分享:
分享到微信朋友圈
X
经验交流
脊髓腰骶膨大扩散张量成像参数评估脊髓型颈椎病患者损伤程度和术后神经功能恢复的研究
许崧杰 赵鹏 陈学明 彭如臣 钟佳利

Cite this article as: Xu SJ, Zhao P, Chen XM, et al. Diffusion tensor imaging of the lumbosacral enlargement helps to estimate the neurologic recovery after decompression surgery in patients with cervical spondylotic myelpoathy[J]. Chin J Magn Reson Imaging, 2022, 13(6): 98-101, 107.本文引用格式:许崧杰, 赵鹏, 陈学明, 等. 脊髓腰骶膨大扩散张量成像参数评估脊髓型颈椎病患者损伤程度和术后神经功能恢复的研究[J]. 磁共振成像, 2022, 13(6): 98-101, 107. DOI:10.12015/issn.1674-8034.2022.06.019.


[摘要] 目的 探讨应用脊髓腰骶膨大扩散张量成像(diffusion tensor imaging,DTI)参数评估脊髓型颈椎病(cervical spondylotic myelopathy,CSM)患者颈脊髓损伤程度和颈椎术后神经功能恢复。材料与方法 对9例CSM患者颈椎术前和术后1年行脊髓腰骶膨大DTI扫描,测量各向异性分数(fractional anisotropy,FA)值和表观扩散系数(apparent diffusion coefficient,ADC)值,并分析术前术后的腰骶膨大DTI参数与改良日本骨科协会(modified Japanese Orthopedic Association,mJOA)评分的相关性。结果 与术前对比,CSM患者颈椎术后脊髓腰骶膨大FA值明显上升(t=-3.024,P=0.004),ADC值明显下降(t=3.741,P=0.001)。术前脊髓腰骶膨大FA值与mJOA评分有相关性(r=0.832,P<0.05),而术前脊髓腰骶膨大ADC值与mJOA评分无相关性(r=0.281,P=0.465)。术后脊髓腰骶膨大FA值与mJOA评分有相关性(r=0.710,P<0.05),而术后脊髓腰骶膨大ADC值与mJOA评分无相关性(r=0.195,P=0.616)。结论 CSM患者脊髓腰骶膨大DTI参数FA值在术前术后与神经功能相关,可为颈脊髓损伤术后功能恢复情况的临床评估提供新的途径。
[Abstract] Objective To evaluate changes in injury severity and assess postoperative neurologic recovery by conducting diffusion tensor imaging (DTI) of the lumbosacral enlargement and measuring modified Japanese Orthopedic Association (mJOA) score in patients with cervical spondylotic myelopathy (CSM).Materials and Methods Lumbosacral DTI was performed in 9 CSM patients before surgery and at approximately 1 year after surgery. Apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values were measured as two primary metrics of DTI. The correlation between both metrics and mJOA score was further examined.Results The postoperative ADC value of the lumbosacral enlargement was significantly decreased (t=-3.024, P=0.004), but FA value was significantly increased (t=3.741, P=0.001) from preoperative levels in CSM patients after surgery. There was significant correlation between FA and mJOA score at both preoperative (r=0.832, P<0.05) and postoperative conditions (r=0.710, P<0.05). There was no significant correlation between ADC and mJOA score at both preoperative (r=0.281, P=0.465) and postoperative conditions (r=0.195, P=0.616).Conclusions The DTI parameter FA value of spinal lumbosacral enlargement in CSM patients is related to neurological function before and after surgery, which can provide a new way for clinical evaluation of functional recovery after cervical spinal cord injury.
[关键词] 脊髓型颈椎病;腰骶膨大;扩散张量成像;各向异性分数;表观扩散系数
[Keywords] cervical spondylotic myelopathy;lumbosacral enlargement;diffusion tension imaging;fractional anisotropy;apparent diffusion coefficient

许崧杰 1   赵鹏 1   陈学明 1*   彭如臣 2   钟佳利 2  

1 首都医科大学附属北京潞河医院脊柱外科,北京 101149

2 首都医科大学附属北京潞河医院放射科,北京 101149

陈学明,E-mail:xuemingchen@sina.com

作者利益冲突声明:全体作者均声明无利益冲突。


收稿日期:2022-04-28
接受日期:2022-06-06
中图分类号:R445.2  R681.55  R745.4 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2022.06.019
本文引用格式:许崧杰, 赵鹏, 陈学明, 等. 脊髓腰骶膨大扩散张量成像参数评估脊髓型颈椎病患者损伤程度和术后神经功能恢复的研究[J]. 磁共振成像, 2022, 13(6): 98-101, 107. DOI:10.12015/issn.1674-8034.2022.06.019.

       脊髓型颈椎病(cervical spondylotic myelopathy,CSM)是由颈椎退变导致颈脊髓受压,进而引起神经功能障碍的常见病。MRI是诊断CSM的首选检查方法。传统MRI所显示的脊髓压迫程度与CSM的严重程度相关性差,无法定量评估损伤严重程度及神经功能状态[1,9,15, 30]

       扩散张量成像(diffusion tensor imaging,DTI)在1994年被首次提出[10],利用水分子扩散运动各向异性的原理,反映白质纤维束结构改变[11,16, 28],已应用于大脑疾病方面。CSM患者部分需要手术治疗,而术后内固定物伪影影响限制了使用DTI直接观察颈脊髓变化。以往研究多集中在DTI直接观察术前颈脊髓或腰骶膨大部位的参数变化情况[1, 2, 3,13],或评估术前颈脊髓或腰骶膨大部位的DTI参数与神经功能情况[11,21, 29],而应用于CSM患者术后神经功能评估方面的DTI研究较少[22,25,26],多集中于颈脊髓[27, 31],且结果存在争议。前期研究[2]证实,CSM患者术前脊髓腰骶膨大DTI参数与颈脊髓DTI参数存在相关性。

       本研究通过分析脊髓腰骶膨大DTI参数在CSM患者术前及术后变化情况,评估脊髓损伤程度和颈椎术后神经功能变化情况。

1 资料与方法

1.1 一般资料

       本研究为回顾性研究,收集2018年8月至2020年12月于我院脊柱外科诊断为CSM并住院行手术治疗的患者病例11例,男8例,女3例,年龄(59.1±8.7)岁,病程(5.6±3.7)个月。所有患者均行颈椎前路或后路减压手术,手术由同一组医生完成。

       入组标准:(1)患者均有以下临床症状:颈痛、僵硬,运动障碍,四肢肌力感觉变化;(2)症状持续超过6周;(3)颈椎MRI显示明显脊髓受压,但T2WI无高信号,致压因素包括后纵韧带骨化,黄韧带肥厚,颈椎间盘突出,颈椎管狭窄;(4) mJOA评分≤14;(5)影像及随访数据完整。

       排除标准:(1)既往外伤导致头部或颅脑损伤病史;(2)脑瘫病史;(3)风湿性关节炎;(4)脊柱肿瘤或感染等。

       本研究经首都医科大学附属北京潞河医院伦理委员会批准(批准文号:2022-LHKY-034-01),免除受试者知情同意。

1.2 神经功能评估

       应用改良日本骨科协会(modified Japanese Orthopedic Association,mJOA)评分系统对CSM患者术前及术后1年[随访时间(12.6±0.7)个月)]神经功能进行评估。由两位工作10年以上主治医师进行mJOA评分,取两位医师的平均值作为mJOA评分(表1)。

表1  患者mJOA评分与影像学数据比较

1.3 常规MRI及DTI扫描

       所有患者颈椎术前术后脊髓腰骶膨大常规MRI及DTI扫描均采用SIEMENS公司MAGNETOM skyra 3.0 T核磁共振机。脊髓腰骶膨大常规MRI扫描包括矢状面T2WI、矢状面T1WI、横断面T2WI序列。(1)矢状面T2WI序列扫描参数:TR 2700 ms,TE 106 ms,层厚4 mm,层间距0.4 mm,矩阵320×320,AVERAGE 1;(2)矢状面T1WI序列扫描参数:TR 550 ms,TE8.9 ms,层厚4 mm,层间距0.4 mm,矩阵320×320,AVERAGE 1;(3)横断面T2WI序列扫描参数:TR 3000 ms,TE117 ms,层厚4 mm,层间距0.4 mm,矩阵320×320,AVERAGE 2。DTI扫描与常规扫描定位相同,扫描时间6 min 42 s,采用单次激发自旋回波平面回波成像(single-shot spin echo echo-planar imaging,SS-SE-EPI)序列:扩散敏感梯度取12个不同方向,TR 3000 ms,TE 117 ms,层厚4 mm,层间距0,FOV 240 mm × 240 mm,采集矩阵为128×128,AVERAGE 1。扩散加权系数(b)分别取0和500 s/mm2,扫描结束后每一层面共获取16幅图像,第l幅为b=0 s/mm2时的图像,其余15幅为b=500 s/mm2时不同梯度方向的图像。

       本研究入组病例11人,9人完成术后1年腰骶膨大DTI扫描,随访顺利。2人因自身身体原因无法耐受DTI扫描,随访数据缺失。

图1  脊髓型颈椎病患者脊髓腰骶膨大感兴趣区示意图。1A:T2WI轴位图;1B:ADC图;1C:FA图。ADC:表观扩散系数;FA:各向异性分数。

1.4 图像后处理

       全部数据由SIEMENS公司syngo via软件处理。在T2WI矢状面选择脊髓腰骶膨大最宽层面作为参考,在每个患者术前术后脊髓腰骶膨大T2WI轴位相选择5个感兴趣区(regions of interest,ROI),尽量避开脊髓灰质(图1),测量其各向异性分数(fractional anisotropy,FA)值和表观扩散系数(apparent diffusion coefficient,ADC)值(表1)。

1.5 统计学方法

       使用SPSS 19.0统计软件行统计学分析,所有数值均以均数±标准差表示。同一患者术前术后脊髓腰骶膨大ADC值、FA值采用配对t检验进行比较;术前术后CSM患者脊髓腰骶膨大ADC值、FA值与mJOA评分采用Pearson检验进行相关性分析。P<0.05表示差异有统计学意义。

2 结果

2.1 脊髓腰骶膨大术前术后DTI参数FA值和ADC值比较

       所有患者常规MRI及DTI扫描均获得清晰腰骶膨大图像,无明显扭曲(图2)。脊髓腰骶膨大术前术后FA值、ADC值差异均有统计学意义(表2)。

图2  脊髓型颈椎病患者术前术后腰骶膨大T2加权像和DTI图像。2A:术前腰骶膨大T2矢状位图;2B:术前腰骶膨大T2轴位图;2C:术前腰骶膨大ADC图;2D:术前腰骶膨大FA图;2E:术后腰骶膨大T2矢状位图;2F:术后腰骶膨大T2轴位图;2G:术后腰骶膨大ADC图;2H:术后腰骶膨大FA图。DTI:扩散张量成像;ADC:表观扩散系数;FA:各向异性分数。
表2  脊髓腰骶膨大术前术后DTI参数FA值和ADC值

2.2 术前术后脊髓腰骶膨大DTI参数FA值和ADC值与mJOA评分相关性分析

       术前脊髓腰骶膨大FA值与mJOA评分有相关性(r=0.832,P<0.05),而术前脊髓腰骶膨大ADC值与mJOA评分无相关性(r=0.281,P=0.465) (图3)。术后脊髓腰骶膨大FA值与mJOA评分有相关性(r=0.710,P<0.05),而术后脊髓腰骶膨大ADC值与mJOA评分无相关性(r=0.195,P=0.616) (图4)。

图3  脊髓型颈椎病患者术前腰骶膨大DTI参数与mJOA评分相关性分析。术前脊髓腰骶膨大FA值与mJOA评分有相关性(r=0.832,P<0.05),而术前脊髓腰骶膨大ADC值与mJOA评分无相关性(r=0.281,P=0.465)。
图4  脊髓型颈椎病患者术后腰骶膨大DTI参数与mJOA相关性分析。术后脊髓腰骶膨大FA值与mJOA评分有相关性(r=0.710,P<0.05),而术后脊髓腰骶膨大ADC值与mJOA评分无相关性(r=0.195,P=0.616)。DTI:扩散张量成像;mJOA:改良日本骨科协会;FA:各向异性分数;ADC:表观扩散系数。

3 讨论

       本研究首次应用脊髓腰骶膨大DTI参数评估CSM患者颈脊髓损伤程度和颈椎术后神经功能恢复情况,发现脊髓腰骶膨大DTI参数FA值在术前术后与神经功能相关,可为颈脊髓损伤术后功能恢复情况的临床评估提供新的途径。

3.1 脊髓腰骶膨大DTI参数评估颈脊髓损伤的可行性

       与传统MRI相比,DTI能检测脊髓内部细微损伤,并通过特定参数值对损伤进行量化[12]。对于CSM患者,DTI在临床上有更高的敏感性和特异性[3, 4]。CSM患者颈脊髓DTI参数(如ADC值和FA值)与健康对照组不同。与健康对照组相比,CSM患者受压颈脊髓FA值明显下降,而ADC值明显升高[3,13]。在我们之前的研究中[2],CSM患者脊髓腰骶膨大DTI参数也存在与受损颈脊髓DTI参数同样的变化,但受压颈脊髓DTI参数与腰骶膨大DTI参数无相关性。既往研究[5, 6]认为,脊髓损伤后白质纤维束髓鞘的完整性被破坏,受损部位水分子各向异性程度降低,表现为FA值降低[13, 14];而颈脊髓损伤后,神经细胞通透性增加,受损部位水分子同向扩散运动增强[14],进而引起ADC值升高。但内在的病理学机制仍不清楚。由于CSM患者颈椎减压术后内固定物伪影的影响,无法应用DTI对减压后的颈脊髓直接进行定量评估。由于呼吸和心跳的存在,胸段脊髓的DTI图像也会受影响。以往研究结果提示受损颈脊髓远端,脊髓腰骶膨大也存在与受损颈脊髓DTI参数同样的变化[2],可能的病理学基础是颈脊髓的慢性压迫导致受损颈脊髓远端神经的轴突传导和运动传入受损。已有动物实验证实,大鼠脊髓损伤后损伤脊髓远端DTI参数变化可作为评估脊髓损伤的替代方法;受损脊髓节段远端可能发生继发性病理学改变,进而间接反映脊髓损伤的严重程度。对颈脊髓远端神经组织,如脊髓腰骶膨大行DTI检查,分析DTI参数变化,来间接反映颈脊髓损伤的严重程度[7, 8]。在前期动物实验基础上,本试验选择对CSM患者颈椎术前术后脊髓腰骶膨大行DTI扫描,分析DTI参数变化来间接反映颈脊髓减压后颈脊髓DTI参数变化。本研究结果显示,脊髓腰骶膨大DTI参数在颈椎术前术后FA值、ADC值差异具有统计学意义。脊髓腰骶膨大颈椎减压术后FA值升高,反映了脊髓白质纤维束髓鞘在颈脊髓减压术后的修复与区域水分子各向异性程度恢复有关;ADC值降低、区域水分子同向扩散减弱以及脊髓神经细胞通透性降低可能与颈椎减压术后神经细胞功能恢复有关。但内在的病理学机制尚需进一步研究证实。

3.2 DTI定量CSM患者脊髓压迫程度和预测术后临床恢复的应用

       已有研究证实DTI参数和术后神经功能状态存在不同的相关性[17, 18, 19, 20,24]。Lee等[11]研究发现CSM患者颈脊髓压迫最重节段的FA值与神经功能评分相关。Gao等[21]对不同压迫程度的CSM患者进行对比研究,同样发现颈脊髓压迫最重节段的FA值与mJOA评分相关。Maki等[22]对行颈椎前路或后路减压的26例CSM患者颈脊髓行DTI参数测量,发现CSM患者术前颈脊髓FA值与颈椎减压术后6个月的mJOA改善率相关。由于CSM患者颈椎减压术后内固定物伪影的影响,无法应用DTI对减压后的颈脊髓直接进行定量评估,以往研究多集中在术前颈脊髓DTI参数与mJOA相关性研究方面,而对于颈脊髓压迫减压术后DTI变化情况研究较少。Kitamura等[25]对15例CSM患者术前和术后1年颈脊髓DTI参数和mJOA评分进行分析,发现术后颈脊髓DTI参数不能作为评估神经功能的指标,术前颈脊髓DTI参数可对术后神经功能进行推测。CSM患者颈椎减压术后,受压颈脊髓近端或远端神经DTI参数与神经功能变化的相关研究较少。近期的研究中[1],应用常规DTI参数来源的轴突方向的扩散和密度成像参数对CSM患者颈2/3水平和颈脊髓压迫最严重水平进行分析,发现颈脊髓压迫最严重节段和压迫近端(颈2/3水平)的FA值与术前mJOA评分相关。Yang等[26]研究发现,CSM患者颈椎减压术后颈脊髓压迫远端(C7/T1) FA值与术后mJOA评分相关。本课题组前期研究证实[23],CSM患者术前脊髓腰骶膨大FA值与术前mJOA评分相关。CSM患者颈椎减压术后,受压颈脊髓远端神经DTI参数是否存在变化未见报道。本研究中,CSM患者术后脊髓腰骶膨大FA值与术后1年mJOA评分相关。脊髓腰骶膨大部位没有受压,因此DTI参数可以客观反映神经功能状态,颈脊髓压迫解除之后,与脊髓白质纤维束髓鞘的完整性在减压术后逐渐恢复有关,其内在机制需要进一步研究证实。

3.3 本研究的局限性

       本研究尚存在以下局限性:(1)本研究为单中心回顾性研究,样本量少;(2) DTI扫描及参数处理软件缺乏统一标准;(3)颈椎减压术后观察时间点单一。以上均有待进一步研究完善。

[1]
Okita G, Ohba T, Takamura T, et al. Application of neurite orientation dispersion and density imaging or diffusion tensor imaging to quantify the severity of cervical spondylotic myelopathy and to assess postoperative neurologic recovery[J]. Spine J, 2018, 18(2): 268-275. DOI: 10.1016/j.spinee.2017.07.007.
[2]
Chen XM, Kong C, Feng SQ, et al. Magnetic resonance diffusion tensor imaging of cervical spinal cord and lumbosacral enlargement in patients with cervical spondylotic myelopathy[J]. J Magn Reson Imaging, 2016, 43: 1484-1491. DOI: 10.1002/jmri.25109.
[3]
Banaszek A, Bladowska J, Podgorski P, et al. Role of diffusion tensor MR imaging in degenerative cervical spine disease: a review of the literature[J]. Clin Neuroradiol, 2016, 26: 265-276. DOI: 10.1007/s00062-015-0467-y.
[4]
Wang K, Chen Z, Zhang F, et al. Evaluation of DTI parameter ratios and diffusion tensor tractography grading in the diagnosis and prognosis prediction of cervical spondylotic myelopathy[J]. Spine, 2017, 42: E202-E210. DOI: 10.1097/BRS.0000000000001784.
[5]
Ellingson BM, Salamon N, Woodworth DC, et al. Reproducibility, temporal stability, and functional correlation of diffusion MR measurements within the spinal cord in patients with asymptomatic cervical stenosis or cervical myelopathy[J]. J Neurosurg Spine, 2018, 28(5): 472-480. DOI: 10.3171/2017.7.SPINE176.
[6]
Jiang W, Han X, Guo H, et al. Usefulness of conventional magnetic resonance imaging, diffusion tensor imaging and neurite orientation dispersion and density imaging in evaluating postoperative function in patients with cervical spondylotic myelopathy[J]. J Orthop Translat, 2018, 15: 59-69. DOI: 10.1016/j.jot.2018.08.006.
[7]
Konomi T, Fujiyoshi K, Hikishima K, et al. Conditions for quantitative evaluation of injured spinal cord by in vivo diffusion tensor imaging and tractography: preclinical longitudinal study in common marmosets[J]. NeuroImage, 2012, 63: 1841-1853. DOI: 10.1016/j.neuroimage.2012.08.040.
[8]
Zhao P, Kong C, Chen XM, et al. In vivo diffusion tensor imaging of chronic spinal cord compression: a rat model with special attention to the conus medullaris[J]. Acta Radiol, 2016, 57(12): 1531-1539. DOI: 10.1177/0284185116631185.
[9]
Ulubaba HE, Saglik S, Yildirim IO, et al. Effectiveness of Diffusion Tensor Imaging in Determining Cervical Spondylotic Myelopathy[J]. Turk Neurosurg, 2021, 31(1): 67-72. DOI: 10.5137/1019-5149.JTN.29149-20.2.
[10]
Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging[J]. Biophys J, 1994, 66(1): 259-267. DOI: 10.1016/S0006-3495(94)80775-1.
[11]
Lee E, Lee JW, Bae YJ, et al. Reliability of pre-operative diffusion tensor imaging parameter measurements of the cervical spine in patients with cervical spondylotic myelopathy[J/OL]. Sci Rep, 2020, 10(1) [2022-04-28]. https://www.nature.com/articles/s41598-020-74624-6. DOI: 10.1038/s41598-020-74624-6.
[12]
Zhang C, Das SK, Yang DJ, et al. Application of magnetic resonance imaging incervical spondylotic myelopathy[J]. World J Radiol, 2014, 6: 826-832. DOI: 10.4329/wjr.v6.i10.826.
[13]
Rajasekaran S, Yerramshetty JS, Chittode VS, et al. The assessment of neuronal status in normal and cervical spondylotic myelopathy using diffusion tensor imaging[J]. Spine, 2014, 39: 1183-1189. DOI: 10.1097/BRS.0000000000000369.
[14]
Tian X, Zhang L, Zhang X, et al. Correlations between preoperative diffusion tensor imaging and surgical outcome in patients with cervical spondylotic myelopathy[J]. Am J Transl Res, 2021, 13(10): 11461-11471.
[15]
Schöller K, Siller S, Brem C, et al. Diffusion Tensor Imaging for Surgical Planning in Patients with Cervical Spondylotic Myelopathy[J]. J Neurol Surg A Cent Eur Neurosurg, 2020, 81(1): 1-9. DOI: 10.1055/s-0039-1691822.
[16]
Li SS, Wang YS, Hu ZX, et al. High-fidelity diffusion tensor imaging of the cervical spinal cord using point-spread-function encoded EPI[J/OL]. Neuroimage, 2021, 236 [2022-04-28]. https://www.sciencedirect.com/science/article/pii/S1053811921003207?via%3Dihub. DOI: 10.1016/j.neuroimage.2021.118043.
[17]
Suetomi Y, Kanchiku T, Nishijima S, et al. Application of diffusion tensor imaging for the diagnosis of segmental level of dysfunction in cervical spondylotic myelopathy[J]. Spinal Cord, 2016, 54(5): 390-395. DOI: 10.1038/sc.2015.192.
[18]
Shabani S, Kaushal M, Budde MD, et al. Diffusion tensor imaging in cervical spondylotic myelopathy: a review[J]. J Neurosurg Spine, 2020: 1-8. DOI: 10.3171/2019.12.SPINE191158.
[19]
Zhang H, Guan L, Hai Y, et al. Multi-shot echo-planar diffusion tensor imaging in cervical spondylotic myelopathy[J]. Bone Joint J, 2020, 102-B(9): 1210-1218. DOI: 10.1302/0301-620X.102B9.BJJ-2020-0468.R1.
[20]
Rajasekaran S, Kanna RM, Chittode VS, et al. Efficacy of Diffusion Tensor Imaging Indices in Assessing Postoperative Neural Recovery in Cervical Spondylotic Myelopathy[J]. Spine, 2017, 42(1): 8-13. DOI: 10.1097/BRS.0000000000001667.
[21]
Gao SJ, Yuan X, Jiang XY, et al. Correlation study of 3T-MR-DTI measurements and clinical symptoms of cervical spondylotic myelopathy[J]. Eur J Radiol, 2013, 82: 1940-1945. DOI: 10.1016/j.ejrad.2013.06.011.
[22]
Maki S, Koda M, Kitamura M, et al. Diffusion tensor imaging can predict surgical outcomes of patients with cervical compression myelopathy[J]. Eur Spine J, 2017, 26: 2459-2466. DOI: 10.1007/s00586-017-5191-7.
[23]
Cui L, Kong C, Chen X, et al. Changes in diffusion tensor imaging indices of the lumbosacral enlargement correlate with cervical spinal cord changes and clinical assessment in patients with cervical spondylotic myelopathy[J/OL]. Clin Neurol Neurosurg, 2019, 186 [2022-04-28]. https://www.sciencedirect.com/science/article/abs/pii/S0303846719300320?via%3Dihub. DOI: 10.1016/j.clineuro.2019.02.014.
[24]
Shabani S, Kaushal M, Budde M, et al. Comparison between quantitative measurements of diffusion tensor imaging and T2 signal intensity in a large series of cervical spondylotic myelopathy patients for assessment of disease severity and prognostication of recovery[J]. J Neurosurg Spine, 2019, 7: 1-7. DOI: 10.3171/2019.3.SPINE181328.
[25]
Kitamura M, Maki S, Koda M, et al. Longitudinal diffusion tensor imaging of patients with degenerative cervical myelopathy following decompression surgery[J]. J Clin Neurosci, 2020, 74: 194-198. DOI: 10.1016/j.jocn.2019.05.018.
[26]
Yang YM, Yoo WK, Bashir S, et al. Spinal cord changes after laminoplasty in cervical compressive myelopathy: a diffusion tensor imaging study[J]. Front Neurol, 2018, 9: 696. DOI: 10.3389/fneur.2018.00696.
[27]
Zhang MZ, Ouyang HQ, Liu JF, et al. Utility of Advanced DWI in the Detection of Spinal Cord Microstructural Alterations and Assessment of Neurologic Function in Cervical Spondylotic Myelopathy Patients[J]. J Magn Reson Imaging, 2022, 55(3): 930-940. DOI: 10.1002/jmri.27894.
[28]
Zhao G, Zhang C, Zhan Y, et al. The Correlation between Functional Connectivity of the Primary Somatosensory Cortex and Cervical Spinal Cord Microstructural Injury in Patients with Cervical Spondylotic Myelopathy[J/OL]. Dis Markers, 2022, 2022. [2022-04-28]. https://www.hindawi.com/journals/dm/2022/2623179/. DOI: 10.1155/2022/2623179.
[29]
Nischal N, Tripathi S, Singh JP. Quantitative Evaluation of the Diffusion Tensor Imaging Matrix Parameters and the Subsequent Correlation with the Clinical Assessment of Disease Severity in Cervical Spondylotic Myelopathy[J]. Asian Spine J, 2021, 15(6): 808-816. DOI: 10.31616/asj.2020.0223.
[30]
Skotarczak M, Dzierżanowski J, Kaszubowski M, et al. Diagnostic value of diffusion tensor imaging in patients with clinical signs of cervical spondylotic myelopathy[J/OL]. Neurol Neurochir Pol, 2022. [2022-04-28]. https://journals.viamedica.pl/neurologia_neurochirurgia_polska/article/view/86515. DOI: 10.5603/PJNNS.a2022.0031.
[31]
韩超凡, 海涌, 刘玉增, 等. 脊髓型颈椎病患者的磁共振弥散张量成像长期随访研究[J]. 中华医学杂志, 2021, 101(43): 3594-3599. DOI: 10.3760/cma.j.cn112137-20210429-01030.
Han CF, Hai Y, Liu YZ, et al. A long-term follow up study of cervical spondylotic myelopathy using diffusion tensor imaging[J]. Natl Med J China, 2021, 101(43): 3594-3599. DOI: 10.3760/cma.j.cn112137-20210429-01030.

上一篇 颅内非典型性畸胎样/横纹肌样肿瘤的MRI表现特征及其与Ki-67 标记指数的相关性研究
下一篇 磁共振超短回波时间及梯度回波序列在早产儿肺部的应用研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2