分享:
分享到微信朋友圈
X
特别关注
Fabry病左室应变特征及其在肥厚型心肌病中的鉴别诊断价值
杨凯 李常城 徐杨飞 王家鑫 董志翔 杨淑娟 喻诗琴 宋燕燕 马璇 崔辰 陈秀玉 陆敏杰 赵世华

Cite this article as: Yang K, Li CC, Xu YF, et al. Characteristics of the left ventricular myocardial strain in Fabry disease and its value in differential diagnosis of hypertrophic cardiomyopathy[J]. Chin J Magn Reson Imaging, 2022, 13(12): 13-19, 25.本文引用格式:杨凯, 李常城, 徐杨飞, 等. Fabry病左室应变特征及其在肥厚型心肌病中的鉴别诊断价值[J]. 磁共振成像, 2022, 13(12): 13-19, 25. DOI:10.12015/issn.1674-8034.2022.12.003.


[摘要] 目的 分析Fabry病的左室应变特征及其在肥厚型心肌病(hypertrophic cardiomyopathy, HCM)中的鉴别诊断价值。材料与方法 回顾性分析2018年1月至2022年6月中国医学科学院阜外医院经病理或基因证实的Fabry病患者病例10例(Fabry病组)和同时纳入的性别、年龄相匹配的20例HCM患者(HCM组)以及20例正常对照者(正常对照组)的临床资料。分别比较Fabry病组与正常对照组和HCM组的临床基线资料、MRI基本参数及左室应变特征。结果 Fabry病组[女6例、男4例,就诊年龄(50.6±9.7)岁]中9例患者有临床症状,其中6例合并肾功能不全或周围神经痛。同正常对照组比较,Fabry病组的左室射血分数无明显减低[(63.1±7.8)% vs.(64.4±4.3)%,P=0.641],而其三个方向的整体应变及其对应的收缩期与舒张早期应变率均显著减低(P值均<0.001)。同HCM组比较,Fabry病组的整体径向应变(global radial strain, GRS)与周向应变(global circumferential strain, GCS)均显著减低(P值均<0.05)。多因素logistic回归分析示GRS与Fabry病独立相关(OR=0.84,95% CI:0.72~0.97,P=0.017),其区分Fabry病与HCM的曲线下面积为0.813。结论 左室应变可早期反映Fabry病患者的亚临床心肌功能障碍。GRS能够有效区分Fabry病与HCM,是一个具有潜在价值的新型诊断指标。
[Abstract] Objective To analyze the characteristics of left ventricular myocardial strain in Fabry disease and its value in differential diagnosis of hypertrophic cardiomyopathy (HCM).Materials and Methods A total of 10 cases with Fabry disease confirmed by pathology or gene in our hospital from January 2018 to June 2022 were retrospectively analyzed. At the same time, clinical data of 20 sex-and age-matched HCM patients and 20 normal controls (normal control group) were included. The clinical baseline data, MR parameters and left ventricular strain were compared between Fabry disease group and normal control group or HCM group.Results Among the Fabry disease group (6 were female and 4 were male, and the age was 50.6±9.7 years), nine patients had clinical symptoms, including 6 patients with renal dysfunction or peripheral neuralgia. Compared with the normal control group, the left ventricular ejection fraction in the Fabry disease group was not significantly decreased [(63.1±7.8)% vs. (64.4±4.3)%, P=0.641], but the global strain in the three directions and the corresponding systolic and early diastolic strain rates were significantly decreased (all P<0.001). Compared with the HCM group, the global radial strain (GRS) and global circumferential strain (GCS) of Fabry disease group were significantly decreased (all P<0.05). Multivariate logistic regression analysis showed that GRS was independently correlated with Fabry disease (OR=0.84, 95% CI: 0.72-0.97, P=0.017), and the area under the curve (AUC) to distinguish Fabry disease from HCM was 0.813.Conclusions Left ventricular strain can early reflect subclinical myocardial dysfunction in patients with Fabry disease. GRS can effectively distinguish Fabry disease from HCM, which is a new diagnostic index with potential value.
[关键词] Fabry病;肥厚型心肌病;心肌肥厚;应变;磁共振成像;心脏磁共振特征追踪技术;心脏磁共振电影成像
[Keywords] Fabry disease;hypertrophic cardiomyopathy;myocardial hypertrophy;strain;magnetic resonance imaging;cardiac magnetic resonance feature tracking technology;cardiac magnetic resonance cine imaging

杨凯 1   李常城 2   徐杨飞 3   王家鑫 1   董志翔 1   杨淑娟 1   喻诗琴 1   宋燕燕 1   马璇 1   崔辰 1   陈秀玉 1   陆敏杰 1   赵世华 1*  

1 中国医学科学院 北京协和医学院 国家心血管病中心 心血管疾病国家重点实验室 阜外医院磁共振影像科,北京 100037

2 泰安市中心医院(青岛大学附属泰安市中心医院)医学影像科,泰安 271099

3 池州市人民医院医学影像科,池州 247100

赵世华,E-mail:cjrzhaoshihua2009@163.com

作者利益冲突声明:全体作者均声明无利益冲突。


基金项目: “十四五”国家重点研发项目 2021YFF0501400,2021YFF0501404 国家自然科学基金重点项目 81930044
收稿日期:2022-08-14
接受日期:2022-12-08
中图分类号:R445.2  R542.2 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2022.12.003
本文引用格式:杨凯, 李常城, 徐杨飞, 等. Fabry病左室应变特征及其在肥厚型心肌病中的鉴别诊断价值[J]. 磁共振成像, 2022, 13(12): 13-19, 25. DOI:10.12015/issn.1674-8034.2022.12.003.

       Fabry病又称Anderson-Fabry病,是最常见的溶酶体蓄积性疾病,它是一种X连锁的先天性鞘糖脂代谢途径缺陷,引起酰基鞘氨醇三己糖(Gb3)在多种细胞的溶酶体中蓄积,包括自主神经节、肾小球、心肌细胞、角膜内血管内皮细胞等,从而引发一系列临床表现[1, 2, 3, 4, 5]。其中心脏受累是Fabry病相关死亡的主要原因之一[6]。心脏受累可表现为左心室肥厚、心肌纤维化、心力衰竭、瓣膜异常及传导异常。在部分患者中,左室肥厚可能是唯一被识别的疾病表现,在临床实践中很难与肥厚型心肌病(hypertrophic cardiomyopathy, HCM)相鉴别,给诊断带来一定的挑战。超声二维斑点追踪技术研究结果表明,心室应变在Fabry病与HCM的鉴别诊断中具有一定的价值[7, 8]。心脏磁共振特征追踪(cardiac magnetic resonance feature tracking, CMR-FT)技术与超声斑点追踪技术具有良好的一致性,且具有大视野、软组织分辨率高等优势,已越来越多地应用于各类心血管疾病[9, 10, 11]。由于Fabry病比较罕见,目前应用CMR-FT评估Fabry病左室应变特征的研究鲜有报道。本研究拟采用CMR-FT评估Fabry病的左室应变特征,并探讨其在区分Fabry病与HCM中的诊断价值。

1 材料与方法

1.1 研究对象

       回顾性分析2018年1月至2022年6月中国医学科学院阜外医院经病理或基因证实的Fabry病患者病例10例(Fabry病组),同时收集性别、年龄相匹配的20例HCM患者(HCM组)和20例正常对照者(正常对照组)的临床资料作为对照。Fabry病组的纳入标准:(1)经基因或病理证实为Fabry病;(2)有完整的心脏磁共振(cardiac magnetic resonance, CMR)扫描资料。排除标准:(1)无基因或病理资料者;(2)图像质量欠佳。HCM组的纳入标准:(1)心室舒张末期室间隔或左室壁厚度≥15 mm或者有明确HCM家族史且室壁厚度≥13 mm;(2)经基因或病理证实;(3)有完整的CMR资料。排除标准:(1)其他负荷增加引起的左室壁增厚(如主动脉瓣狭窄、长期高血压病史或难以控制的高血压引起的心肌肥厚);(2)图像质量欠佳;(3)既往行外科手术或射频消融治疗的患者。健康对照者经病史、体格检查、心电图及超声心动图等检查严格排除心血管疾病(心肌病、冠心病、严重心律失常及传导阻滞、瓣膜病和先天性心脏病等)和其他器质性及系统性疾病(如肾脏疾病、糖尿病、高血压等)后入组。通过电子病历系统收集患者的临床基线资料,包括性别、年龄、身高、体质量、临床症状、家族史、心血管危险因素、实验室检查、心电图资料等。本研究遵照《赫尔辛基宣言》,并获得中国医学科学院阜外医院伦理委员会批准(伦理批号:2017-932),免除受试者知情同意。

1.2 CMR图像采集与分析

       采用美国GE公司MR 750 3.0 T或荷兰Philip公司Ingenia 3.0 T超导磁共振仪行CMR检查。常规扫描包括采用黑血序列,即半傅立叶采集单次激发快速自旋回波序列(half-Fourier acquisition single-shot turbo spin-echo, HASTE),观察心脏及大血管的形态结构;采用回顾性心电门控真实稳态自由进动梯度回波序列行功能电影成像,包括左心室长轴两腔心、四腔心、左室流出道及8~10层连续短轴电影。经肘静脉注入钆喷酸葡胺(Gd-DTPA,德国拜耳公司),剂量为0.2 mmol/kg,注射速度为4 mL/s,10~15 min后采用相位敏感反转恢复(phase sensitive inversion recovery, PSIR)序列行延迟增强成像,包括左心室长轴两腔心、四腔心及8~10层连续短轴切面。

       利用CVI42软件(Circle Cardiovascular Imaging, Calgary, Canada)在常规电影图像中分析左室应变及应变率,在特定模块中打开左室短轴及三个长轴电影图像,软件自动勾画左室心内膜与心外膜边界,手动调整心内膜与心外膜边界处的曲线,使其与左室壁厚度保持一致,然后运行程序,软件自动计算出左室应变及应变率。具体参数包括整体径向应变(global radial strain, GRS)、径向收缩期应变率(radial systolic strain rate, RSSR)、径向舒张早期应变率(radial early diastolic strain rate, REDSR)、整体周向应变(global circumferential strain, GCS)、周向收缩期应变率(circumferential systolic strain rate, CSSR)、周向舒张早期应变率(circumferential early diastolic strain rate, CEDSR)、整体纵向应变(global longitudinal strain, GLS)、纵向收缩期应变率(longitudinal systolic strain rate, LSSR)、纵向舒张早期应变率(longitudinal early diastolic strain rate, LEDSR)。

1.3 统计学分析

       采用IBM SPSS 20.0软件进行统计学分析。正态性检验采用Shapiro-Wilk法,符合正态分布的计量资料以平均数±标准差表示,两组间比较采用独立样本t检验;不符合正态分布的计量资料以中位数(四分位数Q1Q3)表示,两组间比较采用非参数检验(Mann-Whitney U检验)。计数资料以频数(百分比)表示,两组间比较采用Fisher精确检验。多因素logistic回归分析中对于自变量筛选的方法选用向前法。组内及组间一致性评价采用Bland-Altman法。P<0.05表示差异具有统计学意义。受试者工作特征(receiver operator characteristic, ROC)曲线及Bland-Altman图采用MedCalc 20.0.22软件进行绘制。

2 结果

2.1 Fabry病的临床基线特征

       10例Fabry病患者中女6例、男4例,就诊年龄为20~60(50.6±9.7)岁。90%的患者均有临床症状,常见临床症状包括胸部不适、心悸、呼吸困难等。其中有6例(60%)患者合并肾功能不全(n=5)或周围神经痛(n=1)。心电图改变主要表现为左室心肌肥厚相关心电图改变,如左室高电压及ST-T改变,其他常见心电图改变包括室性早搏、窦性心动过缓及传导阻滞等。Fabry病的其他临床基线资料详见表1

表1  Fabry病与HCM患者的临床基线资料
Tab. 1  Baseline clinical data of patients with Fabry disease and HCM

2.2 Fabry病的MRI特征

       同正常对照组比较,Fabry病患者的左房前后径、左室舒张末容积指数(left ventricular end-diastolic volume index, LVEDVi)、左室收缩末容积指数(left ventricular end-systolic volume index, LVESVi)及心肌质量指数(myocardial mass index, MMi)均显著增大(P均<0.05),而左室横径、左室射血分数(left ventricular ejection fraction, LVEF)及心输出指数(cardiac output index, CI)两组间差异无统计学意义(P均>0.05;表2)。有6例患者合并左室流出道梗阻,并接受了外科Morrow手术治疗。7例患者有心肌延迟强化(late gadolinium enhancement, LGE),其中仅1例患者为典型的下侧壁基底段肌壁间LGE(图1)。左室应变分析结果示,Fabry病患者三个方向的整体应变及其对应的收缩期与舒张早期应变率均较正常对照组显著减低(P均<0.001)(表3图2)。

图1  Fabry病的典型MRI表现。图例所示为一例57岁女性患者,基因确诊为Fabry病。图1A、1B分别为四腔心及短轴位电影图像,可见左室壁弥漫增厚,室间隔最厚约16 mm;图1C、1D为短轴位延迟增强图像,可见左室下侧壁基底段肌壁间片状强化(箭)。
Fig. 1  Typical MRI findings of Fabry disease. The images show a 57-year-old female patient with genetically confirmed Fabry disease. 1A and 1B are four-chamber and short-axis cine images, respectively, showing diffuse left ventricular wall thickening, with the thickest septum of about 16 mm. 1C and 1D are delayed enhancement images in short-axis view, showing an intermural enhancement (arrow) in the basal segment of the inferolateral wall of left ventricle.
图2  Fabry病、HCM及正常对照组的左室应变特征典型代表。2A~2D为一例55岁女性患者,诊断为Fabry病;2E~2H为一例30岁女性患者,诊断为HCM;2I~2L为一例37岁女性正常对照者。可见Fabry病三个方向的整体应变GRS、GCS和GLS较正常对照组均显著降低;同HCM比较,GRS、GCS和GLS也均降低,但GLS组间差异不显著。HCM:肥厚型心肌病;GRS:整体径向应变;GCS:整体周向应变;GLS:整体纵向应变。
Fig. 2  Typical left ventricular strain characteristics in Fabry disease, HCM and normal controls. 2A-2D are Fabry cardiomyopathy, 2E-2H are HCM, and 2I-2L were normal control group. It can be seen that the global strain GRS, GCS and GLS in the three directions of Fabry disease aree significantly lower than those in the normal control group. Compared with HCM, GRS, GCS and GLS are also decreased, but there is no significant in GLS between the two groups. HCM: hypertrophic cardiomyopathy; GRS: global radial strain; GCS: global circumferential strain; GLS: global longitudinal strain.
表2  Fabry病、正常对照组及HCM的MRI基本参数
Tab. 2  Basic MRI parameters of Fabry disease, normal control and HCM groups
表3  Fabry病、正常对照组及HCM的左室应变参数
Tab. 3  Left ventricular strain parameters in Fabry disease, normal controls and HCM

2.3 Fabry病与HCM的比较

       同HCM组比较,Fabry病患者合并肾功能不全的比例更高,差异具有统计学意义(P=0.002),其他临床基线资料两组间差异均无统计学意义(表1)。MRI基本参数中,除MMi组间差异具有统计学意义(P=0.015)外,其余MRI基本参数组间差异均无统计学意义(表2)。左室应变对比分析结果显示,Fabry病患者的GRS与GCS较HCM组显著减低(P值分别为0.006和0.012),余左室应变参数组间差异均无统计学意义(表3图2)。纳入肾功能不全、MMi、GRS进行多因素logistic回归分析,结果显示GRS与Fabry病独立相关(OR=0.84,95% CI:0.72~0.97,P=0.017)。进一步ROC曲线分析显示GRS区分Fabry病与HCM的曲线下面积(area under the curve, AUC)为0.813,其最佳截断值为25.6%,当GRS≤25.6%时,诊断Fabry病的敏感度和特异度分别为80%和85%(图3)。

图3  整体径向应变(GRS)区分Fabry病与肥厚型心肌病(HCM)的诊断效能。受试者工作特征曲线显示GRS的曲线下面积(AUC)为0.813,当GRS≤25.6%时,其诊断Fabry病的敏感度为80%,特异度为85%。
Fig. 3  Diagnostic efficacy of global radial strain (GRS) in differentiating Fabry disease from hypertrophic cardiomyopathy (HCM). Receiver operator characteristic curve shows that the area under the curve (AUC) of GRS was 0.813. When GRS≤25.6%, the sensitivity and specificity of GRS in the diagnosis of Fabry disease are 80% and 85%, respectively.

2.4 组内及组间一致性评价

       对10例Fabry病患者的左室应变参数进行组内及组间的一致性评价。组内一致性评价是由同一名测量人员于1个月后重新测量相同的10例患者,而组间一致性评价则由另一名测量人员测量该10例患者,前提是对第一次的测量结果均不知晓。Bland-Altman分析显示,不论是组内还是组间均具有非常好的一致性(图4)。

图4  组内及组间一致性评价。a为首次测量,b为同一测量人员1个月后重新测量,c为另一测量人员,b与c测量的时候均对a的结果不知晓。GRS:整体径向应变;RSSR:径向收缩期应变率;REDSR:径向舒张早期应变率;GCS:体周向应变;CSSR:周向收缩期应变率;CEDSR:周向舒张早期应变率;GLS:整体纵向应变;LSSR:纵向收缩期应变率;LEDSR:纵向舒张早期应变率。
Fig. 4  Intra- and inter-group consistency evaluation. a means the first measurement, b means the same surveyor takes the measurement again one month later, and c means another surveyor. b and c were blind to the results of a. GRS: global radial strain; RSSR: radial systolic strain rate; REDSR: radial early diastolic strain rate; GCS: global circumferential strain; CSSR: circumferential systolic strain rate; CEDSR: circumferential early diastolic strain rate; GLS: global longitudinal strain; LSSR: longitudinal systolic strain rate; LEDSR: longitudinal early diastolic strain rate.

3 讨论

       本研究系统性分析了10例Fabry病患者的临床基线资料、MRI基本参数和左室应变特征及其与HCM患者的比较,主要研究结果包括:(1)Fabry病患者常合并肾功能不全、周围神经病变等心脏外表现,当临床出现不明原因的左室肥厚合并多系统受累时,需考虑到Fabry病的可能性;(2)常规MRI结构及功能等指标难以区分Fabry病与HCM,当患者出现典型的左室下侧壁基底段肌壁间强化时,可提示Fabry病的可能;(3)虽然Fabry病患者的左室整体收缩功能较正常对照组无显著差异,但其各个方向的整体应变及应变率均较正常对照组显著降低;(4)GRS与Fabry病独立相关,可以很好地区分Fabry病与HCM,是一个具有潜在价值的鉴别诊断指标。

3.1 Fabry病的临床表现

       既往研究表明,Fabry病患者通常合并其他系统受累,但少数患者可仅表现为心脏受累表现,缺乏特异性。一项纳入139例Fabry病患者的研究结果显示,60.4%的患者有心血管症状或体征,仅2例患者只有心血管表现而无其他系统受累表现[12]。此外,女性Fabry病患者比男性更容易发展出单独心脏受累为特征的心脏变异型,给临床诊断带来一定的挑战[13]。本研究中,90%的Fabry病患者有心血管症状,其中60%的患者合并有心脏外表现,主要表现为肾功能不全或周围神经症状,对Fabry病的诊断具有一定的提示作用。因此,临床实践中遇到不明原因左室肥厚的患者,系统全面地了解患者各系统受累症状或体征对于Fabry病的诊断及鉴别诊断具有重要价值。然而,对于单独心脏受累的Fabry病患者,症状往往缺乏特异性,进一步的影像学检查可以提供额外的诊断信息。

3.2 Fabry病的MRI表现

       CMR是集结构、功能及组织学为一体的一站式检查方法,具有大视野、软组织分辨率高、多平面及多参数成像等优点,目前已成为心脏结构及功能评估的金标准,在左心室肥厚的病因诊断及鉴别诊断中发挥着重要作用[14, 15, 16]。前期研究及既往文献研究结果显示,Fabry病多表现为左室弥漫性增厚或对称性增厚,而HCM多为非对称性室间隔增厚,部分患者可累及毗邻左室前壁及下壁[17, 18, 19, 20]。然而,尽管Fabry病多表现为左室弥漫性增厚,但部分患者仍以室间隔增厚为著,同时伴左室流出道梗阻,难以与HCM区分[21]。本研究中有6例患者表现为以室间隔增厚为著伴左室流出道梗阻,初步诊断均为HCM,随后均接受了外科Morrow手术治疗,术后病理证实为Fabry病。由此可见,对于左室弥漫增厚、室间隔增厚为著伴左室流出道梗阻的患者,单从形态学上难以区分Fabry病和HCM。同时也告诉我们,对于该类患者我们需要考虑到Fabry病的可能,去寻找更多的影像学支持证据[21]。钆对比剂延迟强化(late gadolinium enhancement, LGE)特征在左室肥厚的病因识别中具有重要参考价值,Fabry病的典型LGE表现为左室下侧壁基底段肌壁间强化,而HCM多表现为右室插入部或肥厚心肌内的灶状强化[18, 19, 20, 22]。本研究中仅1例Fabry病患者表现为典型的LGE,其余Fabry病患者LGE均无特异性,因此对于不典型的Fabry病患者,LGE的诊断价值有限。我们的前期研究结果表明,MR T1 mapping技术能够很好地区分Fabry病和HCM,Fabry病多表现为T1值降低,而HCM多表现为T1值升高,较具特异性,与既往研究报道一致[17,23]。但T1 mapping技术受到MR设备、场强、扫描序列等多因素的影响,目前尚缺乏统一的正常值参考标准[24, 25];且Fabry病患者部分可出现心肌纤维化,导致T1值正常或偏高[26]。因此,单凭T1值诊断Fabry病可能存在漏诊或误诊的情况,需综合考虑患者的临床表现、左室肥厚类型及LGE特征等多方面信息,方能做出更加准确的诊断。

3.3 Fabry病的左室应变特征

       CMR-FT技术是利用后处理软件在常规电影图像上勾画心内膜与心外膜边界,通过体素的相对运动与位移,得到心肌局部或整体在径向、周向及纵向三个方向的应变与应变率,已成为早期评估或监测亚临床心肌功能障碍的敏感指标[10,27, 28, 29]。本研究结果显示,Fabry病患者的LVEF与正常对照组无明显差异,但左室应变分析表明Fabry病患者的GRS、GCS和GLS及其对应的收缩期和舒张早期应变率均较正常对照组显著减低,提示Fabry病患者的左室收缩及舒张功能已经出现损害,与既往研究结果基本一致[30, 31]。由于Fabry病比较罕见,目前应用CMR-FT鉴别Fabry病与HCM的研究鲜有报道。本研究比较了Fabry病和HCM的左室应变参数,研究结果表明,Fabry病患者的GRS、GCS较HCM显著减低,分析可能的原因为Fabry病患者多表现为左室弥漫增厚,心肌肥厚的范围较HCM更为广泛。多因素logistic回归分析显示GRS与Fabry病独立相关,其区分Fabry病与HCM的曲线下面积可达0.813,这在既往文献中尚未报道,有望成为一个新的诊断指标,但尚需更大样本量的研究证实。

3.4 本研究的局限性

       首先,本研究的局限性在于研究样本量小、存在较大的选择偏倚,多数患者是因为疑似HCM来我院就诊,且一半以上的患者合并左室流出道梗阻。因此,本研究的结果可能缺乏普适性,而更适合肥厚程度较重且伴有左室流出道梗阻的患者。其次,本研究未对左室各节段的应变及应变率进行分析,考虑的原因为样本量较小、左室各节段的应变或应变率稳定性比整体应变差,结果会存在较大的变异。

       综上所述,Fabry病常合并心脏外表现,对诊断有一定的提示作用。尽管Fabry病患者的左室整体收缩功能在正常范围,但其各个方向的应变及应变率均已受到损害。GRS能够有效区分Fabry病与HCM,是一个具有潜在价值的新型诊断指标。

[1]
中国法布雷病专家协作组. 中国法布雷病诊疗专家共识(2021年版)[J]. 中华内科杂志, 2021, 60(4): 321-330. DOI: 10.3760/cma.j.cn112138-20201218-01028.
Chinese Fabry Disease Expert Panel. Expert consensus for diagnosis and treatment of Fabry disease in China (2021)[J]. Chin J Intern Med, 2021, 60(4): 321-330. DOI: 10.3760/cma.j.cn112138-20201218-01028.
[2]
Germain DP. Fabry disease[J/OL]. Orphanet J Rare Dis, 2010, 5: 30 [2022-08-14]. https://pubmed.ncbi.nlm.nih.gov/21092187/. DOI: 10.1186/1750-1172-5-30.
[3]
Germain DP, Altarescu G, Barriales-Villa R, et al. An expert consensus on practical clinical recommendations and guidance for patients with classic Fabry disease[J]. Mol Genet Metab, 2022, 137(1-2): 49-61. DOI: 10.1016/j.ymgme.2022.07.010.
[4]
Muntean C, Starcea IM, Stoica C, et al. Clinical Characteristics, Renal Involvement, and Therapeutic Options of Pediatric Patients with Fabry Disease[J/OL]. Front Pediatr, 2022, 10: 908657 [2022-08-11]. https://pubmed.ncbi.nlm.nih.gov/35722479/. DOI: 10.3389/fped.2022.908657.
[5]
Palaiodimou L, Kokotis P, Zompola C, et al. Fabry Disease: current & novel therapeutic strategies. A narrative review[J/OL]. Curr Neuropharmacol, 2022 [2022-12-04]. https://pubmed.ncbi.nlm.nih.gov/35652398/. DOI: 10.2174/1570159X20666220601124117.
[6]
Waldek S, Patel MR, Banikazemi M, et al. Life expectancy and cause of death in males and females with Fabry disease: findings from the Fabry Registry[J]. Genet Med, 2009, 11(11): 790-796. DOI: 10.1097/GIM.0b013e3181bb05bb.
[7]
Militaru S, Jurcuț R, Adam R, et al. Echocardiographic features of Fabry cardiomyopathy-Comparison with hypertrophy-matched sarcomeric hypertrophic cardiomyopathy[J]. Echocardiography, 2019, 36(11): 2041-2049. DOI: 10.1111/echo.14508.
[8]
Labombarda F, Saloux E, Milesi G, et al. Loss of base-to-apex circumferential strain gradient: A specific pattern of Fabry cardiomyopathy?[J]. Echocardiography, 2017, 34(4): 504-510. DOI: 10.1111/echo.13496.
[9]
Onishi T, Saha SK, Delgado-Montero A, et al. Global longitudinal strain and global circumferential strain by speckle-tracking echocardiography and feature-tracking cardiac magnetic resonance imaging: comparison with left ventricular ejection fraction[J]. J Am Soc Echocardiogr, 2015, 28(5): 587-596. DOI: 10.1016/j.echo.2014.11.018.
[10]
Xu J, Yang W, Zhao S, et al. State-of-the-art myocardial strain by CMR feature tracking: clinical applications and future perspectives[J]. Eur Radiol, 2022, 32(8): 5424-5435. DOI: 10.1007/s00330-022-08629-2.
[11]
Meucci MC, Lillo R, Lombardo A, et al. Comparative analysis of right ventricular strain in Fabry cardiomyopathy and sarcomeric hypertrophic cardiomyopathy[J/OL]. Eur Heart J Cardiovasc Imaging, 2022, 28: jeac151 [2022-12-04]. https://pubmed.ncbi.nlm.nih.gov/35900225/. DOI: 10.1093/ehjci/jeac151.
[12]
Wu JC, Ho CY, Skali H, et al. Cardiovascular manifestations of Fabry disease: relationships between left ventricular hypertrophy, disease severity, and alpha-galactosidase A activity[J]. Eur Heart J, 2010, 31(9): 1088-1097. DOI: 10.1093/eurheartj/ehp588.
[13]
Yousef Z, Elliott PM, Cecchi F, et al. Left ventricular hypertrophy in Fabry disease: a practical approach to diagnosis[J]. Eur Heart J, 2013, 34(11): 802-808. DOI: 10.1093/eurheartj/ehs166.
[14]
Hung CL, Wu YW, Lin CC, et al. 2021 TSOC Expert Consensus on the Clinical Features, Diagnosis, and Clinical Management of Cardiac Manifestations of Fabry Disease[J]. Acta Cardiol Sin, 2021, 37(4): 337-354. DOI: 10.6515/ACS.202107_37(4).20210601A.
[15]
Leiner T, Bogaert J, Friedrich MG, et al. SCMR Position Paper (2020) on clinical indications for cardiovascular magnetic resonance[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 76 [2022-12-04]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7649060/. DOI: 10.1186/s12968-020-00682-4.
[16]
Giusca S, Steen H, Montenbruck M, et al. Multi-parametric assessment of left ventricular hypertrophy using late gadolinium enhancement, T1 mapping and strain-encoded cardiovascular magnetic resonance[J/OL]. J Cardiovasc Magn Reson, 2021, 23(1): 92 [2022-12-04]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8273957/. DOI: 10.1186/s12968-021-00775-8.
[17]
徐杨飞, 杨凯, 刘啸峰, 等. 法布里病累及心脏的临床及MR特征分析[J]. 中华放射学杂志, 2022, 56(2): 168-174. DOI: 10.3760/cma.j.cn112149-20210416-00379.
Xu YF, Yang K, Liu XF, et al. Clinical and cardiac MR characteristics of heart involvement in patients with Fabry disease[J]. Chin J Radiol, 2022, 56(2): 168-174. DOI: 10.3760/cma.j.cn112149-20210416-00379.
[18]
Deva DP, Hanneman K, Li Q, et al. Cardiovascular magnetic resonance demonstration of the spectrum of morphological phenotypes and patterns of myocardial scarring in Anderson-Fabry disease[J/OL]. J Cardiovasc Magn Reson, 2016, 18: 14 [2022-12-04]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4818406/. DOI: 10.1186/s12968-016-0233-6.
[19]
Perry R, Shah R, Saiedi M, et al. The Role of Cardiac Imaging in the Diagnosis and Management of Anderson-Fabry Disease[J]. JACC Cardiovasc Imaging, 2019, 12(7): 1230-1242. DOI: 10.1016/j.jcmg.2018.11.039.
[20]
Liu J, Zhao S, Yu S, et al. Patterns of Replacement Fibrosis in Hypertrophic Cardiomyopathy[J]. Radiology, 2022, 302(2): 298-306. DOI: 10.1148/radiol.2021210914.
[21]
Yang K, Wei MD, Chen XY, et al. Anderson-Fabry disease: a rare phenocopy of hypertrophic cardiomyopathy[J/OL]. Eur Heart J Cardiovasc Imaging, 2021, 22(7): e94 [2022-12-04]. https://academic.oup.com/ehjcimaging/article/22/7/e94/6054270. DOI: 10.1093/ehjci/jeaa349.
[22]
Karamitsos TD, Francis JM, Myerson S, et al. The role of cardiovascular magnetic resonance imaging in heart failure[J]. J Am Coll Cardiol, 2009, 54(15): 1407-1424. DOI: 10.1016/j.jacc.2009.04.094.
[23]
Karur GR, Robison S, Iwanochko RM, et al. Use of Myocardial T1 Mapping at 3.0 T to Differentiate Anderson-Fabry Disease from Hypertrophic Cardiomyopathy[J]. Radiology, 2018, 288(2): 398-406. DOI: 10.1148/radiol.2018172613.
[24]
Robinson AA, Chow K, Salerno M. Myocardial T1 and ECV Measurement: Underlying Concepts and Technical Considerations[J]. JACC Cardiovasc Imaging, 2019, 12(11): 2332-2344. DOI: 10.1016/j.jcmg.2019.06.031.
[25]
Meloni A, Martini N, Positano V, et al. Myocardial T1 Values at 1.5 T: Normal Values for General Electric Scanners and Sex-Related Differences[J]. J Magn Reson Imaging, 2021, 54(5): 1486-1500. DOI: 10.1002/jmri.27639.
[26]
Nordin S, Kozor R, Medina-Menacho K, et al. Proposed Stages of Myocardial Phenotype Development in Fabry Disease[J]. JACC Cardiovasc Imaging, 2019, 12(8): 1673-1683. DOI: 10.1016/j.jcmg.2018.03.020.
[27]
Chen X, Li L, Cheng H, et al. Early Left Ventricular Involvement Detected by Cardiovascular Magnetic Resonance Feature Tracking in Arrhythmogenic Right Ventricular Cardiomyopathy: The Effects of Left Ventricular Late Gadolinium Enhancement and Right Ventricular Dysfunction[J/OL]. J Am Heart Assoc, 2019, 8(17): e012989 [2022-12-04]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6755833/. DOI: 10.1161/JAHA.119.012989.
[28]
胡瑞, 李瑞, 杨鹏程, 等. 心脏磁共振在诊断左室肥厚疾病中的临床应用进展[J]. 磁共振成像, 2022, 13(5): 151-153, 170. DOI: 10.12015/issn.1674-8034.2022.05.032.
Hu R, Li R, Yang PC, et al. Advances in the clinical application of cardiac magnetic resonance in the diagnosis of left ventricular hypertrophy[J]. Chin J Magn Reson Imaging, 2022, 13(5): 151-153, 170. DOI: 10.12015/issn.1674-8034.2022.05.032.
[29]
Mahmod M, Raman B, Chan K, et al. Right ventricular function declines prior to left ventricular ejection fraction in hypertrophic cardiomyopathy[J/OL]. J Cardiovasc Magn Reson, 2022, 24(1): 36 [2022-12-04]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9190122/.
[30]
Zhao L, Zhang C, Tian J, et al. Quantification of myocardial deformation in patients with Fabry disease by cardiovascular magnetic resonance feature tracking imaging[J]. Cardiovasc Diagn Ther, 2021, 11(1): 91-101. DOI: 10.21037/cdt-20-897.
[31]
Zada M, Lo Q, Boyd AC, et al. Basal Segmental Longitudinal Strain: A Marker of Subclinical Myocardial Involvement in Anderson-Fabry Disease[J]. J Am Soc Echocardiogr, 2021, 34(4): 405-413. DOI: 10.1016/j.echo.2020.11.009.

上一篇 非对比增强CMR纵向弛豫时间和横向弛豫时间定量图异质性参数检出神经肌肉疾病心脏受累的研究
下一篇 高血压性心脏病患者左室心肌纤维化与左房功能参数相关性的初步研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2