分享:
分享到微信朋友圈
X
技术研究
3.0 T MRI 3种扫描序列对腰椎小关节软骨成像的对比研究
罗慕晴 李宏伟 张堃 马孟甜 廖云杰 颜路悠 高辉 李平

Cite this article as: Luo MQ, Li HW, Zhang K, et al. Comparative study on three kinds of 3.0 T MRI sequences for lumbar facet joint cartilage[J]. Chin J Magn Reson Imaging, 2022, 13(8): 65-70.本文引用格式:罗慕晴, 李宏伟, 张堃, 等. 3.0 T MRI 3种扫描序列对腰椎小关节软骨成像的对比研究[J]. 磁共振成像, 2022, 13(8): 65-70. DOI:10.12015/issn.1674-8034.2022.08.012.


[摘要] 目的 比较3种3.0 T MRI扫描序列对腰椎小关节软骨成像的图像质量及特点。材料与方法 前瞻性纳入健康受试者30例,均接受L4/L5~L5/S1的3.0 T MRI的腰椎常规序列(T1WI及T2WI序列)、三维快速扰相梯度回波水激励序列(water excitation three-dimensional spoiled gradient echo sequence, 3D-WATSc)、基于T1加权的三维快速场回波(three-dimensional T1 fast field echo, 3D-T1-FFE)、基于质子密度加权的三维各向同性快速自旋回波(three-dimensional proton density weighted imaging volumetric isotropic turbo spin echo acquisition, 3D-PDWI-VISTA)序列扫描。对MRI图像进行成像效果的定性和定量评估。定性评估指标包括软骨的信号均匀性、软骨—关节间隙的边缘清晰度、软骨—骨的边缘锐度、软骨—关节间隙的对比度、软骨—骨的对比度;定量评估指标包括图像信噪比(signal to noise ratio, SNR)和对比噪声比(contrast to noise ratio, CNR)。结果 3D-WATSc序列在5项定性评估指标中评分最高,3D-T1-FFE序列次之,仅软骨的信号均匀性指标在二者之间的差异具有统计学意义(P<0.05)。3D-PDWI-VISTA序列的5项定性指标评分均最差(P<0.05),且几乎不能分辨小关节的各层解剖结构,无法进行后续定量评估。3D-WATSc序列显示其软骨SNR [L4/L5(70.73±14.86)、L5/S1(73.50±13.63)]及软骨—关节间隙[L4/L5(25.30±8.44)、L5/S1(21.64±13.01)]、软骨—骨[L4/L5(60.75±14.68)、L5/S1(64.31±12.98)]、软骨—骨髓的CNR [L4/L5(50.22±14.33)、L5/S1(54.46±10.99)]均较3D-T1-FFE序列高,且差异具有统计学意义(P<0.05)。结论 3.0 T MRI的3D-WATSc序列能够清晰地呈现腰椎小关节的软骨层及关节间隙,优于3D-T1-FFE及3D-PDWI-VISTA序列,对腰椎小关节软骨成像及腰椎小关节退变的临床诊断更具优势。
[Abstract] Objective To compare the image quality and imaging characteristics of three 3.0 T MRI sequences of lumbar facet joint cartilage.Materials and Methods Thirty healthy subjects were studied with four chosen sequences using a 3.0 T MRI scanner. The sequences were T1WI/T2WI, water excitation three-dimensional spoiled gradient echo sequence (3D-WATSc), three-dimensional T1 fast field echo (3D-T1-FFE) and three-dimensional proton density weighted imaging volumetric isotropic turbo spin echo acquisition (3D-PDWI-VISTA). Two radiologists subjectively evaluated these MRI images qualitatively and quantitatively. Qualitative evaluation index including cartilage signal uniformity, cartilage-joint space edge sharpness, cartilage-bone edge sharpness, cartilage-joint space contrast, cartilage-bone contrast. Quantitative indicators include signal to noise ratio (SNR) and contrast to noise ratio (CNR).Results The 3D-WATSc had the highest scores among the 5 qualitative indexes, and the 3D-T1-FFE had the second-highest scores. Only the difference of signal uniformity between the two was statistically significant (P<0.05). The 3D-PDWI-VISTA is almost indistinguishable from the anatomical structure of the lumbar facet joint. The 3D-WATSc showed that cartilage SNR [L4/L5 (70.73±14.86), L5/S1 (73.50±13.63)] and the CNR of cartilage-space [L4/L5 (25.30±8.44), L5/S1 (21.64±13.01)], cartilage-bone [L4/L5 (60.75±14.68), L5/S1 (64.31±12.98)], and cartilage-bone marrow [L4/L5 (50.22±14.33), L5/S1 (54.46±10.99)] were higher than that of 3D-T1-FFE, and the difference were statistically significant (P<0.05).Conclusions The 3D-WATSc can present the anatomical structure of lumbar facet joints in detail, which is superior to 3D-T1-FFE and 3D-PDWI-VISTA. 3D-WATSc has advantage in imaging of lumbar facet joint cartilage and clinical diagnosis of lumbar facet joint degeneration.
[关键词] 磁共振成像;腰椎小关节;关节软骨;退行性变;成像序列
[Keywords] magnetic resonance imaging;lumbar facet joint;articular cartilage;degeneration;sequence

罗慕晴 1   李宏伟 2   张堃 1*   马孟甜 3   廖云杰 3   颜路悠 1   高辉 1   李平 1  

1 湖南中医药大学第一附属医院放射科,长沙 410007

2 怀化市中医医院影像科,怀化 418099

3 中南大学湘雅三医院放射科,长沙410003

张堃,E-mail:kun_zhang0102@163.com

作者利益冲突声明:全体作者均声明无利益冲突。


基金项目: 国家自然科学基金青年科学基金 81603482 湖南中医药大学重点学科建设项目 4901-020000200806
收稿日期:2022-04-08
接受日期:2022-07-28
中图分类号:R445.2  R681.5 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2022.08.012
本文引用格式:罗慕晴, 李宏伟, 张堃, 等. 3.0 T MRI 3种扫描序列对腰椎小关节软骨成像的对比研究[J]. 磁共振成像, 2022, 13(8): 65-70. DOI:10.12015/issn.1674-8034.2022.08.012.

       腰椎小关节在维持腰椎结构稳定及限制腰椎过度活动中起着关键作用[1]。流行病学显示,慢性腰痛中有近15%~45%由腰椎小关节退变引起[2]。腰椎小关节退变起病隐匿,临床对其诊断缺乏特异性,大多数患者在出现临床症状时才被发现[3]。腰椎小关节退变的病理特征改变主要为关节软骨的损伤、变性及软骨下骨的骨质增生、硬化,其中关节软骨为核心病变、最容易受累且难以愈合[4, 5]。因而早期诊断关节软骨退变对腰椎小关节退变患者的早期指导治疗具有重要意义。

       腰椎小关节解剖结构小、位置深,且软骨层厚度较薄(约2 mm),常规MRI检查显示效果欠佳[6, 7]。3.0 T MRI具有多序列、多方位、多参数成像等优势[8, 9],与软骨敏感扫描序列的结合可对软骨进行特异性形态学成像[10]。三维快速扰相梯度回波水激励序列(water excitation three-dimensional spoiled gradient echo sequence, 3D-WATSc)应用了频谱、空间二项式脉冲脂肪抑制及三维容积数据采集技术,仅采集到水信号、脂肪无信号,因此达到了脂肪抑制下的水激励[11, 12]。三维快速场回波(three-dimensional fast field echo, 3D-FFE)为扰相梯度回波序列,临床多采用三维扰相梯度回波T1W1加脂肪抑制技术来显示关节软骨[13]。三维各向同性快速自旋回波(three-dimensional volumetric isotropic turbo spin echo acquisition, 3D-VISTA)可进行图像高质量多平面重组,并具有等体素成像、空间分辨率及对比分辨率高、扫描时间短及图像伪影较少等优势,已逐步应用于临床及科研,具有广泛的应用前景[14, 15]。以上三种软骨敏感序列在膝、腕及踝关节的软骨成像及腰椎间盘成像中已经深入应用[16, 17, 18, 19, 20, 21, 22, 23],但在腰椎小关节成像中的研究及应用仍为空白。因此,本研究拟对基于T1W1的3D-FFE(3D-T1-FFE)、3D-WATSc、基于质子密度加权成像(proton density weighted imaging, PDWI)的3D-VISTA(3D-PDWI-VISTA)这三种软骨敏感序列在腰椎小关节中的应用价值进行对比分析。

1 材料与方法

1.1 研究对象

       前瞻性纳入2021年2月至2021年8月期间于湖南中医药大学第一附属医院放射科行腰部MRI检查并符合下列纳入标准的受试者。纳入标准:(1)年龄大于18岁且小于35岁;(2)无腰痛病史、症状及体征。排除标准:(1)有腰椎外伤或手术史;(2)存在椎间盘膨/突出、腰椎椎管病变(狭窄或肿瘤)、椎体滑脱、脊柱肿瘤/肿瘤样病变、结核等其他感染或炎性疾患;(3)存在MRI检查禁忌证,如体内有铁磁性物质、存在幽闭恐惧症等。本研究获得湖南中医药大学第一附属医院医学伦理委员会批准(审批件号:HN-LL-KY-2021-025-01),所有研究对象在参与本项临床研究前均被告知有关检查注意事项并签署了对本研究的知情同意书。

1.2 MRI扫描方案

       采用3.0 T超导MRI系统(Ingenia, Philips Medical Systems, Netherlands)及脊柱专用线圈。由于运动状态会对关节软骨产生一定的影响[24],因此每位受试者在接受MRI扫描前必须休息30 min以上。所有受检者在同一时间段(18点~21点)接受检查,采取头先进、仰卧位,先行L4/L5~L5/S1水平的腰椎常规序列(T1WI及T2WI)扫描,然后分别进行3D-WATSc、3D-T1-FFE、3D-PDWI-VISTA序列扫描。MRI序列及具体参数见表1

表1  磁共振扫描序列及参数列表
Tab. 1  MRI scanning sequence and parameter list

1.3 腰椎小关节图像质量评估

       对3种序列的腰椎小关节MRI图像进行成像效果评估,包括定性评估及定量评估。定性评估指标共有5项,包括:软骨均匀性、软骨与关节间隙之间的边缘清晰度、软骨与骨之间的边缘锐度、软骨与关节间隙之间的对比度、软骨与骨之间的对比度。每个定性评估指标分为优、良、中、差4个等级,分别对应4分、3分、2分、1分[25, 26](1分:图像质量最差,软骨均匀性、软骨边缘锐度及组织对比度差,几乎不能分辨关节软骨及关节间隙;2分:图像质量中等,软骨均匀性、软骨边缘锐度及组织对比度一般,能显示关节软骨及关节间隙、但较模糊;3分:软骨均匀性、软骨边缘锐度及组织对比度良好,能较清晰分辨关节软骨及关节间隙;4分:图像质量最好,能清晰显示关节软骨及关节间隙)。上述评分由2名分别具有10年和8年骨肌影像诊断经验的影像科副主任医师独立完成,意见不一致时,讨论并达成一致意见。

       腰椎小关节软骨图像质量的定量评估指标包括信噪比(signal to noise ratio, SNR)及对比噪声比(contrast to noise ratio, CNR)。SNR等于软骨信号强度除以背景噪声标准差。CNR为两种不同组织信号强度差值的绝对值除以背景噪声标准差。由上述2名影像科副主任医师在三种3D序列轴位图像中协商选取L4/L5及L5/S1水平小关节解剖结构显示最完整、清晰的层面,然后在该层面对双侧腰椎小关节各组织结构的感兴趣区(regions of interest, ROI)进行测量。ROI的选取范围分别如下:关节软骨为0.01~0.02 cm2、软骨下松质骨为1 cm2、软骨下皮质骨范围为1 cm2、肌肉组织(多裂肌)范围为2 cm2、背景噪声范围为4 cm2和关节间隙范围为0.01~0.02 cm2,见图1。三种序列的ROI范围及位置均保持一致。腰椎小关节各解剖结构ROI的信号强度、背景噪声标准差及相应SNR值、CNR值的测量均在飞利浦图像后处理工作站完成,且由上述2名影像科副主任医师独立测量并计算,最终采用年资较高的影像医师所得结果行后续分析。

图1  男,25岁,L4/L5双侧腰椎小关节MRI图各解剖结构感兴趣区勾画。1A:(1)腰椎小关节,(2)多裂肌,(3)背景噪声;1B:1A图腰椎小关节区域放大图,(1)软骨下皮质骨,(2)软骨下松质骨,(3)关节间隙,(4)关节软骨。
Fig. 1  Male, 25 years old, region of interest selection of lumbar facet joint MRI images. 1A: (1) lumbar facet joint, (2) multifidus muscle, (3) background noise; 1B: Magnified image of lumbar facet joint, (1) subchondral cortical bone, (2) subchondral cancellous bone, (3) joint space, (4) articular cartilage.

1.4 统计分析

       采用SPSS 22.0(SPSS Inc., Chicago, IL, USA)统计软件行统计分析。经Kolmogorov-Smirnov正态性检验后,本研究图像定性评估中的计量资料均为偏态分布,定量评估中的计量资料均为正态分布。以中位数(上下四分位数)表示定性评估中的计量资料,用均数±标准差表示定量评估中的计量资料。采用Friedman M检验对3种扫描序列图像质量的定性评估指标进行比较,采用Wilcoxon配对符号秩检验进行组间两两比较。采用配对t检验对定性评估结果中较好的两种序列的定量指标进行分析。采用k分析评价定性评估中的观察者间一致性,计算组内相关系数(intraclass correlation coefficient, ICC)及95%可信区间(confidence interval, CI)评价2名医师在定量评估中的测量者间一致性。P<0.05为差异有统计学意义。

2 结果

2.1 临床资料

       本研究共纳入30例受试者,其中女14例,男16例,年龄范围为20~35岁,中位年龄为26岁。扫描研究过程无人退出且无不良事件发生。

2.2 观察者间的一致性

       5项定性评估指标中的观察者间一致性强(见表2),2名影像科医师计算腰椎小关节的软骨SNR、软骨—关节间隙CNR、软骨—骨CNR、软骨—骨髓CNR及软骨—肌肉CNR的ICC(95%可信区间)分别为0.865(0.836~0.932)、0.826(0.796~0.858)、0.882(0.843~0.924)、0.899(0.851~0.940)、0.904(0.896~958)和0.947(0.916~0.971),且均有统计学意义(P值均<0.05)。结果说明这些评估指标均具有良好的观察者间一致性,其变异程度均较低。

表2  不同扫描序列两观察者之间图像质量的一致性评价(k±SE)
Tab. 2  Consistency evaluation of image quality between two observers in different scanning sequences (k±SE)

2.3 腰椎小关节图像质量的定性评估

       在腰椎小关节图像的定性评估中,3D-WATSc序列在5项定性评估指标中评分均最高,3D-T1-FFE序列图像质量的定性评估评分结果仅次于3D-WATSc序列,但仅软骨的信号均匀性指标在3D-WATSc序列及3D-T1-FFE序列之间差异有统计学意义(P<0.05),余4项指标在二者之间的差异均无统计学意义(P值均>0.05)。3D-PDWI-VISTA序列的5项定性评估指标评分均最差,且与3D-WATSc序列及3D-T1-FFE序列相比,差异均有统计意义。详见表3图2

图2  受试者腰椎小关节MRI图像。2A~2C:男,25岁,双侧L4/L5腰椎小关节MRI图像;2D~2F:女,26岁,右侧L5/S1腰椎小关节MRI图像。2A、2D:3D-WATSc序列图像,显示关节软骨及关节间隙清晰;2B、2E:3D-T1-FFE序列图像,显示关节软骨及关节间隙较清晰;2C、2F:3D-PDWI-VISTA序列图像,显示软骨边缘锐度及组织对比度较差,几乎不能分辨关节软骨及关节间隙,图像质量较差。
Fig. 2  MRI images of the patient's lumbar facet joint. Images of bilateral L4/L5 lumbar facet joints in a 25-year-old male patient (2A-2C) and L5/S1 right lumbar facet joint in a 26-year-old female patient (2D-2F). 2A, 2D: 3D-WATSC image, showing articular cartilage and articular space clearly; 2B, 2E: 3D-T1-FFE image, showing articular cartilage and joint space relatively clearly; 2C, 2F: 3D-PDWI-VISTA image, with poor edge sharpness and tissue contrast, poor image quality, and almost indistinct articular cartilage and joint space.
表3  不同扫描序列图像质量的定性评估结果[MP25, P75)]
Tab. 3  Qualitative evaluation of image quality of different 3.0 T MRI sequences [M (P25, P75)]

2.4 腰椎小关节图像质量的定量评估

       由于3D-PDWI-VISTA序列在腰椎小关节MRI图像中难以清晰分辨腰椎小关节的各解剖结构,因此无法进行图像SNR及CNR的定量评估。在L4/L5、L5/S1层面,3D-WATSc图像的软骨SNR [L4/L5(70.73±14.86)、L5/S1(73.50±13.63)]较3D-T1-FFE序列高,且差异具有统计学意义(P<0.05);在L4/L5、L5/S1层面腰椎小关节各解剖结构的CNR测量中,3D-WATSc图像的软骨与关节间隙[L4/L5(25.30±8.44)、L5/S1(21.64±13.01)]、软骨与骨[L4/L5(60.75±14.68)、L5/S1(64.31±12.98)]及软骨与骨髓[L4/L5(50.22±14.33)、L5/S1(54.46±10.99)]的CNR均较3D-T1-FFE序列高,且差异有统计意义(P<0.05),但软骨与肌肉的CNR在3D-WATSc序列与3D-T1-FFE序列之间差异无统计学意义(P>0.05),详见表4表5

表4  L4/L5层面腰椎小关节各组织间SNR和CNR结果(x¯±s
Tab. 4  SNR and CNR between tissues of L4/L5 lumbar facet joints (x¯±s)
表5  L5/S1层面腰椎小关节各组织间SNR和CNR结果(x¯±s
Tab. 5  SNR and CNR between tissues of L5/S1 lumbar facet joints (x¯±s)

3 讨论

       本研究通过对腰椎小关节软骨行3种3.0 T MRI三维成像序列的形态学扫描,发现3D-WATSc在腰椎小关节软骨中的成像效果优于3D-T1-FFE及3D-PDWI-VISTA序列,可清晰显示软骨层及关节间隙。本研究为国内首次在形态学成像上对人腰椎小关节软骨进行3.0 T MRI三维扫描序列的对比分析,有助于临床早期较准确地评估腰椎小关节退变。

       在本研究涉及的三种软骨敏感序列中,3D-WATSc图像的5项定性指标评分及各组织结构的软骨SNR、CNR均最高,整体质量评价最好,能较清晰地显示腰椎小关节的各细微解剖结构。分析原因,3D-WATSc序列具有短重复时间(repetition time, TR)、短回波时间(echo time, TE)的特点[16],使得软骨下骨和关节液均为低信号,关节软骨呈高信号,因此能准确地分辨出关节软骨。本研究采用1.5 mm层厚和连续、无间隔的扫描方式,较大地增加了图像空间分辨力,并减少了层间隙和部分容积效应,也提高了对软骨的分辨能力。刘仁伟等[12]在膝关节的研究中发现,3D-WATSc具有空间分辨率高、抑脂效果良好、软骨显示清晰及扫描速度较快等诸多优点,与本研究中3D-WATSc对小关节软骨的成像效果较为一致。王立振等[16]以关节镜的分级标准为对照,证明了3D-WATSc序列对膝关节软骨退变的分级结果具有较高的诊断效能,可以较准确地评估膝关节的关节软骨损伤。但在本研究中,由于腰椎小关节缺乏关节镜作为其形态学评估金标准,因此3D-WATSc序列对腰椎小关节退变的诊断效能尚未得到验证。

       3D-T1-FFE序列在腰椎小关节软骨图像质量的定性评估和软骨SNR、CNR评估中仅次于3D-WATSc序列。分析原因,3D-T1-FFE具有产生高空间分辨率图像数据集的优点[27],该图像数据集由各向同性体素组成,部分容积效应导致的伪影较少,因此能精确检测软骨厚度及范围。与3D-WATSc序列对磁场变化不敏感相比[12],3D-T1-FFE存在磁敏感伪影较明显的缺点[28],因此较难准确地评估邻近软骨下骨的松质骨病变,导致成像效果不如3D-WATSc序列。3D-T1-FFE这一缺点也在一定程度上限制了其在软骨成像中的广泛应用。Kim等[29]的研究表明,在软骨—液体的对比度方面,3D-FFE扫描序列较3D-VISTA序列显示更佳,这与本研究结果类似。Bapst等[13]研究表明,3D-VISTA序列与其他三维序列相比,关节软骨的SNR较高,但软骨与滑膜液间的对比度较低。也有研究表明3D VISTA成像技术在评估关节软骨损伤以及膝关节其他结构(如韧带和半月板)方面可与二维多平面扫描相媲美[18,30]。与上述有关膝关节的研究结果不同,本研究3D-PDWI-VISTA的图像质量定性评估在三种扫描序列中评分最差,图像细节模糊,几乎不能分辨腰椎小关节的关节软骨层及关节间隙,使其在腰椎小关节成像中的临床应用受到了限制。

       本研究尚存在一些局限。第一,本研究未将所有的关节软骨敏感序列进行对比分析,后续将继续探索其他优势序列在腰椎小关节软骨中的成像质量,并针对扫描和后处理技术的优化、标准化及可重复性评估等方面开展深入研究。第二,本研究样本量较少,下一步应扩大样本量及研究范围,对优势序列的应用价值行进一步验证。

       综上所述,3D-WATSc序列能清晰地呈现腰椎小关节的软骨层及关节间隙,可作为腰椎小关节软骨成像的相对优势序列,为临床早期准确地评估腰椎小关节退变提供有价值的参考。

[1]
Inoue N, Orías A, Segami K. Biomechanics of the lumbar facet joint[J]. Spine Surg Relat Res, 2019, 4(1): 1-7. DOI: 10.22603/ssrr.2019-0017.
[2]
Won HS, Yang M, Kim YD. Facet joint injections for management of low back pain: a clinically focused review[J]. Anesth Pain Med (Seoul), 2020, 15(1): 8-18. DOI: 10.17085/apm.2020.15.1.8.
[3]
Perolat R, Kastler A, Nicot B, et al. Facet joint syndrome: from diagnosis to interventional management[J]. Insights Imaging, 2018, 9(5): 773-789. DOI: 10.1007/s13244-018-0638-x.
[4]
Banjar M, Horiuchi S, Gedeon DN, et al. Review of quantitative knee articular cartilage MR imaging[J]. Magn Reson Med Sci, 2022, 21(1): 29-40. DOI: 10.2463/mrms.rev.2021-0052.
[5]
Żylińska B, Sobczyńska-Rak A, Lisiecka U, et al. Structure and pathologies of articular cartilage[J]. In Vivo, 2021, 35(3): 1355-1363. DOI: 10.21873/invivo.12388.
[6]
Kwee RM, Kwee TC. Imaging of facet joint diseases[J]. Clin Imaging, 2021, 80: 167-179. DOI: 10.1016/j.clinimag.2021.07.005.
[7]
罗慕晴, 冯智超, 廖云杰, 等. 3.0T磁共振成像T2 mapping联合纹理分析评估腰椎小关节退变程度[J]. 中南大学学报(医学版), 2020, 45(7): 827-833. DOI: 10.11817/j.issn.1672-7347.2020.190640.
Luo MQ, Feng ZC, Liao YJ, et al. Combination of 3.0T magnetic resonance imaging T2mapping with texture analysis for evaluating the degeneration of lumbar facet joints[J]. J Central South Univ Med Sci, 2020, 45(7): 827-833. DOI: 10.11817/j.issn.1672-7347.2020.190640.
[8]
Oei EHG, van Zadelhoff TA, Eijgenraam SM, et al. 3D MRI in osteoarthritis[J]. Semin Musculoskelet Radiol, 2021, 25(3): 468-479. DOI: 10.1055/s-0041-1730911.
[9]
Little JW, Grieve T, Cantu J, et al. Reliability of human lumbar facet joint degeneration severity assessed by magnetic resonance imaging[J]. J Manipulative Physiol Ther, 2020, 43(1): 43-49. DOI: 10.1016/j.jmpt.2018.11.027.
[10]
MacKay JW, Kaggie JD, Treece GM, et al. Three-dimensional surface-based analysis of cartilage MRI data in knee osteoarthritis: validation and initial clinical application[J]. J Magn Reson Imaging, 2020, 52(4): 1139-1151. DOI: 10.1002/jmri.27193.
[11]
Said O, Schock J, Krämer N, et al. An MRI-compatible varus-valgus loading device for whole-knee joint functionality assessment based on compartmental compression: a proof-of-concept study[J]. MAGMA, 2020, 33(6): 839-854. DOI: 10.1007/s10334-020-00844-6.
[12]
刘仁伟, 李德忠, 菅新民, 等. 磁共振水激励三维扰相梯度回波序列在膝关节软骨损伤诊断中的临床研究[J]. 实用医技杂志, 2013, 20(3): 232-234. DOI: 10.3969/j.issn.1671-5098.2013.03.002.
Liu RW, Li DZ, Jian XM, et al. Clinical research of water excitation three-dimensional spoiled gradient echo sequence in articular cartilage injury of knee[J]. J Pract Med Tech, 2013, 20(3): 232-234. DOI: 10.3969/j.issn.1671-5098.2013.03.002.
[13]
Bapst B, Amegnizin JL, Vignaud A, et al. Post-contrast 3d t1-weighted tse mr sequences (space, cube, vista/brainview, isofse, 3d mvox): technical aspects and clinical applications[J]. J De Neuroradiol, 2020, 47(5): 358-368. DOI: 10.1016/j.neurad.2020.01.085.
[14]
Park HJ, Lee SY, Kang KA, et al. Comparison of two-dimensional fast spin echo T2 weighted sequences and three-dimensional volume isotropic T2 weighted fast spin echo (VISTA) MRI in the evaluation of triangular fibrocartilage of the wrist[J/OL]. Br J Radiol, 2018 [2022-04-08]. https://www.birpublications.org/doi/10.1259/bjr.20170604. DOI: 10.1259/bjr.20170604.
[15]
Kinoshita N, Tanaka S, Sugimori Y, et al. High contrast between lumbar nerve roots and surrounding structures using dual echo 3D turbo spin echo additional fusion images[J]. Jpn J Radiol, 2018, 36(8): 472-476. DOI: 10.1007/s11604-018-0751-2.
[16]
王立振, 陈健湘, 张豫, 等. 3D-WATSc序列在膝关节软骨病损诊断中的价值[J]. 临床放射学杂志, 2012, 31(7): 1003-1006. DOI: 10.13437/j.cnki.jcr.2012.07.018.
Wang LZ, Chen JX, Zhang Y, et al. The diagnostic value of 3D-WATSc sequence in articular cartilage injury of knee[J]. J Clin Radiol, 2012, 31(7): 1003-1006. DOI: 10.13437/j.cnki.jcr.2012.07.018.
[17]
Kijowski R. 3D MRI of articular cartilage[J]. Semin Musculoskelet Radiol, 2021, 25(3): 397-408. DOI: 10.1055/s-0041-1730913.
[18]
Lee YH, Hahn S, Lim D, et al. Articular cartilage grading of the knee: diagnostic performance of fat-suppressed 3D volume isotropic turbo spin-echo acquisition (VISTA) compared with 3D T1 high-resolution isovolumetric examination (THRIVE)[J]. Acta Radiol, 2017, 58(2): 190-196. DOI: 10.1177/0284185116646142.
[19]
Lee JH, Yoon YC, Park KJ, et al. Diagnosis of internal derangement of the knee: volume isotropic turbo spin-echo acquisition MRI with fat suppression versus without fat suppression[J]. AJR Am J Roentgenol, 2017, 208(6): 1304-1311. DOI: 10.2214/AJR.16.17217.
[20]
Cheng KY, Lombardi AF, Chang EY, et al. Knee cartilage imaging[J]. Clin Sports Med, 2021, 40(4): 677-692. DOI: 10.1016/j.csm.2021.05.006.
[21]
Fritz B, Fritz J, Sutter R. 3D MRI of the ankle: a concise state-of-the-art review[J]. Semin Musculoskelet Radiol, 2021, 25(3): 514-526. DOI: 10.1055/s-0041-1731332.
[22]
Morita K, Nakaura T, Maruyama N, et al. Hybrid of compressed sensing and parallel imaging applied to three-dimensional isotropic T2-weighted turbo spin-echo MR imaging of the lumbar spine[J]. Magn Reson Med Sci, 2020, 19(1): 48-55. DOI: 10.2463/mrms.mp.2018-0132.
[23]
Lee S, Hwang J, Ko J, et al. Comparison between T2-weighted two-dimensional and three-dimensional fast spin-echo MRI sequences for characterizing thoracolumbar intervertebral disc disease in small-breed dogs[J]. Vet Radiol Ultrasound, 2022, 63(2): 216-223. DOI: 10.1111/vru.13049.
[24]
Khan MCM, O'Donovan J, Charlton JM, et al. The influence of running on lower limb cartilage: a systematic review and Meta-analysis[J]. Sports Med, 2022, 52(1): 55-74. DOI: 10.1007/s40279-021-01533-7.
[25]
Park HJ, Lee SY, Choi YJ, et al. 3isotropic TD2-weighted fast spin echo (VISTA) versus 2D T2-weighted fast spin echo in evaluation of the calcaneofibular ligament in the oblique coronal plane[J/OL]. Clin Radiol, 2017 [2022-04-08]. https://linkinghub.elsevier.com/retrieve/pii/S0009-9260(16)30428-7. DOI: 10.1016/j.crad.2016.09.023.
[26]
Park HJ, Lee SY, Choi YJ, et al. The usefulness of the oblique coronal plane of three-dimensional isotropic T2-weighted fast spin-echo (VISTA) knee MRI in the evaluation of posterior cruciate ligament reconstruction with allograft: comparison with the oblique coronal plane of two-dimensional fast spin-echo T2-weighted sequences[J]. Eur J Radiol, 2019, 114: 105-110. DOI: 10.1016/j.ejrad.2019.03.009.
[27]
Haneda J, Ishikawa K, Okamoto K. Better continuity of the facial nerve demonstrated in the temporal bone on three-dimensional T1-weighted imaging with volume isotropic turbo spin echo acquisition than that with fast field echo at 3.0 tesla MRI[J]. J Med Imaging Radiat Oncol, 2019, 63(6): 745-750. DOI: 10.1111/1754-9485.12962.
[28]
Ochman S, Wieskötter B, Langer M, et al. High-resolution MRI (3T-MRI) in diagnosis of wrist pain: is diagnostic arthroscopy still necessary?[J]. Arch Orthop Trauma Surg, 2017, 137(10): 1443-1450. DOI: 10.1007/s00402-017-2747-2.
[29]
Kim HS, Yoon YC, Kwon JW, et al. Qualitative and quantitative assessment of isotropic ankle magnetic resonance imaging: three-dimensional isotropic intermediate-weighted turbo spin echo versus three-dimensional isotropic fast field echo sequences[J]. Korean J Radiol, 2012, 13(4): 443-449. DOI: 10.3348/kjr.2012.13.4.443.
[30]
Altahawi F, Pierce J, Aslan M, et al. 3D MRI of the knee[J]. Semin Musculoskelet Radiol, 2021, 25(3): 455-467. DOI: 10.1055/s-0041-1730400.

上一篇 轻度认知障碍患者言语流畅性下降的静息态功能磁共振研究
下一篇 2型糖尿病患者静息态脑镜像同伦功能连接的研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2