分享:
分享到微信朋友圈
X
临床研究
短暂性脑缺血发作患者的高分辨力MRI特征及其与ABCD3评分相关性的研究
周忠凯 石莹 钟镝 任艺博 孙佳莉 陈悦 邹文轩 隋莹 王巍

Cite this article as: Zhou ZK, Shi Y, Zhong D, et al. High-resolution MRI feature of transient ischemic attack patients and its correlation with ABCD3 score[J]. Chin J Magn Reson Imaging, 2022, 13(10): 91-97.本文引用格式:周忠凯, 石莹, 钟镝, 等. 短暂性脑缺血发作患者的高分辨力MRI特征及其与ABCD3评分相关性的研究[J]. 磁共振成像, 2022, 13(10): 91-97. DOI:10.12015/issn.1674-8034.2022.10.013.


[摘要] 目的 利用高分辨力磁共振成像(high-resolution magnetic resonance imaging, HR-MRI)探究短暂性脑缺血发作(transient ischemic attack, TIA)患者低中危组与高危组间斑块特征的差异及ABCD3评分与斑块特征的相关性。材料与方法 回顾性分析72例接受HR-MRI检查的TIA患者病例。根据风险评分量表ABCD3分为低中危组(ABCD3<6)与高危组(ABCD3≥6)。两名有五年以上斑块分析经验的医师独立识别出斑块位置、斑块成分,测量并计算斑块或参考管腔的血管面积和管腔面积、狭窄率、标准化壁指数(normalized wall index, NWI)、重构指数(remodeling index, RI)。依照对比后增强率(enhancement ratio, ER)定量对斑块强化进行分级:0级(ER斑块≤ER参考管壁),1级(ER参考管壁<ER斑块<ER垂体漏斗)和2级(ER斑块≥ER垂体漏斗)。采用t检验、Mann-Whitney U检验或卡方检验比较组间临床特征和斑块特征的差异。斑块特征和ABCD3评分的相关性通过Spearman等级相关或Pearson相关进行分析。结果 72名患者最终纳入研究,高危组(n=39,54.17%)的NWI、RI数值显著高于低中危组(n=33,45.83%)[0.86(0.76,0.92)vs.0.62(0.49,0.75);1.25(1.05,1.33)vs.1.00(0.81,1.11);P均<0.05],高危组的斑块内出血(intraplaque hemorrhage, IPH)和2级强化比例显著高于低中危组[74.4% vs.33.3%;56.4% vs.6.1%;P均<0.05],且NWI(r=0.661,P<0.01)、IPH(r=0.388,P<0.01)、斑块强化(r=0.467,P<0.01)与ABCD3评分呈正相关。结论 本研究揭示了低中危组及高危组TIA患者的颅内动脉粥样硬化斑块的不同形态学特征,且NWI、IPH和2级强化是识别高风险TIA患者的潜在指标,HR-MRI探测这些特征可为TIA患者的早期干预提供循证医学证据。
[Abstract] Objective To investigate the differences in plaque characteristics between different ABCD3 scores and the correlation between ABCD3 scores and plaque characteristics in patients with transient ischemic attack (TIA) based on high-resolution MRI (HR-MRI).Materials and Methods Seventy-two patients underwent HR-MRI with TIA were retrospectively analyzed, which were divided into a low-intermediate risk group (ABCD3 score<6) and a high-risk group (ABCD3 score≥6). Two experienced radiologists independently identified plaque characteristics. Vascular area and lumen area, stenosis rate, normalized wall index (NWI), and remodeling index (RI) of the plaque or reference lumen were measured and calculated. Plaque enhancement was quantified according to the enhancement ratio (ER) after contrast: grade 0 (ERplaque≤ERreference vessel wall), grade 1 (ERreference vessel wall<ERplaque<ERpituitary infundibulum) and grade 2 (ERplaque≥ERpituitary infundibulum). Differences of clinical and plaque characteristics between groups were compared using t-test, Mann-Whitney U test, or chi-square test. Correlations between plaque characteristics and ABCD3 scores were analyzed by Spearman rank correlation or Pearson correlation.Results Seventy-two patients underwent HR-MRI with TIA were retrospectively analyzed, the NWI and RI in the high-risk group (n=39, 54.17%) were significantly higher than those in the low-to-intermediate-risk group (n=33, 45.83%) [0.86 (0.76, 0.92) vs. 0.62 (0.49, 0.75); 1.25 (1.05, 1.33) vs. 1.00 (0.81, 1.11); P<0.05]. The proportion of intraplaque hemorrhage (IPH) and grade 2 enhancement was significantly higher in the high-risk group than in the low-to-intermediate-risk group [74.4% vs. 33.3%; 56.4% vs. 6.1%; P<0.05]. The NWI (r=0.661, P<0.01), IPH (r=0.388, P<0.01), and plaque enhancement (r=0.467, P<0.01) were positively correlated with the ABCD3 score.Conclusions This study revealed different morphological characteristics of intracranial atherosclerotic plaques in patients with low-to-medium-risk and high-risk TIA. NWI, IPH and grade 2 enhancement are potential indicators to identify high-risk TIA patients. Probing these features with HR-MRI may provide insights into the early intervention of patients with TIA.
[关键词] 短暂性脑缺血发作;ABCD3评分;动脉粥样硬化;斑块;早期诊断;高分辨力磁共振成像;磁共振血管成像;扩散加权成像;磁共振成像
[Keywords] transient ischemic attack;ABCD3 score;atherosclerosis;plaque;early diagnosis;high-resolution magnetic resonance imaging;magnetic resonance angiography;diffusion weighted imaging;magnetic resonance imaging

周忠凯 1   石莹 1   钟镝 2   任艺博 2   孙佳莉 1   陈悦 1   邹文轩 1   隋莹 1   王巍 1*  

1 哈尔滨医科大学附属第一医院磁共振科,哈尔滨 150001

2 哈尔滨医科大学附属第一医院神经内科,哈尔滨 150001

王巍,E-mail:1391082196@qq.com

作者利益冲突声明:全部作者均声明无利益冲突。


收稿日期:2022-06-06
接受日期:2022-10-10
中图分类号:R445.2  R743.31 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2022.10.013
本文引用格式:周忠凯, 石莹, 钟镝, 等. 短暂性脑缺血发作患者的高分辨力MRI特征及其与ABCD3评分相关性的研究[J]. 磁共振成像, 2022, 13(10): 91-97. DOI:10.12015/issn.1674-8034.2022.10.013.

       在全球范围内,脑卒中是导致死亡和成人残疾的一个主要原因,高达23%的脑卒中患者在发病前出现短暂性脑缺血发作(transient ischemic attack, TIA)[1]。TIA是指由局灶性脑、脊髓或视网膜缺血引起的一过性神经功能障碍,但不伴有急性梗死(因供血不足导致的组织坏死)[2]。对TIA的正确诊断和早期治疗可降低80%后续脑卒中的发生[3]。颅内动脉粥样硬化性疾病(intracranial atherosclerotic diseases, ICAD)是我国居民发生TIA的重要病因[4],早期发现动脉粥样硬化斑块及识别高危斑块对防治TIA进而减少缺血性卒中事件的发生有重要作用[5]。研究证实ABCD3评分可作为TIA风险评估的重要方法,对TIA事件后卒中发生风险有较好的预测效能[6]。高分辨力磁共振成像(high resolution magnetic resonance imaging, HR-MRI)是美国神经放射学会推荐的一种有前途的成像工具,可以无创定量评估斑块形态和成分[7, 8, 9]。既往研究多集中于分析急性缺血性卒中(acute ischemic stroke, AIS)患者的斑块特征[10, 11],较少探究TIA患者的斑块特征与临床风险等级的关系,因此,本研究通过对比增强HR-MRI探究ABCD3评分与TIA患者斑块特征的相关性,为神经科医生提供循证医学证据,以指导早期干预高危TIA患者,减少缺血性卒中事件发生。

1 材料与方法

1.1 研究对象

       本研究遵守《赫尔辛基宣言》,得到哈尔滨医科大学附属第一医院伦理委员会批准,免除受试者知情同意,批准文号:201989。回顾性分析2019年2月至2022年3月哈尔滨医科大学附属第一医院神经内科收治的72例TIA患者病例。纳入标准:(1)年龄18~85周岁;(2)临床症状或体征符合TIA诊断标准[12],且经眼底镜检查和/或辅助视网膜成像除外视网膜梗死;(3)磁共振血管成像(magnetic resonance angiography, MRA)检查提示观察侧颅内动脉局限性狭窄且扩散加权成像(diffusion weighted imaging, DWI)显示无扩散受限病灶存在;(4)所有患者均行HR-MRI扫描;(5)责任血管为颅内大动脉[颈内动脉(C2~C7段)、大脑中动脉或基底动脉];(6)有高血压、糖尿病、高脂血症或吸烟等一种或多种动脉粥样硬化危险因素的患者。排除标准:(1)颅内动脉炎;(2)颅内动脉夹层;(3)烟雾病;(4)存在可能产生心源性栓子的疾病(如房颤、卵圆孔未闭、新发的心肌梗死、扩张型心肌病、瓣膜性心脏病和感染性心内膜炎);(5)图像质量不符合定量分析要求。

       入院24 h内收集患者临床信息和实验室结果,包括卒中史、体质量指数、性别、年龄、血压、血糖、是否同型半胱氨酸(homocysteine, Hcy)异常、是否血脂异常(包括总胆固醇、甘油三酯、高密度脂蛋白、低密度脂蛋白)和是否有吸烟史。ABCD3评分包括年龄≥60岁(1分)、血压≥140/90 mmHg(1mmHg≈0.133 kPa,1分)、临床特征[单侧无力(2分)、不伴无力的言语障碍(1分)]、症状持续时间[≥60 min(2分)、10~59 min(1分)]、双重TIA [7 d内TIA发作≥2次(2分)]、糖尿病(1分)。TIA患者依据ABCD3评分(由2名神经病学专家共同评估)分为低中危组(ABCD3评分<6)和高危组(ABCD3评分≥6)。

1.2 扫描方法与技术参数

       采用3.0 T磁共振扫描仪(Achieva TX,Philips Healthcare,Best,The Netherlands)及16通道头颈联合线圈进行图像采集。所有患者都进行如下扫描方案:三维时间飞越法磁共振血管成像(three-dimensional time of flight magnetic resonance angiography, 3D-TOF-MRA)、DWI,根据3D-TOF-MRA图像进行定位,垂直于血管长轴对弯曲的血管进行分段扫描获得T1加权三维体积各向同性涡轮自旋回波采集成像(T1-weighted three-dimension volumetric isotropic turbo spin echo acquisition, T1W-3D-VISTA)、T2加权三维体积各向同性涡轮自旋回波采集成像(T2-weighted three-dimension volumetric isotropic turbo spin echo acquisition, T2W-3D-VISTA)、同步非对比血管成像和斑块内出血成像(simultaneous non-contrast angiography and intraplaque hemorrhage, SNAP),随后注射钆布醇(Gadavist,拜耳,0.1 mmol/kg)并再次进行T1W-3D-VISTA扫描,最终通过重建获得冠状位及矢状位图像。3D-TOF-MRA扫描参数如下:TR 25 ms,TE 3.5 ms,FOV 194 mm×194 mm,层厚1.4 mm,体素0.70 mm×0.70 mm×1.14 mm,矩阵276×275×120,层间距-0.7 mm,扫描时间3 min 49 s;DWI扫描参数如下:TR 2608 ms,TE 47 ms,FOV 230 mm×230 mm,层厚4.0 mm,体素2.05 mm×2.56 mm×4.0 mm,矩阵112×90×24,层间距1 mm,扫描时间16 s;T1-3D-VISTA序列扫描参数如下:TR 800 ms,TE 18 ms,FOV 200 mm×181 mm,层厚0.6 mm,体素0.6 mm×0.6 mm×0.6 mm,矩阵332×300×133,层间距-0.3 mm,扫描时间6 min 18 s;SNAP序列扫描参数如下:TR 10 ms,TE 5.8 ms,FOV 160 mm×160 mm,层厚0.8 mm,体素0.8 mm×0.8 mm×0.8 mm,矩阵200×196×150,层间距-0.4 mm,扫描时间6 min 33 s;T2-3D-VISTA序列扫描参数如下:TR 2400 ms,TE 90 ms,FOV 250 mm×250 mm×40 mm,层厚0.6 mm,体素0.6 mm×0.6 mm×0.6 mm,矩阵416×414×133,层间距-0.3 mm,扫描时间8 min 31 s。

1.3 图像分析

       所有的动脉粥样硬化斑块图像由两名有五年以上斑块分析经验的医师在飞利浦星云工作站进行分析,且对临床信息不知情、不参与统计分析。在血管的短轴和长轴图像中均显示血管壁局灶性增厚者认定为斑块。斑块近端或远端无斑块或斑块边缘处认定为参考管壁。在去标识化的HR-MRI图像上,将T1W-3D-VISTA图像放大到400%,在最大管腔狭窄(maximal lumen narrowing, MLN)处或参考管腔层面,手动勾勒血管和管腔边界,以确定斑块或参考管腔的血管面积(vessel area, VA)和管腔面积(lumen area, LA),由两名磁共振科医师完成的测量结果取平均值作为最终结果。狭窄率、重构指数(remodeling index, RI)、标准化壁指数(normalized wall index, NWI)按以下公式计算:狭窄率=(1-LAMLN/LA参考管壁)×100%,RI=VAMLN/VA参考管壁,NWI=斑块面积/VAMLN。此外,该医师对以下斑块特征进行采集:(1)斑块内出血(intraplaque hemorrhage, IPH),在SNAP像上斑块内的信号强度(signal intensity, SI)是邻近白质SI的150%[13];(2)斑块纤维帽,T2WI上表现为斑块表面近管腔狭窄处的高信号带;(3)斑块强化的分级,通过在HR-MRI图像上手动绘制ROI来测量增强前(记为pre)、增强后(记为post)的斑块、参考管壁和垂体漏斗平均SI,并计算对比后增强率(enhancement ratio, ER)=SIpost/SIpre。斑块强化分级如下:0级,ER斑块≤ER参考管壁;1级,ER参考管壁<ER斑块<ER垂体漏斗;2级,ER斑块≥ER垂体漏斗[14],具体测量如图1。随机抽取ABCD3评分<6组与ABCD3评分≥6组各15例,另一名经验丰富的磁共振科医生采用相同的方法对30例患者进行重新评估,目的是评估观察者间的一致性。

图1  男,56岁,ABCD3评分5分,低中危组TIA患者。1A:MRA图像,左侧大脑中动脉局部信号缺失(虚线);1B:SNAP黑血像斑块及白质相同面积区域SI=243.5、330.5(虚线);1C:T1W-3D-VISTA像测量VAMLN=9.7 mm2(蓝色),LAMLN=1.2 mm2(红色);1D:T1W-3D-VISTA像测量VA参考管壁=4.3 mm2(蓝色),LA参考管壁=1.2 mm2(红色);1E:DWI图像(b=1000)左侧大脑中动脉供血区无责任病灶;1F:T2W-3D-VISTA像斑块呈高信号(箭);1G、1H:T1W-3D-VISTA增强前、后图像,相同面积ROI(黄色)斑块SIpre=1186.0,SIpost=1063.2;1I、1J:T1W-3D-VISTA增强前、后像,虚线示参考管壁SIpre=1209.7,SIpost=798.6;1K、1L:T1W-3D-VISTA增强前、后像,虚线示垂体漏斗SIpre=1513.9,SIpost=1988.0。TIA:短暂性脑缺血发作;MRA:磁共振血管成像;SNAP:斑块内出血成像;SI:信号强度;T1W-3D-VISTA:T1加权三维体积各向同性涡轮自旋回波采集成像;VA:血管面积;LA:管腔面积;MLN:最大管腔狭窄;DWI:扩散加权成像;T2W-3D-VISTA:T2加权三维体积各向同性涡轮自旋回波采集成像;ROI:感兴趣区。
Fig. 1  Male, 56-year-old, with ABCD3 score of 5, low-to-medium risk TIA patient. 1A: MRA, localized signal deficit in left middle cerebral artery (dashed line); 1B: The SI of plaque and the same area of white matter in SNAP black blood sequence were 243.5 and 330.5 (dashed line), respectively; 1C: Measurement of T1W-3D-VISTA image, VAMLN=9.7mm2 (blue), LAMLN=1.2 mm2 (red); 1D: Measurement of T1W-3D-VISTA image, VAreferencevessel wall=4.3 mm2 (blue), LAreference vessel wall=1.2 mm2 (red); 1E: DWI (b=1000), no responsible lesion in left middle cerebral artery supply area; 1F: T2W-3D-VISTA, plaque with high signal (arrow); 1G, 1H: T1W-3D-VISTA images before and after enhancement, respectively, for plaques with the same area of the ROI (yellow), SIpre=1186.0 and SIpost=1063.2; 1I, 1J: T1W-3D-VISTA images before and after enhancement, respectively, with the dashed line showing the reference vessel wall, SIpre=1209.7 and SIpost=798.6; 1K, 1L: T1W-3D-VISTA images before and after enhancement, with the dashed line showing the pituitary infundibulum, SIpre=1513.9 and SIpost=1988.0. TIA: transient ischemic attack; MRA: magnetic resonance angiography; SNAP: simultaneous non-contrast angiography and intraplaque hemorrhage; SI: signal intensity; T1W-3D-VISTA: T1-weighted three-dimension volumetric isotropic turbo spin echo acquisition; VA: vessel area; LA: lumen area; MLN: maximal lumen narrowing; DWI: diffusion weighted imaging; T2W-3D-VISTA: T2-weighted three-dimension volumetric isotropic turbo spin echo acquisition; ROI: region of interest.

1.4 统计学分析

       使用IBM SPSS 26.0进行数据分析。分类变量表示为频数(百分比),卡方检验比较组间差异。Shapiro-Wilk检验对连续变量进行正态性检验,符合正态分布者表示为均值±标准差(x¯±s),不符合正态分布者表示为中位数(四分位间距)[M (IQR)],t检验或Mann-Whitney U检验比较组间差异。Spearman秩相关或Pearson相关用于探究斑块特征与ABCD3得分之间的关系。P<0.05为差异有统计学意义。通过Cohen's Kappa(κ)和加权Cohen's Kappa评估包括斑块成分和强化等级在内的分类变量的观察者间一致性,连续变量的观察者间一致性通过组内相关系数(intraclass correlation coefficient, ICC)来评估,ICC≥0.75认为一致性良好,0.40≤ICC<0.75认为一致性一般,ICC<0.40认为一致性较差。

2 结果

2.1 患者的临床特征

       72例患者中男42例(58.33%)、女30例(41.67%),年龄32~76(57.75±8.88)岁。其中低中危组(ABCD3<6)患者33例(45.83%),高危组(ABCD3≥6)患者39例(54.17%),低中危组与高危组之间临床相关因素(性别、年龄、体质量指数、卒中史、糖尿病、吸烟史、血脂异常、Hcy异常)比较差异均无统计学意义(P均>0.05),见表1

表1  低中危组与高危组的临床特征
Tab. 1  Clinical characteristics between the low-and-medium-risk group and the high-risk group

2.2 不同ABCD3评分TIA患者颅内动脉斑块特征

       ABCD3评分高危组患者NWI [0.86(0.76,0.92)]及RI [1.25(1.05,1.33)]较低中危组[NWI=0.62(0.49,0.75);RI=1.00(0.81,1.11)]显著增大(P<0.01),IPH(74.4%)及2级强化(56.4%)比例较低中危组(IPH:33.3%;2级强化:6.1%)更多(P<0.01)。两组患者余斑块特征及位置分布差异无统计学意义(P>0.05),见表2

表2  不同ABCD3评分短暂性脑缺血发作患者颅内动脉斑块特征
Tab. 2  Characteristics of intracranial arterial plaque in transient ischemic attack patients with different ABCD3 score

2.3 斑块特征与ABCD3评分的相关性

       ABCD3评分与NWI(r=0.661,P<0.01)、IPH(r=0.388,P<0.01)、斑块强化(r=0.467,P<0.01)之间存在显著正相关。然而,ABCD3评分与狭窄率(r=0.114,P=0.341)、重塑指数(r=0.174,P=0.144)、斑块纤维帽(r=0.087,P=0.470)之间没有相关性。

2.4 观察者间的一致性

       在识别SNAP高信号(Cohen's κ=0.800,95% CI:0.586~1.014)、T2W-3D-VISTA高信号(Cohen's κ=0.867,95% CI:0.693~1.045)和斑块强化等级(加权κ=0.819,95% CI:0.671~0.968)方面具有良好一致性。NWI的观察者间一致性(ICC:0.829,95% CI:0.629~0.920)、RI(ICC:0.788,95% CI:0.604~0.893)和狭窄率(ICC:0.962,95% CI:0.922~0.982)均为良好。

3 讨论

       本研究采用HR-MRI探讨TIA患者ICAD特征与TIA风险分层之间的关系。既往研究比较了TIA与AIS患者的斑块特征,结果表明AIS患者斑块负荷更大,富含脂质的坏死核心比例更高,而高NWI与TIA存在相关性[15, 16],本研究结果不仅证实了NWI与TIA风险分层有关,并且补充说明了IPH及斑块强化与TIA风险之间也存在着正相关性,此外TIA高危组患者的NWI、RI、IPH及2级强化与低中危组有显著差异,可见随着斑块易损特征的出现,TIA的风险等级随之增高,这意味着延缓易损斑块进展有降低TIA复发及卒中发生的潜在能力[17]。同时,发现基于ABCD3评分分组的狭窄率和有无斑块纤维帽无显著差异,且ABCD3评分与RI、狭窄率和有无斑块纤维帽无相关性。目前很少有对TIA患者进行HR-MRI的研究,这可能是由于很难将某些神经系统症状,尤其是短暂的或者定义不明确的症状归因于特定的ICAD病变。HR-MRI作为一种直接评估动脉粥样硬化斑块的方法,可提供易损斑块的有力证据,弥补传统成像和实验室检查的不足[18]。本研究使用了预测TIA发生后卒中事件效能更高的ABCD3评分探究ABCD3评分与斑块特征之间的关系,为确定TIA发病机制、正确进行风险分层提供了重要的循证医学证据,且对指导TIA患者采取有效治疗措施及减少卒中发生风险具有重要意义。

3.1 IPH与ABCD3评分

       IPH由动脉粥样硬化斑块新生血管破裂形成,促进游离胆固醇的沉积、巨噬细胞浸润、坏死核心扩大,进而增加斑块不稳定性,是未来不良血管事件的重要预测因子[19]。由于血红蛋白中的铁为顺磁性物质,其在斑块内的沉积对MRI信号产生明显的影响,与其他组织成分相比,在SNAP像上或T1W-3D-VISTA上表现为高信号,有研究发现IPH与斑块的演变相关而与斑块位置无关,且无论狭窄程度如何,IPH的出现均意味着后续缺血性脑血管事件的发生风险增加[20]。ABCD3评分可分为高风险(6~7分)、中等风险(4~5分)和低风险(0~3分),各风险等级患者2天内复发卒中的风险分别为8.1%、4.1%和1.0%[21, 22]。本研究发现高危组(ABCD3≥6)患者IPH比例显著高于低中危组(ABCD3<6),且随着IPH的发生,ABCD3评分升高的可能性增大,提示AIS发生风险增加。在既往的一项Meta分析中,也出现过类似的结论,即TIA患者IPH阳性的未来缺血事件年发生率为11.9%,IPH与未来缺血事件风险增加相关[23, 24],在一项对存在颈动脉斑块的TIA患者复发缺血性事件研究中也印证了这一结论,Cox回归分析证明了IPH是预测同侧缺血性事件的强预测因子[25]。本研究同样高度提示了IPH与TIA风险评估的正相关性,这说明在TIA患者中IPH的存在提示斑块的不稳定性,提示临床给予TIA患者更积极的治疗,有利于降低未来发生缺血性事件的风险。

3.2 NWI、RI与ABCD3评分

       本研究发现ABCD3评分高危组患者的NWI及RI数值显著高于低中危组。斑块负荷可能是比管腔狭窄程度更有效的TIA风险分层指标,因为粥样硬化动脉中存在潜在的正性重构[26, 27],当不规则管腔的斑块厚度难以测量时,基于斑块面积NWI可作为一项衡量斑块负荷严重程度的指标[28],本中心既往的研究结果同样表明了较大的斑块负荷与脑缺血的发展密不可分[29],且随着NWI的增加对管腔的血流动力学产生不良影响,脂质坏死核心、IPH和斑块破裂的风险也逐渐增加[30],这也就从病理学角度解释了本研究中TIA的高危组(ABCD3≥6)患者的风险评分和NWI存在显著的正相关性的原因。所以HR-MRI检查提示更高的NWI,在随后的临床风险评估中,可能意味着在发病24 h内应启用双抗治疗(阿司匹林100 mg/d,联合氯吡格雷75 mg/d),在持续21 d后改为单药氯吡格雷75 mg/d,此举措能显著降低90 d内卒中复发[31]。此外本研究中还有一些有趣的发现,研究发现高危组患者RI更高,但是在与ABCD3评分的相关性分析中仅存在弱的正相关,重构是动脉粥样硬化斑块形成过程中代偿斑块造成管腔狭窄的一种现象,其中正性重构:RI≥1.05;负性重构:RI≤0.95;中性重构:0.95<PI<1.05。虽然正性重构的斑块所在管腔没有明显狭窄,但其脂质核变大,纤维帽变薄及大量炎性细胞浸润使稳定性降低[26]。Zhang等[27]在评估大脑中动脉狭窄血流动力学和血管壁重塑模式之间的关系中发现重塑指数与经病灶壁剪应力比呈正相关,具有较大血流动力学值的个体更易发生卒中,但本研究中TIA患者的PI并未表现出与风险评估的显著正相关,原因可能是:(1)TIA患者本身症状较轻,其斑块的形成并不显著;(2)TIA患者之间的重构差异不大,且倾向于非正性重构。

3.3 斑块强化与ABCD3评分

       斑块强化是由新生血管内皮细胞间隙增大和炎症反应引发血管内皮细胞通透性增加导致的对比剂渗入形成[32]。此次研究通过定量分析斑块、参考管壁和垂体漏斗增强前、后的SI计算得到ER,使斑块在强化分级的处理上更加严谨,斑块明显强化与AIS的发生密切相关,2级强化是AIS的独立标志物[16,33],较高ER更是与未来发生和复发缺血性脑血管事件相关的独立影像标志物[34]。本研究高危组的2级强化比例显著高于低中危组,提示高危组的易损性斑块更多,未来发生缺血性卒中事件的可能性更高。既往的研究中斑块强化与TIA的关系尚不明确,更多集中于与AIS的相关性,本研究验证了斑块明显强化的临床诊断效能在TIA患者中同样适用,即随着斑块强化等级的升高,TIA的风险评估随之增高,同时意味着高度提示采取更积极的临床措施降低缺血性事件的发生率。

3.4 局限性

       本研究存在一定局限性。第一,TIA患者的临床症状在24 h内消失,较难在单中心短时间进一步扩充样本量以实现多变量回归分析,未来应该开展多中心研究以扩大样本量,提高研究的可靠性;第二,本研究为一项回顾性研究,需要继续随访来验证HR-MRI特征对TIA的危险分层的效能,以及预测卒中事件的能力;第三,尽管本文应用的ABCD3评分在预测近期发生卒中的能力优势明显,但任何临床评分均存在其自身的局限性,未来可探讨临床与影像结合的评分标准。

       综上所述,HR-MRI的测定参数NWI、IPH及斑块强化与TIA患者的ABCD3评分有正相关性,且能够识别高风险的患者。因此,HR-MRI可作为早期指导干预高危TIA患者的辅助手段,以期减少缺血性卒中事件发生。

[1]
Gállego J, Muñoz R, Martínez-Vila E. Emergent cerebrovascular disease risk factor weighting: is transient ischemic attack an imminent threat?[J]. Cerebrovasc Dis, 2009, 27 (Suppl 1): 88-96. DOI: 10.1159/000200445.
[2]
Easton JD, Saver JL, Albers GW, et al. Definition and evaluation of transient ischemic attack: a scientific statement for healthcare professionals from the American Heart Association/American Stroke Association Stroke Council; Council on Cardiovascular Surgery and Anesthesia; Council on Cardiovascular Radiology and Intervention; Council on Cardiovascular Nursing; and the Interdisciplinary Council on Peripheral Vascular Disease. The American Academy of Neurology affirms the value of this statement as an educational tool for neurologists[J]. Stroke, 2009, 40(6): 2276-93. DOI: 10.1161/strokeaha.108.192218.
[3]
Milton AG, Lau S, Kremer KL, et al. FAST-IT: Find A Simple Test - In TIA (transient ischaemic attack): a prospective cohort study to develop a multivariable prediction model for diagnosis of TIA through proteomic discovery and candidate lipid mass spectrometry, neuroimaging and machine learning-study protocol[J/OL]. BMJ Open, 2022, 12(4) [2022-10-09]. http://www.aa1155.com/pmc/PMC8977752. DOI: 10.1136/bmjopen-2020-045908.
[4]
Wang W, Jiang B, Sun H, et al. Prevalence, Incidence, and Mortality of Stroke in China: Results from a Nationwide Population-Based Survey of 480 687 Adults[J]. Circulation, 2017, 135(8): 759-771. DOI: 10.1161/circulationaha.116.025250.
[5]
Kopczak A, Schindler A, Sepp D, et al. Complicated Carotid Artery Plaques and Risk of Recurrent Ischemic Stroke or TIA[J]. J Am Coll Cardiol, 2022, 79(22): 2189-2199. DOI: 10.1016/j.jacc.2022.03.376.
[6]
Wang L, Dai HL, Tang X, et al. Predictive value of ABCD3 score combined with vascular stenosis in the progression of TIA to cerebral infarction[J]. J Biol Regul Homeost Agents, 2021, 35(1): 289-293. DOI: 10.23812/20-659-l.
[7]
Wu F, Song H, Ma Q, et al. Hyperintense Plaque on Intracranial Vessel Wall Magnetic Resonance Imaging as a Predictor of Artery-to-Artery Embolic Infarction[J]. Stroke, 2018, 49(4): 905-911. DOI: 10.1161/strokeaha.117.020046.
[8]
Li H, Liu J, Dong Z, et al. Identification of high-risk intracranial plaques with 3D high-resolution magnetic resonance imaging-based radiomics and machine learning[J/OL]. J Neurol, 2022 [2022-10-09]. https://link.springer.com/10.1007/s00415-022-11315-4. DOI: 10.1007/s00415-022-11315-4.
[9]
Xu J, Rajah GB, Zhang H, et al. Imaging features of adult moyamoya disease patients with anterior intracerebral hemorrhage based on high-resolution magnetic resonance imaging[J/OL]. J Cereb Blood Flow Metab, 2022 [2022-10-09]. https://pubmed.ncbi.nlm.nih.gov/35765819/. DOI: 10.1177/0271678x221111082.
[10]
Sun J, Feng XR, Feng PY, et al. HR-MRI findings of intracranial artery stenosis and distribution of atherosclerotic plaques caused by different etiologies[J]. Neurol Sci, 2022, 43(9): 5421-5430. DOI: 10.1007/s10072-022-06132-6.
[11]
Liu Z, Zhong F, Xie Y, et al. A Predictive Model for the Risk of Posterior Circulation Stroke in Patients with Intracranial Atherosclerosis Based on High Resolution MRI[J/OL]. Diagnostics (Basel), 2022, 12(4) [2022-10-09]. https://pubmed.ncbi.nlm.nih.gov/35453860/. DOI: 10.3390/diagnostics12040812.
[12]
Kleindorfer DO, Towfighi A, Chaturvedi S, et al. 2021 Guideline for the Prevention of Stroke in Patients With Stroke and Transient Ischemic Attack: A Guideline From the American Heart Association/American Stroke Association[J/OL]. Stroke, 2021, 52(7) [2022-10-09]. https://www.ahajournals.org/doi/10.1161/STR.0000000000000375?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dpubmed. DOI: 10.1161/str.0000000000000375.
[13]
Sun J, Liu G, Zhang D, et al. The Longitudinal Distribution and Stability of Curved Basilar Artery Plaque: A Study Based on HR-MRI[J]. Journal of Atherosclerosis and Thrombosis, 2021, 28(12): 1333-1339. DOI: 10.5551/jat.62448.
[14]
Qiao Y, Zeiler SR, Mirbagheri S, et al. Intracranial plaque enhancement in patients with cerebrovascular events on high-spatial-resolution MR images[J]. Radiology, 2014, 271(2): 534-542. DOI: 10.1148/radiol.13122812.
[15]
Lu M, Zhang L, Yuan F, et al. Comparison of carotid atherosclerotic plaque characteristics between symptomatic patients with transient ischemic attack and stroke using high-resolution magnetic resonance imaging[J/OL]. BMC Cardiovasc Disord, 2022, 22(1) [2022-10-09]. https://pubmed.ncbi.nlm.nih.gov/35448952/. DOI: 10.1186/s12872-022-02624-7.
[16]
Xiao J, Padrick MM, Jiang T, et al. Acute ischemic stroke versus transient ischemic attack: Differential plaque morphological features in symptomatic intracranial atherosclerotic lesions[J]. Atherosclerosis, 2021, 319: 72-78. DOI: 10.1016/j.atherosclerosis.2021.01.002.
[17]
Lim EY, Cho AH. Dynamic changes of carotid atherosclerosis and their relations with stroke recurrence in patients with stroke or transient ischemic attack[J/OL]. Curr Neurovasc Res, 2022 [2022-10-09]. https://www.eurekaselect.com/article/125758. DOI: 10.2174/1567202619666220822141804.
[18]
Duyn JH. Study of brain anatomy with high-field MRI: recent progress[J]. Magn Reson Imaging, 2010, 28(8): 1210-1215. DOI: 10.1016/j.mri.2010.02.007.
[19]
Crombag G, Aizaz M, Schreuder F, et al. Proximal Region of Carotid Atherosclerotic Plaque Shows More Intraplaque Hemorrhage: The Plaque at Risk Study[J]. AJNR Am J Neuroradiol, 2022, 43(2): 265-271. DOI: 10.3174/ajnr.A7384.
[20]
Lee J, Kil J, Kim DW, et al. Usefulness of Plaque Magnetic Resonance Imaging in Identifying High-Risk Carotid Plaques Irrespective of the Degree of Stenosis[J]. J Cerebrovasc Endovasc Neurosurg, 2017, 19(4): 291-300. DOI: 10.7461/jcen.2017.19.4.291.
[21]
Song B, Fang H, Zhao L, et al. Validation of the ABCD3-I score to predict stroke risk after transient ischemic attack[J]. Stroke, 2013, 44(5): 1244-1248. DOI: 10.1161/strokeaha.113.000969.
[22]
Ratajczak-Tretel B, Lambert AT, Atar D, et al. Cryptogenic stroke and TIA: Suggested diagnostic approach while waiting for evaluation and treatment guidelines[J]. Acta Neurol Scand, 2022, 145(5): 641-646. DOI: 10.1111/ane.13590.
[23]
Rizvi A, Seyedsaadat SM, Alzuabi M, et al. Carotid plaque vulnerability on magnetic resonance imaging and risk of future ischemic events: a systematic review and meta-analysis[J]. J Neurosurg Sci, 2020, 64(5): 480-486. DOI: 10.23736/s0390-5616.20.04959-0.
[24]
Dilba K, van Dijk AC, Crombag G, et al. Association between Intraplaque Hemorrhage and Vascular Remodeling in Carotid Arteries: The Plaque at RISK (PARISK) Study[J]. Cerebrovasc Dis, 2021, 50(1): 94-99. DOI: 10.1159/000511935.
[25]
Che F, Mi D, Wang A, et al. Extracranial carotid plaque hemorrhage predicts ipsilateral stroke recurrence in patients with carotid atherosclerosis - a study based on high-resolution vessel wall imaging MRI[J/OL]. BMC Neurol, 2022, 22(1) [2022-10-09]. https://pubmed.ncbi.nlm.nih.gov/35764942/. DOI: 10.1186/s12883-022-02758-3.
[26]
Li L, Tang M, Yan X, et al. Plaque Characteristics in Young Adults With Symptomatic Intracranial Atherosclerotic Stenosis: A Preliminary Study[J/OL]. Front Neurol, 2022, 13 [2022-10-09]. https://pubmed.ncbi.nlm.nih.gov/35222253/. DOI: 10.3389/fneur.2022.825503.
[27]
Zhang D, Wu X, Tang J, et al. Hemodynamics is associated with vessel wall remodeling in patients with middle cerebral artery stenosis[J]. Eur Radiol, 2021, 31(7): 5234-5242. DOI: 10.1007/s00330-020-07607-w.
[28]
Cao X, Yang Q, Tang Y, et al. Normalized wall index, intraplaque hemorrhage and ulceration of carotid plaques correlate with the severity of ischemic stroke[J]. Atherosclerosis, 2020, 315: 138-144. DOI: 10.1016/j.atherosclerosis.2020.10.896.
[29]
周莹雪, 崔英哲, 南东, 等. 后循环脑缺血的基底动脉高分辨磁共振成像研究[J]. 磁共振成像, 2021, 12(2): 15-18, 23. DOI: 10.12015/issn.1674-8034.2021.02.004.
Zhou YX, Cui YZ, Nan D, et al. High-resolution magnetic resonance imaging study of basilar artery in posterior circulation cerebral ischemia[J]. Chin J Magn Reson Imaging, 2021, 12(2): 15-18, 23. DOI: 10.12015/issn.1674-8034.2021.02.004.
[30]
Yan X, Tang M, Gao J, et al. Sex Differences in Intracranial Atherosclerotic Plaques Among Patients With Ischemic Stroke[J/OL]. Front Cardiovasc Med, 2022, 9 [2022-10-09]. https://pubmed.ncbi.nlm.nih.gov/35845071/. DOI: 10.3389/fcvm.2022.860675.
[31]
刘丽萍, 陈玮琪, 段婉莹, 等. 中国脑血管病临床管理指南(节选版)—缺血性脑血管病临床管理[J]. 中国卒中杂志, 2019, 14(7): 709-726. DOI: 10.3969/j.issn.1673-5765.2019.07.014.
Liu LP, Chen WQ, Duan WY, et al. Chinese clinical management guidelines for cerebrovascular disease (abridged version)--Clinical management of ischemic cerebrovascular disease[J]. China Journal of Stroke, 2019, 14(7): 709-725. DOI: 10.3969/j.issn.1673-5765.2019.07.014.
[32]
Tan Y, Nie F, Wu G, et al. Impact of H-Type Hypertension on Intraplaque Neovascularization Assessed by Contrast-Enhanced Ultrasound[J]. J Atheroscler Thromb, 2022, 29(4): 492-501. DOI: 10.5551/jat.61275.
[33]
Liang J, Guo J, Liu D, et al. Application of High-Resolution CUBE Sequence in Exploring Stroke Mechanisms of Atherosclerotic Stenosis of Middle Cerebral Artery[J]. J Stroke Cerebrovasc Dis, 2019, 28(1): 156-162. DOI: 10.1016/j.jstrokecerebrovasdis.2018.09.021.
[34]
Yang D, Liu J, Yao W, et al. The MRI enhancement ratio and plaque steepness may be more accurate for predicting recurrent ischemic cerebrovascular events in patients with intracranial atherosclerosis[J/OL]. Eur Radiol, 2022 [2022-10-09]. https://link.springer.com/10.1007/s00330-022-08893-2. DOI: 10.1007/s00330-022-08893-2.

上一篇 肌萎缩侧索硬化患者大脑白质结构网络拓扑属性研究
下一篇 基于磁共振表观扩散系数及对比增强T1WI直方图分析鉴别诊断非典型性畸胎样/横纹肌样肿瘤与髓母细胞瘤
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2