分享:
分享到微信朋友圈
X
综述
三维高分辨率磁共振成像技术在三叉神经痛诊断中的应用进展
王在然 卢鹏超 刘秀颖 赵宗茂

Cite this article as: Wang ZR, Lu PC, Liu XY, et al. Progress of three-dimensional high resolution MRI technology in the diagnosis of trigeminal neuralgia[J]. Chin J Magn Reson Imaging, 2022, 13(7): 152-155.本文引用格式:王在然, 卢鹏超, 刘秀颖, 等. 三维高分辨率磁共振成像技术在三叉神经痛诊断中的应用进展[J]. 磁共振成像, 2022, 13(7): 152-155. DOI:10.12015/issn.1674-8034.2022.07.030.


[摘要] 三叉神经痛(trigeminal neuralgia, TN)是老年人的常见病,是一种独特的外周神经痛,严重影响患者的生活和工作。神经血管压迫/接触(neurovascular compression/contact, NVC)已经证实是TN的主要病因,术前识别NVC有助于选择TN的适当治疗方案。目前微血管减压术(microvascular decompression, MVD)是TN患者最有效的治疗方法,而MVD能否成功与责任血管判定的精准性有密切的关系。常规MRI序列无法清楚地显示三叉神经与邻近血管的关系。随着高分辨率(high resolution, HR)MRI技术的快速发展和普及,HR MRI序列如三维稳态序列等,可以用来评估TN患者NVC的大部分特征。同时联合HR MRI序列的多模态成像、血流动力学评估及扩散张量成像能够提高诊断准确度,为MVD的临床发展提供有力的保障。本文综述了3D HR MRI技术在TN诊断中的应用进展。
[Abstract] Trigeminal neuralgia (TN) is a common disease in the elderly. It is a unique form of neuropathic pain, seriously affect the life and work of patient. Neurovascular compression/contact (NVC) is the main cause of TN. Preoperative identification of NVC has an impact on the determination of appropriate treatment for TN. Currently, microvascular decompression (MVD) is considered the most effective treatment for patients with TN. The key to the success of MVD is closely related to the accuracy of responsibility vessel determination. The conventional MRI sequences can not clearly depict the relationship between the trigeminal nerve and adjacent vessels. However, with the rapid development and the popularity of high resolution (HR) MRI technology, HR MRI sequences, such as three-dimensional (3D) steady-state sequences, can be used to assess most of the characteristics of NVC in TN patients. At the same time, multimodal imaging combined with HR MRI sequences, hemodynamic assessment and diffusion tensor imaging can improve the accuracy of diagnosis, which provides a powerful guarantee for the clinical development of MVD. This paper reviews the progress of 3D HR MRI technology in TN diagnosis.
[关键词] 三叉神经痛;神经血管压迫;微血管减压术;磁共振成像;三维高分辨率磁共振成像
[Keywords] trigeminal neuralgia;neurovascular compression;microvascular decompression;magnetic resonance imaging;three-dimensional high resolution magnetic resonance imaging

王在然 1   卢鹏超 2   刘秀颖 2   赵宗茂 1*  

1 河北医科大学第二医院神经外科,石家庄 050000

2 河北医科大学第二医院医学影像科,石家庄 050000

赵宗茂,E-mail:zzm69@163.com

作者利益冲突声明:全体作者均声明无利益冲突。


基金项目: 河北省高等教育学会高等教育科学研究重点课题 GJXHZ2019-31
收稿日期:2021-12-13
接受日期:2022-06-22
中图分类号:R445.2  R745.11 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2022.07.030
本文引用格式:王在然, 卢鹏超, 刘秀颖, 等. 三维高分辨率磁共振成像技术在三叉神经痛诊断中的应用进展[J]. 磁共振成像, 2022, 13(7): 152-155. DOI:10.12015/issn.1674-8034.2022.07.030.

       三叉神经痛(trigeminal neuralgia, TN)是老年人的常见病,是一种独特的外周神经痛,严重影响患者的生活和工作。其特点是阵发性、电击样、刀刺样痛且反复发作,一般分布在三叉神经的一个或多个分支[1, 2]。自从Jannetta提出微血管压迫理论以来,神经血管压迫/接触(neurovascular compression/contact, NVC)已经证实是TN的主要病因,尤其是动脉压迫在TN的病理生理学中发挥关键作用,并已被证明是良好预后的最强预测因素[3],因此术前识别NVC有助于确定TN的适当治疗[4, 5, 6]。目前针对TN的治疗方法包括药物治疗、微血管减压术(microvascular decompression, MVD)、立体定向放射治疗、经皮射频神经根切断术、甘油注射、经皮穿刺微球囊压迫术(percutaneous microballoon compression, PMC)和光生物调节治疗等[7, 8, 9, 10, 11, 12, 13, 14, 15]。其中,MVD与其他治疗方式相比,是成功率最高且针对TN最有效的治疗方法[10, 12, 16, 17],即刻疼痛缓解率为87%~98%,1年无痛率为80%,8~10年无痛率为58%~68%[18]。即使是老年人,MVD同样安全有效[19],并且老年人的术后并发症反而较少,可能是老年小脑萎缩加重、外科医生在桥小脑连接处的视野更加清楚的缘故[20]。术前对NVC的精确评估对于确定TN患者是否接受有创的MVD以及相关并发症的风险非常重要[21]。常规MRI由于分辨率较低,在TN术前评估三叉神经和邻近血管关系中是令人失望的。随着MRI技术的迅猛发展,一些高分辨率(high-resolution, HR)MRI序列被开发出来,可以用来评估考虑MVD治疗的TN患者的NVC的大部分特征,为NVC提供更好的术前诊断[4]。这些技术主要包括三维时间飞跃法磁共振血管造影(three-dimensional time-of-flight magnetic resonance angiography, 3D-TOF-MRA)、三维容积内插屏气扫描成像(three-dimensional volumetric interpolated breath-hold examination, 3D-VIBE)、三维稳态构成干扰成像(three-dimensional constructive interference in steady-state, 3D-CISS)、三维可变翻转角快速自旋回波成像(three-dimensional sampling perfection with application-optimized contrasts by using different flip angle evolutions, 3D-SPACE)、三维稳态采集快速成像(three-dimensional fast imaging employing steady-state acquisition, 3D-FIESTA)和三维快速小角度激发成像(three-dimensional fast low angle shot, 3D-FLASH)等[4, 22, 23, 24, 25],以及HR扩散张量成像(diffusion tensor imaging, DTI)[26, 27]。本文综述了3D HR MRI技术在TN诊断中的应用进展。

1 3D HR MRI在TN诊断中的应用

       在三维时间飞跃(three-dimensional time-of-flight, 3D-TOF)序列上脑脊液显示为黑色的低信号,而流速较快的血管在图像中显示为白色的高信号,神经为灰色的等信号,临床上常用该序列通过追踪连续的层面来确定神经和血管的位置、走向和分支,明确神经和血管的关系。其对症状侧的敏感度为90%、特异度为100%[28]。但是该序列也有明显的缺陷,对流速较慢的血管如静脉和迂曲的小动脉基本不显影,其中就包括TN常见的责任血管岩静脉;同时3D-TOF对血管壁也无法显示,所以在图像上观察到血管和神经之间存在间隙,有可能是由于血管壁过厚所导致的,并不能完全排除压迫的可能性。3D-VIBE序列与3D-TOF序列相似,临床上主要用于腹部脏器的屏气快速扫描,该序列采用空间内插算法的技术,使其达到了更高的空间分辨率,而且大大缩短扫描时间,在临床应用中节约了时间成本。

       3D-SPACE序列采用的特殊脉冲可以很好地呈现血管的流空效应,与3D-TOF序列相反,在MR图像中血管和神经为相对低信号,脑脊液为高信号,因此可以清楚地显示神经、血管与脑脊液的对比,特别是在显示静脉血管方面优于3D-TOF-MRA。3D-CISS是一种高空间分辨率、再聚焦梯度回波的MRI序列,并加用流动补偿技术,消除干扰伪影[29]。3D-CISS序列与3D-SPACE序列相似,也可以清楚地判断出三叉神经的起源、分支以及走向。其对NVC的评估敏感度为87%、特异度为50%[30]。同时两种序列均采用薄层扫描,可以对三叉神经行任意角度的重建、旋转,利于判断三叉神经及其毗邻结构之间的关系,显示责任血管,并可以对相关解剖结构进行观察测量。但两种序列有着相似的缺点,椎动脉、基底动脉或一部分小血管在图像中呈现与脑脊液相似的白色高信号,降低了责任血管判断的准确度。Blitz等[22]在3D-CISS的基础上添加了钆对比剂,发现提高了对症状性TN患者NVC的判断和对MVC治疗后结果的预测。

       3D-FIESTA通过抑制低T2/T1比组织而获得高T2/T1比组织信号,产生高信噪比和高对比度的图像,从而清晰地显示三叉神经及其邻近血管之间的关系。Chávez等[31]将3D-FIESTA序列应用于TN患者的立体定向放射手术,证实3D-FIESTA序列可以很好地显示三叉神经血管复合体和三叉神经分支,故对特定的三叉神经分支进行放射外科靶向治疗是可行的。在3D-FIESTA图像中,脑脊液呈高信号,而神经、动脉及静脉均呈低信号,三者之间的信号对比是不明显的,只能根据血管、神经的形态及走向来判断和区分。

       3D-FLASH和3D-CISS序列成像都是新生代容积采集和薄层MRI技术,拥有HR显示微小和复杂结构的能力,通过多平面重组能够清楚地显示神经和血管的关系[4],3D-CISS序列较3D-FLASH更好地显示血管压迫引起的神经移位和弯曲,但在判断责任血管来源方面不如3D-FLASH序列。3D-FLASH序列不仅能够显示动脉,而且能够显示压迫的静脉,增强扫描可显示责任静脉,提高影像学诊断的阳性率。

2 联合3D HR MRI的多模态MRI在TN诊断中的应用

       尽管HR MRI序列结合多平面重建可以很好地显示TN患者NVC 的情况,特别是3D-CISS和3D-FIESTA都是3D HR T2加权稳态自由进动序列,在脑脊液与神经血管结构之间产生高空间分辨率和高对比度,已经成为TN术前标准成像序列[32],帮助指导神经外科治疗。然而,这些序列在血管和神经之间的对比度很差,因为两者的信号都很低,当很少或没有脑脊液衬托时,可能限制了对更高程度NVC的检测和鉴别[22]。特别是当神经和血管的直径相似且平行走行时,使用单一序列的图像很难区分血管结构和神经结构[33]。另外,在典型TN患者的MRI上没有NVC仍然不能排除手术的可能性[30, 34]。所以在临床实际应用中越来越多地用到多模态MRI技术。通过桥小脑角区(cerebellopontine angle, CPA)薄层序列的HR MRI(如MR脑池成像)与3D-TOF-MRA结合或融合,可以有效地诊断和评估NVC[35, 36]

       常见的有3D-SPACE结合3D-TOF-MRA序列,结合了前者的高空间分辨率、各部位的高对比度和后者优秀的血管重建能力,可以在术前和术中更好地追踪责任血管。Pham等[36]发现融合3D-SPACE和3D-TOF-MRA图像是评价TN患者NVC和制订治疗计划的有效工具。

       另外常见的多模态成像还包括3D-FIESTA联合3D-TOF-MRA[25]。Zhao等[37]应用这两个序列,通过三维评分证明多模态处理的结果可以定性地提高影像科医生对TN患者责任血管接触位点的判断。Han等[33]在该基础上结合3D-Slicer对多模态和单独应用3D-FIESTA进行对比,发现多模态成像对责任血管预测的敏感度和特异度均为100%。3D-Slicer是一款图像处理软件,它可以通过分割和建模提供高质量的CPA的3D可视化图像,解决了之前我们只能从固定层面区分神经血管关系的限制,有助于发现3D-FIESTA中的假阳性表现[38]。另外,3D-FIESTA的主要缺陷是不能区分动静脉,而在Han等[33]的研究中,3D Slicer对于术中检测是静脉作为责任血管的预测中有着更好的表现。

       Yang等[4]通过对65名TN患者进行检查,发现3D-FLASH+CISS序列对疼痛侧的敏感度高于3D-FLASH序列,特异度低于3D-FLASH,3D-FLASH+CISS序列,判定三叉神经NVC的准确度是98.36%,提示多模态成像对责任血管的判断有着更好的预测。应用3D Slicer软件对3D-SPACE、3D-TOF-MRA、钆增强3D-T1WI多模态MR图像进行三维重建,生成虚拟现实(virtual reality, VR)图像,用于检测CPA可能存在的NVC,其敏感度为97.6%、特异度为100%[39]

       在上述多模态成像方案中,充分发挥了各种成像方法在评估NVC过程中的互补作用,允许更好地跟踪血管和神经,并允许更好地描述它们的关系,区分桥小脑角池内动脉和静脉结构[36, 40]。Liao等[41]利用从3D快速平衡稳态梯度回波(balanced-fast field echo, B-FFE)和3D稳态MRA减去原始图像得到MR减影图像来评估TN患者NVC程度、压迫血管类型和冲突位置,发现MR减影图像继承了两种序列的优点,即稳态MRA HR的血管成像和B-FFE高质量的神经成像,使神经及其周围血管的可视化更加清晰,对术前NVC表征显示良好,对估计NVC严重程度具有更高的准确度,并且缩短了MRI的扫描时间。

3 联合3D HR MRI评价TN患者NVC区血流动力学特征

       多数研究评估NVC的形态特征都是采用的静态信息,如Lin等[42]研究显示,大直径的压迫动脉增加了接触症状的机会,但是动脉相比静脉有一定的特殊性,如流量、速度以及来自血流的压力,都会成为影响NVC的要素。在3D HR MRI技术越来越成熟的同时,与各个学科之间的交互也越来越密切。Yamada等[43]对23例接受MVD治疗的原发性TN患者,应用计算流体力学(computational fluid dynamics, CFD)分析NVC部位责任动脉的血流动力学特征。将术前的3D-FIESTA图像导入三维模型软件,对NVC周围结构包括动脉、静脉、三叉神经和脑干进行分割,建立NVC周围结构的三维表面模型,对目标动脉进行CFD分析,包括标准参数,如血管壁面剪切应力(wall shear stress, WSS)、流速和压力,并通过NVC处的WSS除以靶区平均WSS计算WSS率(WSS ratio, WSSR)。结果显示动脉NVC组的平均WSSR显著高于非动脉NVC对照组(2.36±1.00 vs. 1.18±0.73,P<0.05),其它参数组间无显著差异,高WSSR表明NVC部位的WSS升高,其可能是导致TN动脉压迫的一个独特参数,CFD可能是在术前条件下确定MVD靶点的一个有用的临床工具。众所周知,在动脉局部进行血流动力学参数评估是非常困难的,但在3D HR MRI图像的加持下,结合流体力学的分析方法,使我们可以更直观和更客观地描述NVC。

4 HR DTI在TN诊断中的应用

       三叉神经结构扩散成像研究显示,TN的发生可能与机械压迫三叉神经导致三叉神经固有的组织丢失和结构的改变有关[44]。DTI技术从分子扩散的病理差异揭示异常信号。扩散不是单一方向的过程,而是发生在身体包括大脑的多个方向[26]。水扩散是利用DTI技术获取三叉神经各向异性的主要途径,各向异性分数(fractional anisotropy, FA)主要是通过基于体素的方法确定三叉神经的NVC[45]。Moon等[26]应用7.0 T MR对14例TN患者行DTI,比较TN患者患侧和非患侧三叉神经的FA值、轴向扩散系数(axial diffusivity, AD)、平均扩散系数(mean diffusivity, MD)和径向扩散系数(radial diffusivity, RD),发现与非患侧三叉神经相比,患侧三叉神经FA值显著降低,AD、MD和RD显著增加。DTI指标可能是脱髓鞘、水肿或轴突堆积密度减低的结果[46]

       显然DTI可以提供三叉神经微结构的改变,但全脑采集的DTI容易受到部分容积效应误差的影响,特别是邻近脑脊液的区域。Danyluk等[27]开发了一种神经特异度DTI方案,该方案较全脑采集方法能提供更准确的颅神经成像和扩散定量分析。这种HR神经特异度DTI联合液体衰减反转恢复(fluid-attenuated inversion recovery, FLAIR)序列消除了液体信号,减少了脑脊液污染,显著增加了三叉神经的识别和准确的扩散定量,有利于TN患者三叉神经的研究,也可以用于其他颅神经或小结构的检测[27]

       磁共振扩散谱成像(diffusion spectrum imaging, DSI)是对DTI在q空间获取更多方向的一种推广,用于对脑白质束和纤维束的复杂结构的无创伤性检测[47],在数学和物理上都优于其他扩散磁共振技术[48]。DSI以比传统DTI更高的分辨率重建纤维束,并已证明可以准确显示交叉、缠绕、中断和小的纤维[49, 50]。其参数包括DTI相关参数,如FA、RD、MD和AD,以及一些独特的参数,如量化各向异性(quantitative anisotropy, QA)、全局FA值(general FA, GFA)、限制性扩散成像(restricted diffusion imaging, RDI)和各向同性扩散分量(isotropic diffusion component, ISO)。其中GFA值代表水分子扩散方向的一致性,比FA值更准确、更敏感地反映轴突或髓鞘的完整性,是DSI的主要定量参数。Luo等[51]应用DSI对TN患者三叉神经脑池段进行分析,发现与TN患者未患侧相比,患侧QA、FA和GFA均显著降低;与健康对照组的平均参数值进行比较TN患者患侧QA、FA和GFA降低,AD增加,未患侧QA和FA降低。由此可见利用HR纤维追踪技术,DSI可以提供定量信息,用于检测TN患者三叉神经白质的完整性,提高对疾病机制的认识。

5 小结

       随着3D HR MRI技术的飞速发展和不断优化,对TN患者的诊断准确度不断提高,对责任血管的判断有着更好的预测,应用多模态成像、血流动力学评估及HR DTI方案能够提高诊断的准确度,提供术前详细的信息,有助于帮助患者选择和优化术前计划,为MVD的临床发展提供了有力的保障。

[1]
Headache classification committee of the international headache society (IHS) the international classification of headache disorders, 3rd edition[J]. Cephalalgia, 2018, 38(1): 1-211. DOI: 10.1177/0333102417738202.
[2]
Maarbjerg S, Benoliel R. The changing face of trigeminal neuralgia-A narrative review[J]. Headache, 2021, 61(6): 817-837. DOI: 10.1111/head.14144.
[3]
Holste K, Chan AY, Rolston JD, et al. Pain outcomes following microvascular decompression for drug-resistant trigeminal neuralgia: a systematic review and meta-analysis[J]. Neurosurgery, 2020, 86: 182-190. DOI: 10.1093/neuros/nyz075.
[4]
Yang D, Shen J, Xia X, et al. Preoperative evaluation of neurovascular relationship in trigeminal neuralgia by three-dimensional fast low angle shot (3D-FLASH) and three-dimensional constructive interference in steady-state (3D-CISS) MRI sequence[J/OL]. Br J Radiol, 2018, 91(1085) [2021-12-13]. https://www.birpublications.org/doi/10.1259/bjr.20170557. DOI: 10.1259/bjr.20170557.
[5]
Alwardian M, Chrysikos D, Samolis A, et al. Trigeminal neuralgia and potential correlations with anatomical variations of the trigeminal nerve[J]. Acta Med Acad, 2021, 50(2): 292-299. DOI: 10.5644/ama2006-124.344.
[6]
Gambeta E, Chichorro JG, Zamponi GW. Trigeminal neuralgia: an overview from pathophysiology to pharmacological treatments[J/OL]. Mol Pain, 2020, 16 [2021-12-13]. https://journals.sagepub.com/doi/10.1177/1744806920901890. DOI: 10.1177/1744806920901890.
[7]
Hitchon PW, Holland M, Noeller J, et al. Options in treating trigeminal neuralgia: experience with 195 patients[J]. Clin Neurol Neurosurg, 2016, 149: 166-170. DOI: 10.1016/j.clineuro.2016.08.016.
[8]
Sandwell S, Montoya S, Towner JE, et al. Anatomical study of percutaneous trigeminal compressive balloon positioning on merged 3-D rotational X-ray and preprocedural magnetic resonance imaging[J]. Stereotact Funct Neurosurg, 2018, 96: 182-189. DOI: 10.1159/000489947.
[9]
Tuleasca C, Régis J, Sahgal A, et al. Stereotactic radiosurgery for trigeminal neuralgia: a systematic review[J]. J Neurosurg, 2018, 130(3): 733-757. DOI: 10.3171/2017.9.JNS17545.
[10]
Bick SK, Huie D, Sneh G, et al. Older patients have better pain outcomes following microvascular decompression for trigeminal neuralgia[J]. Neurosurgery, 2019, 84(1): 116-122. DOI: 10.1093/neuros/nyy011.
[11]
Bendtsen L, Zakrzewska JM, Abbott J, et al. European Academy of Neurology guideline on trigeminal neuralgia[J]. Eur J Neurol, 2019, 26(6): 831-849. DOI: 10.1111/ene.13950.
[12]
Patel SK, Liu JK. Overview and history of trigeminal neuralgia[J]. Neurosurg Clin N Am, 2016, 27(3): 265-276. DOI: 10.1016/j.nec.2016.02.002.
[13]
Li Y, Yang L, Ni J, et al. Microvascular decompression and radiofrequency for the treatment of trigeminal neuralgia: a meta-analysis[J]. J Pain Res, 2019, 12: 1937-1945. DOI: 10.2147/JPR.S203141.
[14]
Tomasello F, Germanò A, Lavano A, et al. A novel technical refinement of microvascular decompression: pain relief and complication rate in a consecutive series of patients with trigeminal neuralgia[J]. Oper Neurosurg (Hagerstown), 2020, 19(3): 226-233. DOI: 10.1093/ons/opaa044.
[15]
Ibarra AMC, Biasotto-Gonzalez DA, Kohatsu EYI, et al. Photobiomodulation on trigeminal neuralgia: systematic review[J]. Lasers Med Sci, 2021, 36(4): 715-722. DOI: 10.1007/s10103-020-03198-6.
[16]
Liu MX, Zhong J, Xia L, et al. Treatment of trigeminal neuralgia with "microvascular decompression plus" technique[J/OL]. J Neurol Surg B Skull Base, 2021, 82(Suppl 3) [2021-12-13]. https://www.thieme-connect.de/products/ejournals/abstract/10.1055/s-0040-1710520. DOI: 10.1055/s-0040-1710520.
[17]
Sindou M, Brinzeu A. Topography of the pain in classical trigeminal neuralgia: insights into somatotopic organization[J]. Brain, 2020, 143(2): 531-540. DOI: 10.1093/brain/awz407.
[18]
Haller S, Etienne L, Kövari E, et al. Imaging of neurovascular compression syndromes: trigeminal neuralgia, hemifacial spasm, vestibular paroxysmia, and glossopharyngeal neuralgia[J]. AJNR Am J Neuroradiol, 2016, 37(8): 1384-1392. DOI: 10.3174/ajnr.A4683.
[19]
Greve T, Tonn JC, Mehrkens JH. Microvascular decompression for trigeminal neuralgia in the elderly: efficacy and safety[J]. J Neurol, 2021, 268(2): 532-540. DOI: 10.1007/s00415-020-10187-w.
[20]
Herta J, Schmied T, Loidl TB, et al. Microvascular decompression in trigeminal neuralgia: predictors of pain relief, complication avoidance, and lessons learned[J]. Acta Neurochir (Wien), 2021, 163(12): 3321-3336. DOI: 10.1007/s00701-021-05028-2.
[21]
Go KO, Hwang K, Han JH. Surgical nuances to reduce and manage cerebrospinal fluid leaks after microvascular decompression[J]. J Clin Med, 2020, 9(4): 902. DOI: 10.3390/jcm9040902.
[22]
Blitz AM, Northcutt B, Shin J, et al. Contrast-enhanced CISS imaging for evaluation of neurovascular compression in trigeminal neuralgia: improved correlation with symptoms and prediction of surgical outcomes[J]. AJNR Am J Neuroradiol, 2018, 39(9): 1724-1732. DOI: 10.3174/ajnr.A5743.
[23]
Lambru G, Rantell K, O'Connor E, et al. Trigeminal neurovascular contact in SUNCT and SUNA: a cross-sectional magnetic resonance study[J]. Brain, 2020, 143(12): 3619-3628. DOI: 10.1093/brain/awaa331.
[24]
Chung MS, Yim Y, Sung JK, et al. CS-VIBE accelerates cranial nerve MR imaging for the diagnosis of facial neuritis: comparison of the diagnostic performance of post-contrast MPRAGE and CS-VIBE[J]. Eur Radiol, 2022, 32(1): 223-233. DOI: 10.1007/s00330-021-08102-6.
[25]
弥龙, 宋云龙, 陈红, 等. 3D-TOF MRA联合3D-FIESTA对三叉神经血管受压及脑池段形态学的初步研究[J]. 实用放射学杂志, 2018, 34(8): 1160-1163, 1171. DOI: 10.3969/j.issn.1002-1671.2018.08.002.
Mi L, Song YL, Chen H, et al. Preliminary study of vascular compression and morphological characteristics of trigeminal nerve bridge forebay section by 3D-TOF MRA combined with 3D-FIESTA[J]. J Pract Radiol, 2018, 34(8): 1160-1163, 1171. DOI: 10.3969/j.issn.1002-1671.2018.08.002.
[26]
Moon HC, You ST, Baek HM, et al. 7.0 Tesla MRI tractography in patients with trigeminal neuralgia[J]. Magn Reson Imaging, 2018, 54: 265-270. DOI: 10.1016/j.mri.2017.12.033.
[27]
Danyluk H, Sankar T, Beaulieu C. High spatial resolution nerve-specific DTI protocol outperforms whole-brain DTI protocol for imaging the trigeminal nerve in healthy individuals[J/OL]. NMR Biomed, 2021, 34(2) [2021-12-13]. https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/nbm.4427. DOI: 10.1002/nbm.4427.
[28]
Shang HB, Zhao WG, Zhu J, et al. Predicting the outcome of microvascular decompression for trigeminal neuralgia using magnetic resonance tomographic angiography[J]. J Neuroimaging, 2010, 20(4): 345-349. DOI: 10.1111/j.1552-6569.2009.00378.x.
[29]
Besta R, Shankar YU, Kumar A, et al. MRI 3D CISS- a novel imaging modality in diagnosing trigeminal neuralgia - a review[J]. J Clin Diagn Res, 2016, 10(3): ZE01-ZE03. DOI: 10.7860/JCDR/2016/14011.7348.
[30]
Hitchon PW, Bathla G, Moritani T, et al. Predictability of vascular conflict by MRI in trigeminal neuralgia[J]. Clin Neurol Neurosurg, 2019, 182: 171-176. DOI: 10.1016/j.clineuro.2019.05.005.
[31]
Chávez GD, De Salles AA, Solberg TD, et al. Three-dimensional fast imaging employing steady-state acquisition magnetic resonance imaging for stereotactic radiosurgery of trigeminal neuralgia[J/OL]. Neurosurgery, 2005, 56(3) [2021-12-13]. https://journals.lww.com/neurosurgery/Abstract/2005/03000/Three_dimensional_Fast_Imaging_Employing.39.aspx. DOI: 10.1227/01.neu.0000154709.44776.50.
[32]
Donahue JH, Ornan DA, Mukherjee S. Imaging of Vascular Compression Syndromes[J]. Radiol Clin North Am, 2017, 55(1): 123-138. DOI: 10.1016/j.rcl.2016.08.001.
[33]
Han KW, Zhang DF, Chen JG, et al. Presurgical visualization of the neurovascular relationship in trigeminal neuralgia with 3D modeling using free Slicer software[J]. Acta Neurochir (Wien), 2016, 158(11): 2195-2201. DOI: 10.1007/s00701-016-2936-8.
[34]
Wei SC, Yu R, Meng Q, et al. Efficacy of microvascular decompression in patients with trigeminal neuralgia with negative neurovascular relationship shown by magnetic resonance tomography[J/OL]. Clin Neurol Neurosurg, 2020, 197 [2021-12-13]. https://www.sciencedirect.com/science/article/abs/pii/S0303846720304066?via%3Dihub. DOI: 10.1016/j.clineuro.2020.106063.
[35]
Gamaleldin OA, Donia MM, Elsebaie NA, et al. Role of fused three-dimensional time-of-flight magnetic resonance angiography and 3-dimensional T2-weighted imaging sequences in neurovascular compression[J/OL]. World Neurosurg, 2020, 133 [2021-12-13]. https://linkinghub.elsevier.com/retrieve/pii/S1878875019323460. DOI: 10.1016/j.wneu.2019.08.190.
[36]
Pham HD, Dang TH, Duong TK, et al. Predictability of fused 3D-T2-SPACE and 3D-TOF-MRA images in identifying conflict in trigeminal neuralgia[J]. J Pain Res, 2021, 14: 3421-3428. DOI: 10.2147/JPR.S331054.
[37]
Zhao Y, Chen J, Jiang R, et al. MRI features of responsible contacts in vascular compressive trigeminal neuralgia and prediction modeling[J/OL]. Acta Radiol, 2021 [2021-12-13]. https://journals.sagepub.com/doi/10.1177/0284185120983971. DOI: 10.1177/0284185120983971.
[38]
Lorenzoni J, David P, Levivier M. Patterns of neurovascular compression in patients with classic trigeminal neuralgia: a high-resolution MRI-based study[J]. Eur J Radiol, 2012, 81(8): 1851-1857. DOI: 10.1016/j.ejrad.2009.09.017.
[39]
Yao S, Zhang J, Zhao Y, et al. Multimodal image-based virtual reality presurgical simulation and evaluation for trigeminal neuralgia and hemifacial spasm[J/OL]. World Neurosurg, 2018, 113 [2021-12-13]. https://linkinghub.elsevier.com/retrieve/pii/S1878875018303401. DOI: 10.1016/j.wneu.2018.02.069.
[40]
Müller S, Khadhraoui E, Khanafer A, et al. Differentiation of arterial and venous neurovascular conflicts estimates the clinical outcome after microvascular decompression in trigeminal neuralgia[J]. BMC Neurol, 2020, 20(1): 279. DOI: 10.1186/s12883-020-01860-8.
[41]
Liao Z, Zou L, Peng W, et al. Improving the accuracy of pre-operative evaluation of neurovascular conflict in trigeminal neuralgia using magnetic resonance subtraction[J]. Neuroradiology, 2021, 63(3): 295-303. DOI: 10.1007/s00234-020-02624-4.
[42]
Lin W, Zhu WP, Chen YL, et al. Large-diameter compression arteries as a possible facilitating factor for trigeminal neuralgia: analysis of axial and radial diffusivity[J]. Acta Neurochir (Wien), 2016, 158(3): 521-526. DOI: 10.1007/s00701-015-2673-4.
[43]
Yamada K, Tanaka Y, Sumita K, et al. Computational fluid dynamics analysis of the offending artery at sites of neurovascular compression in trigeminal neuralgia using preoperative MRI data[J]. Neurol Med Chir (Tokyo), 2019, 59(11): 415-422. DOI: 10.2176/nmc.oa.2019-0101.
[44]
Alper J, Shrivastava RK, Balchandani P. Is there a magnetic resonance imaging-discernible cause for trigeminal neuralgia? a structured review[J]. World Neurosurg, 2017, 98: 89-97. DOI: 10.1016/j.wneu.2016.10.104.
[45]
Yeh FC, Verstynen TD, Wang Y, et al. Deterministic diffusion fiber tracking improved by quantitative anisotropy[J/OL]. PLoS One, 2013, 8(11) [2021-12-13]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0080713. DOI: 10.1371/journal.pone.0080713.
[46]
Chen F, Chen L, Li W, et al. Pre-operative declining proportion of fractional anisotropy of trigeminal nerve is correlated with the outcome of micro-vascular decompression surgery[J]. BMC Neurol, 2016, 16: 106. DOI: 10.1186/s12883-016-0620-5.
[47]
Jin Z, Bao Y, Wang Y, et al. Differences between generalized Q-sampling imaging and diffusion tensor imaging in visualization of crossing neural fibers in the brain[J]. Surg Radiol Anat, 2019, 41(9): 1019-1028. DOI: 10.1007/s00276-019-02264-1.
[48]
Varela-Mattatall GE, Koch A, Stirnberg R, et al. Comparison of q-space reconstruction methods for undersampled diffusion spectrum imaging data[J]. Magn Reson Med Sci, 2020, 19(2): 108-118. DOI: 10.2463/mrms.mp.2019-0015.
[49]
Hodgson K, Adluru G, Richards LG, et al. Predicting motor outcomes in stroke patients using diffusion spectrum MRI microstructural measures[J]. Front Neurol, 2019, 10: 72. DOI: 10.3389/fneur.2019.00072.
[50]
Leng B, Han S, Bao Y, et al. The uncinate fasciculus as observed using diffusion spectrum imaging in the human brain[J]. Neuroradiology, 2016, 58(6): 595-606. DOI: 10.1007/s00234-016-1650-9.
[51]
Luo SP, Chen FF, Zhang HW, et al. Trigeminal nerve white matter fiber abnormalities in primary trigeminal neuralgia: a diffusion spectrum imaging study[J/OL]. Front Neurol, 2022, 12 [2021-12-13]. https://www.frontiersin.org/articles/10.3389/fneur.2021.798969/full. DOI: 10.3389/fneur.2021.798969.

上一篇 磁共振成像在预测急性缺血性脑卒中预后中的研究进展
下一篇 功能磁共振成像技术在创伤性脑损伤的应用进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2