mechanisms leading to disease[J]. Seizure, 2021, 90: 34-50. DOI: 10.1016/j.seizure.2021.03.002.

上一篇 脑卒中后运动功能障碍与连接半球间同位脑区的胼胝体结构损伤相关
下一篇 利用静息态功能磁共振成像探讨抑郁症患者注意力网络动态连接的整体变化
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2