分享:
分享到微信朋友圈
X
特别关注
高血压性心脏病患者左室心肌纤维化与左房功能参数相关性的初步研究
夏睿 陶黎 廖继春 张志伟 杨海涛 李咏梅 吕发金 郜发宝

Cite this article as: Xia R, Tao L, Liao JC, et al. The relationship of left ventricular myocardial fibrosis and left atrial function parameters of patients with hypertensive heart disease[J]. Chin J Magn Reson Imaging, 2022, 13(12): 20-25.本文引用格式:夏睿, 陶黎, 廖继春, 等. 高血压性心脏病患者左室心肌纤维化与左房功能参数相关性的初步研究[J]. 磁共振成像, 2022, 13(12): 20-25. DOI:10.12015/issn.1674-8034.2022.12.004.


[摘要] 目的 应用心脏磁共振(cardiac magnetic resonance, CMR)研究高血压性心脏病(hypertensive heart disease, HHD)患者左室心肌纤维化的特点及左房、左室心功能的变化,探讨分节段的心肌纤维化与左房、左室心功能参数的相关性。材料与方法 回顾性分析2021年12月至2022年6月于重庆医科大学附属第一医院心内科诊断为HHD的患者病例16例(HHD组)与同时期健康对照者资料16例(对照组)。两组均扫描心脏电影序列测量左房射血分数(left atrial ejection fraction, LAEF)、左房舒张末期容积(left atrial end-diastolic volume, LAEDV)、左房收缩末期容积(left atrial end-systolic volume, LAESV)、左室射血分数(left ventricular ejection fraction, LVEF)、左室舒张末期容积(left ventricular end-diastolic volume, LVEDV)、左室收缩末期容积(left ventricular end-systolic volume, LVESV),分别在MR对比剂(钆喷酸葡胺)注射前及注射15 min后采集T1 mapping序列图像,采用CVI42后处理软件测量左室心肌细胞外容积(extracellular volume, ECV)并同时获得对比剂注射前的左室心肌T1值(pre-T1)。分心底、心肌中层、心尖三个层面和室间隔、心肌前壁、心肌侧壁和心肌下壁四个节段对ECV和pre-T1值和左房功能参数进行相关性分析。结果 HHD组ECV、pre-T1高于对照组(t=2.363,P=0.030;t=2.100,P=0.014);LAEF、LVEF均低于对照组(t=-3.932,P<0.001;t=-4.251,P<0.001),LAEDV、LAESV、LVEDV、LVESV均高于对照组(t=2.732,P=0.010;t=4.223,P<0.001;t=2.898,P=0.010;t=3.208,P=0.006);HHD组心肌中层室间隔区域ECV、左室心底层面前壁、侧壁、心肌中层室间隔pre-T1值与LAEF存在线性相关(r=0.663,P=0.005;r=0.530,P=0.035;r=0.627,P=0.009;r=0.579,P=0.019)。结论 HHD患者左心室出现弥漫性心肌纤维化,左房、左室心功能降低,其中左室部分节段与左房心功能参数之间存在一定的相关性,提示HHD患者左室心肌纤维化与左房心功能的恶化存在一定的因果关系,为左室心肌结构与左房功能相互作用推动HHD的疾病进展及不良预后提供了证据。
[Abstract] Objective To investigate the characteristics of left ventricular myocardial fibrosis and the changes of left atrial and ventricular cardiac function in patients with hypertensive heart disease (HHD) by cardiac magnetic resonance (CMR), and to analyze the correlation between segmental left ventricular fibrosis and left atrial and ventricular function parameters.Materials and Methods Sixteen patients diagnosed with HHD cases (HHD group) in the Department of Cardiology of the First Affiliated Hospital of Chongqing Medical University from December 2021 to June 2022 and 16 data of healthy controls in the same period (control group) were retrospective analyzed. Left atrial ejection fraction (LAEF), left atrial end-diastolic volume (LAEDV), left atrial end-systolic volume (LAESV), left ventricular ejection fraction (LVEF), left ventricular end-diastolic volume (LVEDV), and left ventricular end-systolic volume (LVESV) were measured by cardiac cine sequences. T1 mapping sequence images were performed before and 15 min after the injection of Gd-DTPA. The commercial post-processing software was used to measure the left ventricular extracellular volume (ECV) and obtain the left ventricular myocardial T1 value (pre-T1) before contrast agent injection. The correlation between the values of ECV and pre-T1 and the functional parameters of the left atrium was analyzed in basal, midmyocardium and apex slices and ventricular septum, anterior myocardium, lateral myocardium and inferior myocardium segments.Results ECV and pre-T1 of HHD group were higher than control group (t=2.363, P=0.030; t=2.100, P=0.014). LAEF and LVEF were lower than control group (t=-3.932, P<0.001; t=-4.251, P<0.001), LAEDV, LAESV, LVEDV and LVESV were higher than control group (t=2.732, P=0.010; t=4.223, P<0.001; t=2.898, P=0.010; t=3.208, P=0.006). There was a linear correlation between ECV of midmyocardial septum and LAEF in HHD group (r=0.663, P=0.005), and there was a linear correlation between pre-T1 of midmyocardial septum, basal anterior, basal lateral wall and LAEF (r=0.530, P=0.035; r=0.627, P=0.009; r=0.579, P=0.019).Conclusions We found the presence of diffuse myocardial fibrosis and the left atrial and ventricular function decreased in HHD patients, and there is a certain correlation between some segments of left ventricular fibrosis and left atrial function parameters in HHD patients, which suggesting that there was a causal relationship between the left ventricular myocardial fibrosis and the deterioration of left atrial function in HHD patients. This provides evidence for the interaction between left ventricular myocardial structure and left atrial function to promote the progression and poor prognosis of HHD.
[关键词] 高血压性心脏病;左心室;心肌纤维化;左心房;心功能参数;心脏磁共振;磁共振成像
[Keywords] hypertensive heart disease;left ventricular;myocardial fibrosis;left atrium;cardiac function parameters;cardiac magnetic resonance;magnetic resonance imaging

夏睿 1   陶黎 1   廖继春 1   张志伟 1   杨海涛 1   李咏梅 1   吕发金 1*   郜发宝 2  

1 重庆医科大学附属第一医院放射科,重庆 400016

2 四川大学华西医院放射科,成都 610044

吕发金,E-mail:986570736@qq.com

作者利益冲突声明:全体作者均声明无利益冲突。


基金项目: 国家自然科学基金 81601546
收稿日期:2022-08-13
接受日期:2022-12-08
中图分类号:R445.2  R541.3 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2022.12.004
本文引用格式:夏睿, 陶黎, 廖继春, 等. 高血压性心脏病患者左室心肌纤维化与左房功能参数相关性的初步研究[J]. 磁共振成像, 2022, 13(12): 20-25. DOI:10.12015/issn.1674-8034.2022.12.004.

       近年来,血压病的发病率逐年递增,根据中国高血压调查最新数据显示,我国18岁及以上居民高血压患病率约为27.9%以上[1],高血压性心脏病(hypertensive heart disease, HHD)是血压长期增高导致左心室结构及功能变化的一类疾病[2],HHD的主要病理改变是左心室肥厚及弥漫性心肌纤维化[3]。心脏磁共振(cardiac magnetic resonance, CMR)T1 mapping及细胞外容积(extracellular volume, ECV)作为无创性评估心肌纤维化的手段,可以早期发现HHD患者心肌纤维化[3]。同时血压长期增高引起的心脏后负荷增加会导致左心房的重构,研究者通过超声斑点追踪技术发现在高血压早期左心房就已出现重构[4, 5, 6, 7],目前很少有研究探讨HHD患者左心房重构和左室心肌纤维化之间的关系,本研究应用MRI心肌纤维化定量技术结合左房功能参数分析观测高血压病患者左房容积改变及左室心肌纤维化的特点,进而探讨HHD患者继发左房重构与心肌纤维化之间的相关关系,从而研究特定MRI参数监测HHD的疾病进展及治疗效果评估的可行性。

1 材料与方法

1.1 研究对象

       回顾性分析2021年12月至2022年6月于重庆医科大学附属第一医院心内科诊断为HHD的患者病例16例(HHD组)。并收集同时期健康对照者资料16例(对照组),采集两组的基本信息,包括年龄、性别、吸烟史、饮酒史、收缩压、舒张压、身高、体质量并计算身体质量指数(body mass index, BMI)。HHD组纳入标准:所有患者均神志清楚,依从性良好;符合《2018欧洲心脏病学会和欧洲高血压学会高血压管理指南》中HHD的诊断要求[8];年龄≥18岁。排除标准:合并冠心病、心肌病等;合并先天性心脏病;肝肾功能异常;存在心脏磁共振检查禁忌证。对照组纳入标准:既往无心肌病及先天性心脏病等心脏疾病病史者。排除标准:存在CMR检查禁忌证或CMR图像质量欠佳者。本研究遵照《赫尔辛基宣言》,经重庆医科大学附属第一医院伦理委员会批准,免除受试者知情同意,批准文号:2022-K366。

1.2 MRI扫描

       采用飞利浦Ingenia 3.0 T MRI扫描仪,心脏专用线圈,胸前导联的心电门控。主要扫描序列包括:电影序列(扫描层面包括全心左心室短轴、两腔心及三层四腔心长轴电影图像)、对比剂注射前T1 mapping序列(pre-T1)、延迟增强序列、对比剂注射后T1 mapping序列(post-T1),其中对比剂注射前后的T1 mapping序列各采集心底、心肌中层及心尖位置三层,且前后定位一致。

       电影序列具体参数如下:采用并行采集平衡快速场回波(sense balance turbo field echo, sBTFE)序列,最小TR 2.82 ms,最小TE 1.41 ms,翻转角45°,每个心动周期采集30个心脏时相(时间单位按照心动周期百分比计算),FOV 30 cm×30 cm,矩阵240×240,层厚10 mm。

       T1 mapping采用改进的Look-Locker反转恢复(modified Look-Locker inversion recovery, MOLLI)序列,具体参数如下:TR 2.1 ms,TE 1 ms, 采集10个TI值,翻转角20°,FOV 30 cm×30 cm,矩阵256×256,加速因子2,层厚10 mm。采集心底、心肌中层及心尖三个层面。

       MR对比剂(钆喷酸葡胺,Gd-DTPA,Magnevist,Bayer Health Care Pharma AG,Berlin,Germany)按0.15 mmol/kg体质量经患者肘正中静脉注入,在10 min后采集对比剂延迟增强(late gadolinium enhancement, LGE)图像,采用相位敏感反转恢复序列(phase sensitive inversion recovery, PSIR)序列,具体参数如下:最小TR 6.13 ms,TE 3 ms,翻转角25°,FOV 30 cm×30 cm,矩阵300×300,层厚10 mm,间距 0 mm。在15 min后采集T1 mapping图像,采用序列及采集部位与对比剂注射前一致。

1.3 数据后处理

       心肌细胞外容积:将对比剂注射前后的T1map DICOM图像导入心脏后处理分析软件(CVI42 v. 5.14.0 Circle Cardiovascular Imaging, Calgary, Canada)的T1弛豫模块,勾画出心腔内感兴趣区(region of interest, ROI)以计算红细胞容积,然后计算得出ECVmap,在ECVmap图像上分别勾画心底、心肌中层、心尖三个层面上室间隔、左室前壁、左室侧壁、左室下壁区域一共12个ROI,获得相应的ECV值,具体公式如下:

       其中HCT为患者红细胞压积(hematocrit),T1MyoPost指对比剂注射后心肌的T1值,T1MyoPre指对比剂注射前心肌的T1值,T1BloodPost指对比剂注射后血池的T1值,T1BloodPre指对比剂注射前血池的T1值[9]

       注射对比剂前T1值:选取与ECV同样的12个ROI(复制ECV的ROI以保证测量区域一致),获得相应区域的pre-T1值。

       左房射血分数(left atrial ejection fraction, LAEF):在四腔心及两腔心长轴电影图像上,通过手动勾画左心房收缩及舒张末期面积和长轴长度(勾画时除外左心耳及肺静脉根部),测量公式如下[10]

       左心室射血分数(left ventricular ejection fraction, LVEF):将心脏短轴电影导入CVI42的心功能分析模块,通过软件自动识别心内膜和心外膜,并经人工校正后获得左心室舒张末期容积(left ventricular end-diastolic volume, LVEDV)、左心室收缩末期容积(left ventricular end-systolic volume, LVESV)、LVEF。

       收集上述12个ROI的ECV与pre-T1值、每一层4个ROI的ECV与pre-T1均值、每个节段3个ROI的ECV与pre-T1均值以及所有ROI的ECV与pre-T1均值,并与LAEF进行相关性分析。

1.4 统计学方法

       采用SPSS 22.0 软件进行统计学分析。计量资料且符合正态分布以均数±标准差(x¯±s)表示,HHD组ECV、pre-T1、LAEF、LAEDV、LAESV、LVEF、LVEDV、LVESV等参数与对照组的比较采用独立样本t检验;HHD组ECV、pre-T1与上述心功能参数的相关性分析采用线性相关分析。P<0.05表示差异有统计学意义。

2 结果

2.1 一般资料

       HHD组年龄与对照组的差异无统计学意义(P>0.05),其余参数具体见表1

表1  HHD组与对照组的基本指标
Tab. 1  Basic index of HHD group and control group

2.2 MRI扫描结果

       HHD组LAEF、LVEF均低于对照组(图12),LAEDV、LAESV、LVEDV、LVESV高于对照组,具体数据见表2。LGE示4例HHD患者存在条状或小片状延迟强化,而12例HHD患者未见确切延迟强化。其中10例出现二尖瓣返流,4例出现主动脉瓣返流,1例出现心肌脂肪浸润,未出现心肌梗死病例。

       HHD组的ECV和pre-T1值明显高于对照组,具体见表3

图1  高血压性心脏病患者和对照组的T1map和ECVmap图。1A、1B、1C分别为对照组注射对比剂前的T1map、注射对比剂后的T1map和ECVmap;1D、1E、1F分别为高血压性心脏病患者注射对比剂前的T1map、注射对比剂后的T1map和ECVmap。ECV:细胞外容积。
Fig. 1  T1map and ECVmap of hypertensive heart disease patient and control group. 1A, 1B and 1C are T1map before injection of contrast agent, T1map after injection of contrast agent and ECVmap in control group, respectively. 1D, 1E and 1F are T1map before injection of contrast agent, T1map after injection of contrast agent and ECVmap in hypertensive heart disease patient, respectively. ECV: extracellular volume.
图2  高血压性心脏病患者和对照组的电影序列图。2A、2B分别为高血压性心脏病患者舒张末期与收缩末期的四腔心电影图。2C、2D分别为对照组舒张末期与收缩末期的四腔心电影图。
Fig. 2  Cine sequences of hypertensive heart disease patient and control group. 2A and 2B are the four-chamber views of the end diastole and end systole with hypertensive heart disease, respectively. 2C and 2D are the four-chamber views of the end diastole and end systole in control group, respectively.
表2  HHD组与对照组心功能参数及左室壁厚度的比较
Tab. 2  Comparison of cardiac function parameters and left ventricular wall thickness between HHD group and control group
表3  HHD组与对照组ECV和pre-T1值比较
Tab. 3  Comparison of ECV and pre-T1 values between HHD group and control group

2.3 相关性分析

       HHD患者心肌中层室间隔区域ECV、左室心底前壁、侧壁、心肌中层室间隔pre-T1值与LAEF存在线性相关,余ECV、pre-T1参数与LAEF之间无相关关系;进一步分析发现心肌中层室间隔区域ECV与LAESV及左室壁厚度存在线性相关,左室总ECV与左室壁厚度也存在线性相关(r=0.663,P=0.005),具体见表45

表4  高血压性心脏病患者LAEF与部分ECV、T1值的相关性分析
Tab. 4  Correlation analysis between LAEF and patial ECV and T1 values in hypertensive heart disease patients
表5  高血压性心脏病患者心肌中层室间隔区域ECV、pre-T1与左房、左室心功能参数及左室壁厚度的相关性分析
Tab. 5  Correlation analysis of ECV and pre-T1 in the middle ventricular septal region with patial left atrial and left ventricular functional parameters and left ventricular wall thickness in hypertensive heart disease patients

3 讨论

       本研究发现,与健康人群相比,HHD患者ECV和pre-T1值明显升高,LAEF、LVEF降低,LAEDV、LAESV、LVEDV、LVESV升高,在相关性分析中发现心肌中段室间隔区域ECV与LAEF、LAESV及左室壁厚度存在线性相关,左室心底前壁、侧壁、心肌中层室间隔pre-T1值与LAEF存在线性相关,余参数之间不存在相关关系。

3.1 HHD患者心肌纤维化与左室壁增厚的关系

       HHD心肌纤维化的途径主要是通过成纤维细胞激活,而不一定有心肌细胞丢失的“间质纤维化”[11, 12],因此,与心肌梗死一类的以细胞凋亡/坏死介导的“替代纤维化”相比,左室心肌壁随着纤维化的加重,左室壁逐渐增厚,这就解释了本研究中ECV与左室心肌壁厚度呈线性正相关这一现象。

3.2 HHD患者心肌纤维化与心功能的关系

       HHD患者心肌纤维化通过胶原纤维的积累使心室肌顺应性下降、僵硬度增加,从而导致左室舒张功能受损,进一步损害了左室舒张期的充盈,进而造成左房后负荷的增加,出现左房增大和LAEF下降,研究证实在HHD早期就可发现左心房运动的异常[10],特别是国内学者应用超声技术发现早在左房结构变化之前,其功能就已出现下降[4,6]。这与本研究中心肌中段室间隔区域ECV与LAESV呈线性正相关,与LAEF呈线性负相关的研究结果是一致的,之前也有研究表明左房径线与左室ECV成线性相关关系[13],本研究通过左房的体积参数更能全面反映左房功能与左室心肌纤维化的关系。

       本研究中ECV与左房EDV的线性关系不存在统计学意义可能的原因是LAESV较LAEDV相比更能体现左房射血的能力[14]。本研究发现ECV与LVEF之间不存在线性相关性,这与之前的研究发现LAEF与LVEF之间没有相关性是一致的,可能的原因是左心室的心功能参数主要反映的是心脏的收缩功能改变,而左心房心功能参数主要与左心室的舒张功能相关[15, 16]。之前的研究提示HHD患者左房功能的变化出现在左室肥厚之前[17],这提示了HHD患者监测左房功能的变化可以更早期地发现心脏血流动力学的改变。

3.3 HHD患者心肌纤维化MRI评估方法

       研究证实HHD患者心肌可出现局灶和弥漫的心肌纤维化,并与患者预后密切相关[18],数据表明HHD心肌纤维化可能是可逆的,特别是在早期阶段[19],因此早期诊断和治疗是必要的,心肌活检虽是诊断HHD的金标准,但作为一种侵入性的检查手段,限制了其在临床上的应用。CMR检查中的LGE成像技术已成为扫描局限性心肌纤维化的常用手段,但LGE依赖于正常心肌做对比[20],不太可能揭示HHD患者早期较轻的弥漫性心肌纤维化,如本研究中仅有4例患者出现了阳性的LGE[21]

       Pre-T1值与ECV值可以评估弥漫性心肌纤维化[22, 23],T1 mapping反映的是细胞肥大和细胞外纤维化的情况,受磁场强度、身体状况或血细胞比容等因素的影响,ECV是注射对比剂前后T1 mapping计算的结果,能直接反映细胞外间质的情况[20],对于没有LGE的HHD患者,ECV和pre-T1可以早期发现弥漫性心肌纤维化[21]。而且随着HHD患者病程的进展,ECV和pre-T1也会发生变化[24, 25],因此,ECV 和pre-T1值可以用来监测HHD患者病情的变化,进一步指导治疗[26, 27, 28]

3.4 本研究的局限性

       本研究存在一些局限性:首先,由于本研究样本量较小,从左室不同的层面及节段选取的12个ROI纤维化参数中只有部分ROI与左房心功能参数存在相关,进一步扩大样本量的研究或可发现更多左室心肌纤维化参数与左房心功能参数的相关性;其次,本研究中采用后处理软件计算获得HCT,未采用真实的HCT,但已有研究表明后处理获得HCT与真实HCT在分析ECV时差异无统计学意义[29, 30]

       总之,CMR ECV和pre-T1值提示HHD患者存在弥漫性心肌纤维化,部分节段的心肌纤维化程度与恶化的左房心功能参数之间存在一定的相关性,提示HHD患者左室心肌纤维化与左房心功能的恶化存在一定的因果关系,为左室心肌结构与左房功能相互作用推动HHD的疾病进展及不良预后提供了证据。

[1]
Schumann CL, Jaeger NR, Kramer CM. Recent Advances in Imaging of Hypertensive Heart Disease[J/OL]. Curr Hypertens Rep, 2019, 21(1): 3 [2022-08-10]. https://doi.org/10.1007/s11906-019-0910-6. DOI: 10.1007/s11906-019-0910-6.
[2]
王增武, 王文. 中国高血压防治指南(2018年修订版)解读[J]. 中国心血管病研究, 2019, 17(3): 193-197. DOI: 10.3969/j.issn.1672-5301.2019.03.001.
Wang ZW, Wang W. Interpretation of Chinese guidelines for the management of hypertension (2018 revised edition)[J]. Chin J Cardiovasc Res, 2019, 17(3): 193-197. DOI: 10.3969/j.issn.1672-5301.2019.03.001.
[3]
黄淑梅, 江桂华, 汪天悦, 等. 心脏磁共振细胞外容积在高血压性心脏病中的应用[J]. 磁共振成像, 2021, 12(3): 98-101. DOI: 10.12015/issn.1674-8034.2021.03.024.
Huang SM, Jiang GH, Wang TY, et al. Application of cardiac magnetic resonance extracellular volume in hypertensive heart disease[J]. Chin J Magn Reson Imaging, 2021, 12(3): 98-101. DOI: 10.12015/issn.1674-8034.2021.03.024.
[4]
戴法辉, 龚元淑, 薛袁园. 二维斑点追踪及实时三维超声显像在高血压病左房重构早期评价中的应用研究[J]. 中国医学装备, 2020, 17(1): 43-47. DOI: 10.3969/J.ISSN.1672-8270.2020.01.012.
Dai FH, Gong YS, Xue YY. Study on the application of 2D STI and RT-3DE in early evaluation of left atrial remodeling of patients with hypertension[J]. Chin Med Equip, 2020, 17(1): 43-47. DOI: 10.3969/J.ISSN.1672-8270.2020.01.012.
[5]
Blume GG, Mcleod CJ, Barnes ME, et al. Left atrial function: physiology, assessment, and clinical implications[J]. Eur J Echocardiogr, 2011, 12(6): 421-30. DOI: 10.1093/ejechocard/jeq175.
[6]
陈晓沛, 姜志荣, 田雨, 等. 三维斑点追踪成像评价原发性高血压患者早期左心房功能[J]. 中国超声医学杂志, 2019, 35(4): 321-323. DOI: 10.3969/j.issn.1002-0101.2019.04.011.
Chen XP, Jiang ZR, Tian Y, et al. Assessment of Left Atrial Early Function in Patients with Essential Hypertension by 3D Speckle Tracking Imaging[J]. Chin J Ultrasound Med, 2019, 35(4): 321-323. DOI: 10.3969/j.issn.1002-0101.2019.04.011.
[7]
Cui Y, Zhu Z, Qi X, et al. Relationship between circulating concentration of Ang Ⅱ, ADM and ADT and left ventricular hypertrophy in hypertension[J]. Am J Transl Res, 2019, 11(5): 3167-3175. DOI: 10.1097/01.hjh.0000548494.08509.2c.
[8]
Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension[J]. J Hypertens, 2018, 36(10): 1953-2041. DOI: 10.1097/HJH.0000000000001940.
[9]
Haaf P, Garg P, Messroghli DR, et al. Cardiac T1 Mapping and Extracellular Volume (ECV) in clinical practice: a comprehensive review[J/OL]. J Cardiovasc Magn Reson, 2016, 18: 89 [2022-08-10]. https://doi.org/10.1186/s12968-016-0308-4. DOI: 10.1186/s12968-016-0308-4.
[10]
Zhou D, Yang W, Yang Y, et al. Left atrial dysfunction may precede left atrial enlargement and abnormal left ventricular longitudinal function: a cardiac MR feature tracking study[J/OL]. BMC Cardiovasc Disord, 2022, 22(1): 99 [2022-08-10]. https://doi.org/10.1186/s12872-022-02532-w. DOI: 10.1186/s12872-022-02532-w.
[11]
Yamada A, Hashimoto N, Fujito H, et al. Comprehensive assessment of left atrial and ventricular remodeling in paroxysmal atrial fibrillation by the cardiovascular magnetic resonance myocardial extracellular volume fraction and feature tracking strain[J/OL]. Sci Rep, 2021, 11(1): 10941 [2022-08-10]. https://pubmed.ncbi.nlm.nih.gov/34035345/. DOI: 10.1038/s41598-021-90117-6.
[12]
Schelbert EB, Messroghli DR. Messroghli, et al. state of the art: clinical applications of cardiac T1 mapping[J]. Radiology, 2016, 278(3): 658-676. DOI: 10.1148/radiol.2016141802.
[13]
Pichler G, Redon J, Martínez F, et al. Cardiac magnetic resonance-derived fibrosis, strain and molecular biomarkers of fibrosis in hypertensive heart disease[J]. J Hypertens, 2020, 38(10): 2036-2042. DOI: 10.1097/HJH.0000000000002504.
[14]
Nayor M, Enserro DM, Xanthakis V, et al. Comorbidities and cardiometabolic disease: relationship with longitudinal changes in diastolic function[J]. Heart Fail, 2018, 6(4): 317-325. DOI: 10.1016/j.jchf.2017.12.018.
[15]
Yang Y, Yin G, Jiang Y, et al. Quantification of left atrial function in patients with non-obstructive hypertrophic cardiomyopathy by cardiovascular magnetic resonance feature tracking imaging: a feasibility and reproducibility study[J/OL]. J Cardiovasc Magn Reson, 2020, 22(1): 1 [2022-08-10]. https://doi.org/10.1186/s12968-019-0589-5. DOI: 10.1186/s12968-019-0589-5.
[16]
Gunasekaran S, Lee DC, Knight BP, et al. Left Ventricular Extracellular Volume Expansion Is Not Associated with Atrial Fibrillation or Atrial Fibrillation-mediated Left Ventricular Systolic Dysfunction[J/OL]. Radiol Cardiothorac Imaging, 2020, 2(2): e190096 [2022-08-10]. https://doi.org/10.1148/ryct.2020190096. DOI: 10.1148/ryct.2020190096.
[17]
Li L, Chen X, Yin G, et al. Early detection of left atrial dysfunction assessed by CMR feature tracking in hypertensive patients[J]. Eur Radiol, 2020, 30(2): 702-711. DOI: 10.1007/s00330-019-06397-0.
[18]
Iyer NR, Le TT, Kui MSL, et al. Markers of Focal and Diffuse Nonischemic Myocardial Fibrosis Are Associated With Adverse Cardiac Remodeling and Prognosis in Patients With Hypertension: The REMODEL Study[J]. Hypertension, 2022, 79(8): 1804-1813. DOI: 10.1161/HYPERTENSIONAHA.122.19225.
[19]
Neilan TG, Mongeon FP, Shah RV, et al. Myocardial extracellular volume expansion and the risk of recurrent atrial fibrillation after pulmonary vein isolation[J]. JACC Cardiovasc Imaging, 2014, 7(1): 1-11. DOI: 10.1016/j.jcmg.2013.08.013.
[20]
Niu J, Zeng M, Wang Y, et al. Sensitive marker for evaluation of hypertensive heart disease: extracellular volume and myocardial strain[J/OL]. BMC Cardiovasc Disord, 2020, 20(1): 292 [2022-08-10]. https://doi.org/10.1186/s12872-020-01553-7. DOI: 10.1186/s12872-020-01553-7.
[21]
Wang S, Hu H, Lu M, et al. Myocardial extracellular volume fraction quantified by cardiovascular magnetic resonance is increased in hypertension and associated with left ventricular remodeling[J]. Eur Radiol, 2017, 27(11): 4620-4630. DOI: 10.1007/s00330-017-4841-9.
[22]
Wu LM, An DL, Yao QY, et al. Hypertrophic cardiomyopathy and left ventricular hypertrophy in hypertensive heart disease with mildly reduced or preserved ejection fraction: insight from altered mechanics and native T1 mapping[J]. Clin Radiol, 2017, 72(10): 835-843. DOI: 10.1016/j.crad.2017.04.019.
[23]
Thongsongsang R, Songsangjinda T, Tanapibunpon P, et al. Native T1 mapping and extracellular volume fraction for differentiation of myocardial diseases from normal CMR controls in routine clinical practice[J/OL]. BMC Cardiovasc Disord, 2021, 21(1): 270 [2022-08-10]. https://doi.org/10.1186/s12872-021-02086-3. DOI: 10.1186/s12872-021-02086-3.
[24]
Treibel TA, Zemrak F, Sado DM, et al. Extracellular volume quantification in isolated hypertension - changes at the detectable limits?[J/OL]. J Cardiovasc Magn Reson, 2015, 17(1): 74 [2022-08-10]. https://doi.org/10.1186/s12968-015-0176-3. DOI: 10.1186/s12968-015-0176-3.
[25]
Kuruvilla S, Janardhanan R, Antkowiak P, et al. Increased extracellular volume and altered mechanics are associated with LVH in hypertensive heart disease, not hypertension alone[J]. JACC Cardiovasc Imaging, 2015, 8(2): 172-180. DOI: 10.1016/j.jcmg.2014.09.020.
[26]
He J, Sirajuddin A, Li S, et al. Heart Failure With Preserved Ejection Fraction in Hypertension Patients: A Myocardial MR Strain Study[J]. J Magn Reson Imaging, 2021, 53(2): 527-539. DOI: 10.1002/jmri.27313.
[27]
Treibel TA, Fridman Y, Bering P, et al. Extracellular Volume Associates With Outcomes More Strongly Than Native or Post-Contrast Myocardial T1[J]. JACC Cardiovasc Imaging, 2020, 13(1Pt 1): 44-54. DOI: 10.1016/j.jcmg.2019.03.017.
[28]
Stacey RB, Hundley WG. Integrating Measures of Myocardial Fibrosis in the Transition from Hypertensive Heart Disease to Heart Failure[J/OL]. Curr Hypertens Rep, 2021, 23(4): 22 [2022-08-10]. https://doi.org/10.1007/s11906-021-01135-8. DOI: 10.1007/s11906-021-01135-8.
[29]
Zhou Z, Wang R, Wang H, et al. Myocardial extracellular volume fraction quantification in an animal model of the doxorubicin-induced myocardial fibrosis: a synthetic hematocrit method using 3T cardiac magnetic resonance[J]. Quant Imaging Med Surg, 2021, 11(2): 510-520. DOI: 10.21037/qims-20-501.
[30]
Chen W, Doeblin P, Al-Tabatabaee S, et al. Synthetic Extracellular Volume in Cardiac Magnetic Resonance Without Blood Sampling: a Reliable Tool to Replace Conventional Extracellular Volume[J/OL]. Circ Cardiovasc Imaging, 2022, 15(4): e013745 [2022-08-10]. https://doi.org/10.1161/CIRCIMAGING.121.013745. DOI: 10.1161/CIRCIMAGING.121.013745.

上一篇 Fabry病左室应变特征及其在肥厚型心肌病中的鉴别诊断价值
下一篇 基于CMR左室长轴应变预测多发性骨髓瘤继发心肌淀粉样变LGE的临床价值
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2