分享:
分享到微信朋友圈
X
临床研究
改良MRA-MTC-rLMC评分对慢性大脑中动脉闭塞的侧支循环的评估和预后的相关研究
许开喜 徐敏 马先军 左涛生 徐行茹 杜青 卞光荣 顾宝东

Cite this article as: Xu KX, Xu M, Ma XJ, et al. Evaluation and prognosis of collateral circulation with modified MRA-MTC-RLMC score in patients with chronic middle cerebral artery occlusion[J]. Chin J Magn Reson Imaging, 2022, 13(12): 69-73, 86.本文引用格式:许开喜, 徐敏, 马先军, 等. 改良MRA-MTC-rLMC评分对慢性大脑中动脉闭塞的侧支循环的评估和预后的相关研究[J]. 磁共振成像, 2022, 13(12): 69-73, 86. DOI:10.12015/issn.1674-8034.2022.12.012.


[摘要] 目的 探讨磁共振血管成像(magnetic resonance angiography, MRA)中施加磁化传递对比(magnetization transfer contrast, MTC)技术的区域性软脑膜侧支(regional Leptomeningeal Collateral, rLMC)评分对慢性大脑中动脉闭塞(chronic middle cerebral artery occlusion, CMCAO)不同状态侧支循环预测预后的评估价值。材料与方法 回顾分析70例CMCAO患者行常规MRI、扩散加权成像(diffusion weighted imaging, DWI)、MRA检查,男39例,女31例,年龄46~90(66.60±10.358)岁。根据改良区域性软脑膜侧支(MRA-MTC-rLMC)评分预测CMCAO不良预后的最佳截断值为11分,即>11分为良好组和≤11分为不良组。随访1月~6年,以期间发生卒中复发或死亡为终点事件分为预后良好组和不良组,采用独立样本t检验、Mann-Whitney Uχ2检验对患者的一般临床资料进行单因素分析,对单因素差异性P<0.1的变量进行多因素logistic回归分析,探讨风险因素对终点事件的比值比。采用受试者操作特征(receiver operating characteristic, ROC)曲线分析MRA-MTC-rLMC评分对CMCAO患者不良预后的预测价值。结果 70例CMCAO患者中,MRI显示无腔隙性脑梗死42例(60%),同侧腔隙性脑梗死17例(24.28%),对侧7例(10%),双侧4例(5.71%)。MRA显示CMCAO中,右侧29例(41.43%),左侧41例(58.57%)。MRA-MTC-rLMC评分良好组42例(60%),不良组为28例(40%)。对预后不良组进行随访,18例发生脑梗死,8例发生短暂性脑缺血发作,2例死亡。CMCAO不良预后的多因素logistic回归分析在对年龄进行调整后,多因素logistic回归分析显示MRA-MTC-rLMC评分是CMCAO不良预后的危险因素,与不良预后之间呈明显的负相关。MRA-MTC-rLMC评分预测CMCAO不良预后ROC曲线下面积AUC=0.855(95% CI:0.805~0.965),具有显著统计学意义(P<0.001)。MRA-rLMC评分最佳截断值为11分,此时约登指数为0.764,敏感度为96.4%,特异度为81.0%,说明MRA-MTC-rLMC评分对于预测CMCAO不良预后具有较好的应用价值。结论 改良MRA-MTC-rLMC评分可提供CMCAO侧支血管形态学改变并间接反映血流动力学,有利于CMCAO侧支循环早期诊断及判断预后。
[Abstract] Objective To investigate the application of regional Leptomeningeal Collateral (rLMC) score of magnetization transfer contrast (MTC) technology in magnetic resonance angiography (MRA) and the prognostic value of collateral circulation in different states of chronic middle cerebral artery occlusion (CMCAO).Materials and Methods Seventy CMCAO patients underwent routine MRI, diffusion weighted imaging (DWI) and MRA examinations. There were 39 males and 31 females, aged 46-90 (66.60±10.358) years. The best cut-off value for predicting poor prognosis of CMCAO based on modified regional leptomeningeal collateral (MRA-MTC-RLMC) score was 11, namely, >11 score was divided into good group and ≤11 score was divided into poor group. The patients were followed up for 1 month to 6 years, and were divided into good and poor prognosis group according to the end point of stroke recurrence or death during the follow-up period. The independent sample t-test, Mann-Whitney U or χ2 test were used to analyze the general clinical data of patients, and multivariate logistic regression analysis was performed for variables with univariate difference of P<0.1. The odds ratio of risk factors to end events was analyzed. Receiver operating characteristic (ROC) curve was used to analyze the value of MRA-MTC-rLMC score in predicting the poor prognosis of CMCAO patients.Results In 70 patients with CMCAO, MRI showed no lacunar infarction in 42 cases (60%), ipsilateral lacunar infarction in 17 cases (24.28%), contralateral lacunar infarction in 7 cases (10%), bilateral cerebral infarction in 4 cases (5.71%). MRA showed that 29 cases (41.43%) were on the right side and 41 cases (58.57%) were on the left side. There were 42 cases (60%) in the good MRA-MTC-RLMC group and 28 cases (40%) in the poor MRA-MTC-RLMC group. In the poor prognosis group, 18 patients had cerebral infarction, 8 patients had transient ischemic attack and 2 patients died. After adjusting for age, multivariate logistic regression analysis showed that MRA-MTC-RLMC score was a risk factor for poor prognosis of CMCAO, and there was a significant negative correlation between MRA-MTC-RLMC score and poor prognosis. The area under the ROC curve of MRA-MTC-RLMC score in predicting the poor prognosis of CMCAO was 0.855 (95% CI: 0.805-0.965), and there was significant statistical significance (P<0.001). The optimal cut-off value of MRA-RLMC score was 11 points, and the Youden index was 0.764, the sensitivity was 96.4%, and the specificity was 81.0%, indicating that the MRA-MTC-RLMC score had a good application value in predicting the poor prognosis of CMCAO.Conclusions The modified MRA-MTC-rLMC score can provide morphological changes of CMCAO collateral vessels and indirectly reflect hemodynamics, which is conducive to early diagnosis and prognosis of CMCAO collateral circulation.
[关键词] 慢性大脑中动脉闭塞;侧支循环评分;改良;磁共振成像;磁共振血管成像;磁化传递对比;预后
[Keywords] chronic middle cerebral artery occlusion;collateral circulation score;improved;magnetic resonance imaging;magnetic resonance angiography;magnetization transfer contrast;prognosis

许开喜 1   徐敏 1*   马先军 2   左涛生 1   徐行茹 1   杜青 2   卞光荣 2   顾宝东 2*  

1 南京中医药大学连云港附属医院(南京医科大学康达学院附属连云港市中医院)影像科,连云港 222004

2 南京中医药大学连云港附属医院(南京医科大学康达学院附属连云港市中医院)脑病科,连云港 222004

徐敏,E-mail:704050007@qq.com 顾宝东,E-mail:912695497@qq.com

作者利益冲突声明:全体作者均声明无利益冲突。


基金项目: 江苏省重点研发项目 BE2021604
收稿日期:2022-06-16
接受日期:2022-11-29
中图分类号:R445.2  R743.3 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2022.12.012
本文引用格式:许开喜, 徐敏, 马先军, 等. 改良MRA-MTC-rLMC评分对慢性大脑中动脉闭塞的侧支循环的评估和预后的相关研究[J]. 磁共振成像, 2022, 13(12): 69-73, 86. DOI:10.12015/issn.1674-8034.2022.12.012.

       急性大脑中动脉闭塞(acute middle cerebral artery occlusion, AMCAO)和慢性大脑中动脉闭塞(chronic middle cerebral artery occlusion, CMCAO)是缺血性脑卒中常见原因[1, 2]。CMCAO多在大脑中动脉(middle cerebral artery, MCA)粥样硬化斑块基础上,逐渐狭窄到最后闭塞,由于疾病缓慢发展,有的出现短暂脑缺血发作(transient ischemia attach, TIA)、腔隙性脑梗死[3]。据报道,症状性颅内动脉闭塞患者1年后的卒中复发率为5%~7.27%[4, 5],症状性慢性颅内动脉闭塞的患者年卒中风险可达23.4%[6],在血流动力学严重受损的患者中,卒中的年风险要高得多,为35.6%~41.4%[7, 8]。随着高分辨3.0 T MRI的迅速发展和广泛应用,三维时间飞跃法磁共振血管成像(three dimensional time of flight magnetic resonance angiography, 3D TOF-MRA)中施加磁化传递对比(magnetization transfer contrast, MTC)技术后可以显示细小的血管[9],通过3D TOF-MTC-MRA序列的区域性软脑膜侧支(regional Leptomeningeal Collateral, rLMC)评分[10]有利于观察侧支循环。rLMC对AMCAO评估应用广泛[11, 12, 13],对CMCAO评估文献未见报道。通过对70例单侧CMCAO患者的临床和影像资料进行回顾性分析,探讨改良的CMCAO-MRA-MTC-rLMC评分对CMCAO患者侧支循环血流状态的影响,探讨一种简单、有效、快速、无创、有利于复查的评估侧支循环的影像学检查技术,以期提高临床和影像对CMCAO的认识及预后判断,为临床提供新的思路。

1 材料与方法

1.1 研究对象

       本回顾性研究遵守《赫尔辛基宣言》,经南京中医药大学连云港附属医院伦理委员会批准,免除受试者知情同意,批准文号:(KY)-02。分析2016年1月~2022年1月在南京中医药大学连云港附属医院就诊的CMCAO患者临床资料70例。入组标准:(1)年龄>18岁;(2)MRA显示单侧中动脉M1段闭塞;(3)头颅磁共振检查及研究数据齐全。排除标准:(1)颈内动脉闭塞引起MCA闭塞;(2)急性大面积(直径>20 mm)脑梗死引起MCA闭塞;(3)肿瘤、烟雾病、血管炎、夹层动脉瘤;(4)图像模糊,不能诊断;(5)临床表现头痛、头晕,健忘、TIA、言语不清等。记录CMCAO发病至入院时间、出院时改良Rankin量表(modified Rankin Scale, mRS)评分及入院时血压,血脂、血糖、糖化血红蛋白等生化检查。对所有CMCAO患者进行电话随访,记录有无新发TIA、脑梗死、死亡,特别是闭塞血管供血区域的梗死。

1.2 方法

       采用GE Discovery 750 3.0 T MR扫描仪,32通道相控阵头部线圈,所有患者均行常规头颅T1WI、T2WI、T2液体衰减反转恢复(T2 fluid attenuated inversion recovery, T2 FLAIR)序列、扩散加权成像(diffusion weighted imaging, DWI)、三维时间飞跃法(three dimensional time of flight, 3D-TOF)-MRA-MTC检查。T1WI扫描参数:TR 1750 ms,TE 21.8 ms;T2WI扫描参数:TR 3598 ms,TE 107.3 ms,,T2 FLAIR序列扫描参数:TR 8400 ms,TE 87 ms;DWI的b值=1000 s/mm2,TR 6000 ms,TE 73.5 ms;3D-TOF-MRA-MTC扫描参数:TR 22 ms,TE 2.4 ms,翻转角20°,FOV 24 cm×24 cm,矩阵320×224,层厚1.6 mm,间距0 mm,扫描时间2 min 35 s,带宽31.25 kHz。

1.3 图像处理和分析

       采集MRA原始数据传输到GE的Adwantage workstation 4.6工作站上,应用MRA软件处理得到MRA图像。基于3D-TOF-MRA-MTC的rLMC[10]评价病变侧MCA区侧支循环情况进行改良,增加大脑后动脉(posterior cerebral artery, PCA)供血区,由原9个区域改为10区域,评价软脑膜动脉(pial arteryl, PA)和豆纹动脉(lenticulostriate artery, LSA),评分在MRA原始图上进行,共包括10个区域共计22分,具体赋分方法如下:6个阿尔伯塔脑卒中早期CT评分区域(M1~M6),即M1是前MCA皮质区,M2是岛叶皮质外侧MCA皮质区,M3是后MCA皮质区,M4是M1上方MCA皮质区,M5是M2上方MCA皮质区,M6是M3上方MCA皮质区,加上大脑前动脉(anterior cerebral artery, ACA)、基底节区、PCA供血区共9个区域(每个区域按照病灶侧血管未见为0分;较对侧少为1分;等于或多于对侧相应区域为2分)和外侧裂区(病灶侧血管未见为0分;较对侧少为2分;等于或多于对侧相应区域为4分)。CMCAO-MRA-MTC-rLMC评分≤11为不良组、CMCAO-MRA-MTC-rLMC评分>11为良好组。随访纳入本研究的患者均采用电话随访,在发病后1月~6年时随访。

       图像分析方法:有15年以上影像诊断经验的2名副主任医师分别独立阅片,对CMCAO-MRA-MTC-rLMC进行评分,不一致者协商决定。

1.4 统计学方法

       采用SPSS 26.0软件进行描述性统计,定量资料若符合正态分布用均数±标准差表示,非正态分布用中位数(四分位间距)表示,分类变量以数值(百分比)表示。采用独立样本t检验、Mann-Whitney Uχ2检验对患者的一般临床资料(包括性别、年龄、高血压、高血脂、糖尿病、饮酒、吸烟)进行单因素分析,对单因素差异性P<0.1的变量进行多因素logistic回归分析。采用Pearson相关系数评估危险因素之间的相关性。利用受试者工作特征(receiver operating characteristic, ROC)曲线下面积(area under the curve, AUC)大小来评估危险因素判断不良预后的预测能力,AUC值越接近1,预测价值越大。假设检验统一使用双侧检验,以P<0.05为差异有统计学意义,P<0.01为差异有显著统计学意义。

2 结果

2.1 一般资料

       收集2016年1月~2022年1月在本院就诊的CMCAO患者资料70例,男39例,女31例,年龄46~90(66.60±10.358)岁。临床表现头晕、头痛34例,头昏6例,肢体不利12例,TIA 4例,语音不清3例,其他手麻、口渴、面瘫等症状11例。CMCAO不良预后(随访1月~6年,以期间发生卒中复发或死亡为终点事件)的单因素分析中的年龄的MRA-MTC-rLMC评分差异具有统计学意义,性别、高血压、高血脂、糖尿病、饮酒、吸烟的比较差异无统计学意义。相对于预后良好组,预后不良组年龄较大(70.25±9.248 vs. 64.17±10.444),MRA-MTC-rLMC评分较低(9.71±1.243 vs. 13.02±2.158)(表1)。

表1  CMCAO不良预后的单因素分析
Tab. 1  Univariate analysis of poor prognosis in CMCAO

2.2 临床及影像学表现

       70例CMCAO患者中,偶发头痛、头晕或头昏等非特异性脑梗死症状就诊51例(72.86%),以TIA、肢体不利、语音不清就诊19例(27.14%)。

       70例CMCAO患者中,MRI显示无腔隙性脑梗死42例(60%)(图1A2A),同侧腔隙性脑梗死17例(24.29%),对侧7例(10%),双侧4例(5.71%)。MRA显示CMCAO右侧29例(41.43%)(图1B),左侧41例(58.57%)(图2B)。偏侧PCA 53例(75.71%),偏侧ACA 60例(85.71%),均有偏侧大脑前及后动脉47例(67.14%)(图1B1C),均无3例(4.29%),仅有偏侧PCA 5例(7.14%)(图2B),仅有偏侧ACA 12例(17.14%)。MRA-MTC-rLMC评分良好组42例(60%)(图1C1D)。侧支循环不良组为28例(40%)(图2C2D)。

图1  CMCAO-MRA-MTC-rLMC评分良好组。男,72岁,头晕数天加重1周。1A:DWI示脑实质未见异常病灶;1B:MRA图像示右侧MCA的M1段主干闭塞,右偏侧优势ACA、PCA;1C~1D:MRA-MTC-rLMC评分为15分。随访mRS评分0级。CMCAO:慢性大脑中动脉闭塞;MRA:磁共振血管成像;MTC:磁化传递对比;rLMC:区域性软脑膜侧支;DWI:扩散加权成像; MCA:大脑中动脉;ACA:大脑前动脉;PCA:大脑后动脉;mRS:改良Rankin量表。
图2  CMCAO-MRA-MTC-rLMC评分不良组。女,62岁,反复头痛视物模糊1年,再发1天。2A:DWI示脑实质未见异常病灶;2B:MRA图像示左侧MCA的M1段主干闭塞;2C-2D:MRA-MTC-rLMC评为5分;2E:CT显示左侧基底节区出血伴脑疝。随访mRS评分6级。CMCAO:慢性大脑中动脉闭塞;MRA:磁共振血管成像;MTC:磁化传递对比;rLMC:区域性软脑膜侧支;DWI:扩散加权成像; MCA:大脑中动脉;mRS:改良Rankin量表。
Fig. 1  Group with good CMCAO-MRA-MTC-rLMC score. Male, 72-year-old, dizziness worsens for several days for 1 week. 1A: DWI showed no abnormal lesions in the brain parenchyma; 1B: MRA showed that the main M1 segment of the right MCA was occluded, and the right side was dominated by ACA and PCA; 1C-1D: MRA-MTC-RLMC was 15 points. The follow-up mRS score was 0. CMCAO: chronic middle cerebral artery occlusion; MRA: magnetic resonance angiography; MTC: magnetization transfer contrast; rLMC: regional Leptomeningeal Collateral; DWI: diffusion weighted imaging; MCA: middle cerebral artery;ACA: anterior cerebral artery; PCA: posterior cerebral artery; mRS: modified Rankin Scale.
Fig. 2  CMCAO-MRA-MTC-rLMC poor score group. Female, 62-year-old, recurrent headache and blurred vision for 1 year, and then 1 day. 2A: DWI showed no abnormal lesions in brain parenchyma; 2B: MRA showed an occlusion of the main M1 segment of the MCA at the left; 2C-2D: MRA-MTC-rLMC was 5 points. 2E: CT showed bleeding in the left basal ganglia with cerebral hernia. At follow-up, mRS score was grade 6. CMCAO: chronic middle cerebral artery occlusion; MRA: magnetic resonance angiography; MTC: magnetization transfer contrast; rLMC: regional Leptomeningeal Collateral; DWI: diffusion weighted imaging; MCA: middle cerebral artery;mRS: modified Rankin Scale.

2.3 MRI-MTC-rLMC评分对预测CMCAO不良预后的预测价值分析

       对70例CMCAO患者进行1个月~6年的专科门诊电话、住院随访,随访期间观察患者病侧的MCA、ACA/MCA和/或PCA/MCA分水岭区域供血区的脑梗死、肢体功能、死亡情况。随访过程中有28例预后不良,18例发生脑梗死,8例TIA,1例患者40天后发生大面积脑梗死及深昏迷死亡和1例患者1年后发生脑出血、脑疝后死亡(图2E),出院的mRS评分0级56例,1级9例,2、3、4各级1例,6级2例。CMCAO不良预后的多因素logistic回归分析在对年龄进行调整后,多因素logistic回归分析显示MRA-MTC-rLMC评分是CMCAO不良预后的危险因素,与不良预后之间呈明显的负相关,MRA-MTC-rLMC评分每增加1分,不良预后的风险减少58.9%(表2)。MRA-MTC-rLMC评分预测CMCAO不良预后AUC值为0.855(95% CI:0.805~0.965),具有显著统计学意义(P<0.001)(图3)。MRA-MTC-rLMC评分最佳截断值为11分,此时约登指数为0.764,敏感度为96.4%,特异度为81.0%,说明MRA-MTC-rLMC评分对于预测CMCAO不良预后具有较好的应用价值(图4)。

图3  MRA-MTC-rLMC评分预测CMCAO不良预后的ROC曲线。MRA:磁共振血管成像;MTC:磁化传递对比;rLMC:区域性软脑膜侧支;CMCAO:慢性大脑中动脉闭塞;ROC:受试者工作特征。
Fig. 3  ROC curve of MRA-MTC-RLMC score in predicting poor prognosis of CMCAO. MRA: magnetic resonance angiography; MTC: magnetization transfer contrast; rLMC: regional Leptomeningeal Collateral; CMCAO: chronic middle cerebral artery occlusion; ROC: receiver operator characteristic.
图4  MRA-MTC-rLMC评分预测CMCAO不良预后的交互点图。MRA:磁共振血管成像;MTC:磁化传递对比;rLMC:区域性软脑膜侧支;CMCAO:慢性大脑中动脉闭塞。
Fig. 4  Interaction dot plot of MRA-MTC-RLMC score predicting poor prognosis in CMCAO. MRA: magnetic resonance angiography; MTC: magnetization transfer contrast; rLMC: regional Leptomeningeal Collateral; CMCAO: chronic middle cerebral artery occlusion.
表2  MRA- MTC -rLMC评分对 CMCAO不良预后的多因素logistic回归分析
Tab. 2  Multivariate logistic regression analysis of MRA-MTC-RLMC score on poor prognosis of CMCAO

3 讨论

       随着MRI迅速发展及不需要对比剂和无辐射的3D TOF-MRA广泛应用,确诊的CMCAO患者越来越多。在血管成像3D TOF-MRA的基础上施加MTC,MTC技术主要是间接反映组织中蛋白含量及其变化,能够将结合水的磁化矢量传递给自由水,从而达到提高成像对象对比度的目的,较常规3D TOF-MRA能够更好显示细小的血管和颅底迂曲、扩张侧支循环血管。在实际工作中医生很少观看3D TOF-MTC-MRA原始图片及关注rLMC。3D TOF-MTC-MRA序列的rLMC评分与供血动脉或侧支循环血流流速有关[14, 15]。当侧支循环开放充分时,血流流速快,3D TOF-MTC-MRA图像上血管扩张显示增多、迂曲,反之,当侧支循环开放受限时,血流缓慢,3D TOF-MTC-MRA图像上血管显示稀疏。3D TOF-MTC-MRA图像显示MCA区域的血管信号强度可以间接反映侧支循环的数量[16]。有文献报道对MCA rLMC有5分、0~3等级评分、20分评分[17]等常见于AMCAO。20分评分为9个区域,入院时rLMC评分10分为界,分为rLMC≤10分为不良组和rLMC>10分为良好组[10]。文献报道过对CMCAO患者病因、脑血流及预后研究[18]和简单侧支循环分级[19, 20],对CMCAO后MRA-MTC-rLMC评分在文献中未见全面详细的分析。但是,在实际工作中我们通过3D TOF-MRA-MTC序列常常可以观察到CMCAO的患侧中ACA和/或PCA远端较对侧延长、增多、增粗表现,代表着COMCA后,缺血区域通过ACA和/或PCA的PA、LSA供血。我们研究认为AMCAO-MRA-MTC-rLMC评分考虑了前循环的所有区域,但对CMCAO后的后循环PCA的PA、LSA参与MCA区域供血没有加入,应该增加PCA供血区,由原9个区域改为10区域共计22分。MRA-MTC-rLMC评分预测CMCAO不良预后的ROC曲线显示CMCAO-MRA-MTC-rLMC评分最佳截断值为11分,所以把评分≤11分为不良组,>11分为良好组。因此,改良CMCAO-MRA-MTC-rLMC评分更适合于CMCAO的区域性软脑膜侧支循环评分和临床应用,以及操作简单、方便和不需要对比剂更有利于疾病随访。

       脑血管的三级侧支循环为:1级是通过Wills'环,2级是眼动脉(ophthalmic artery, OA)和软脑膜血管,3级是新生血管。CMCAO的MCA的M1段闭塞时,其远端供血不能通过前交通动脉(anterior communicating artery, ACoA)侧支、后交通动脉(posterior communicating artery, PCoA)侧支和OA侧支供血,通过的软脑膜血管吻合支(2级)和新生血管(3级)供应MCA缺血区域。CMCAO后通过2级和3级血管供应MCA区域侧支循环,必须了解基底节区和软脑膜血管侧支循环血供途径。即ACA中央动脉(central artery, CA)位于ACA与ACA相交的两侧,供应尾状核、豆状核和内囊前部。MCA CA的LSA位于MCA的M1段,供应尾状核、豆状核和内囊中后部。PCA CA的位于PCA起始部供应豆状核后下部、丘脑。基底节的大部分来自LSA,LSA起源于ACA、ACoA和MCA的M1段,它们通过(动脉环和靠近的血管)CA进入大脑,供应基底节和内囊。尾状核另外接收脉络膜前、后动脉供血。豆状核的后下部PCA的丘脑纹状动脉分支。颈内动脉的脉络膜前动脉参与苍白球、尾状核的部分、内囊后肢腹侧和内囊的豆状核后部的供血[21, 22, 23]。当血管狭窄和闭塞后,动脉内压力梯度增加,使血流转移到小侧支吻合口,绕过狭窄,导致侧支内皮上的动脉内液体剪切应力增加,侧支血管腔径和壁厚[24]随着侧支长度增加,最终形成新直径、长度[25]和重塑侧支血管以适应增加的血流量[26]。即患侧CMCAO时,通过ACA CA、MCA CA和/或PCA CA以及ACoA和/或PCoA等血管供应基底节区血流,3D TOF-MTC-MRA图像上显示基底节区区域见增多迂曲血管影,代表着血流增快,侧支循环形成,反之血流缓慢,少或无侧支循环。CMCAO后还通过ACA和/或PCA皮质软脑膜血管与MCA皮质的软脑膜血管形成吻合支供应缺血区域。既往认为MCA的中央支,尤其是LSA是终末动脉,其间吻合支稀疏,当其本身闭塞或主干动脉闭塞时易发生脑梗死。Bonnin等[27]研究发现急性动脉闭塞可在动脉闭塞1 h内诱发软脑膜侧支血流。Marti等[28]研究发现MCA闭塞48~72 h后,缺氧/脑缺血周围区出现增生活跃新生血管,易与软脑膜血管的侧支循环发生交通。本组70例CMCAO都发生在主干起始部,无腔隙性脑梗死40例(60%),MRA-MTC-rLMC评分良好组占60%。使用3.0 T MRI和32通道头颅专用线圈高分辨率MRA成像及添加MTC技术显示穿支动脉和基底节区侧支循环。CMCAO的基底节区有迂曲、增多血管影,类似于烟雾病在颅底血管的形成,这就是基底节区微血管和深部软脑膜血管侧支循环毛细血管网(图1C1D)。由于CMCAO在漫长过程中,在狭窄血管周围由缺血、低氧等原因诱发形成新生血管网络供应基底节等部位,还有来自颈内动脉终末段、ACA、MCA、ACoA、PCoA或者基底动脉的软脑膜吻合血管开放代偿,这些代偿血管沿着MCA走行或向纵深发展供应基底节区的过程类似于烟雾病在颅底血管的形成,这些新生血管网与无症状CMCAO密切相关,与文献相一致[29, 30]。同时,同侧腔隙性脑梗死17例(24.28%),对侧7例(10%),双侧4例(5.72%)。MCA M1段发出90% LSA供应基底节和内囊,M1段的闭塞势必影响LSA的血液供应,导致从MCA M1段发出LSA闭塞,CMCAO后侧支循环代偿不能随之建立或开放,就不能通过ACA、AcoA、PCoA的LSA建立有效的软脑膜吻合支和异常毛细血管网,即3D TOF-MTC-MRA图像就不出现基底节区微血管和颅底毛细血管网,代表脑血液供应不足,易出现神经系统功能缺损体征及脑梗死。随访中有28例预后不良中,18例发生脑梗死,8例发生TIA,1例大面积脑梗死和1例发生脑出血并死亡。MRA-MTC-rLMC评分不良组占40%。侧支循环不良是CMCAO预后不良的重要原因。CMCAO不良预后的多因素logistic回归分析显示MRA-MTC-rLMC评分是CMCAO不良预后的危险因素,与不良预后之间呈明显的负相关,MRA-MTC-rLMC评分每增加1分,不良预后的风险减少58.9%。MRA-MTC-rLMC评分预测CMCAO不良预后AUC=0.855(95% CI:0.805~0.965),具有显著统计学意义(P<0.001)。MRA-MTC-rLMC评分最佳截断值为11分,此时约登指数为0.764,敏感度为96.4%,特异度为81.0%,说明MRA-MTC-rLMC评分对于预测CMCAO不良预后具有较好的应用价值。

       本研究存在一定局限性:(1)单中心小样本量的回顾性研究;(2)初步应用改良MRA-MTC-rLMC评分评估CMCAO的侧支循环状态与预后关系,缺乏直接血管造影对比研究,将来可进一步联合CTA或DSA检查来验证CMCAO患者侧支循环关系。

       综上所述,本研究改良的MRA-MTC-rLMC评分可提供CMCAO侧支血管形态学改变并间接反映血流动力学,有利于CMCAO侧支循环早期诊断及判断预后。

[1]
Wang YJ, Zhao XQ, Liu LP, et al. Prevalence and outcomes of symptomatic intracranial large artery stenoses and occlusions in China: the Chinese Intracranial Atherosclerosis (CICAS) Study[J]. Stroke, 2014, 45(3): 663-669. DOI: 10.1161/STROKEAHA.113.003508.
[2]
Zhao WB, Li SJ, Ren CH, et al. Remote ischemic conditioning for stroke: clinical data, challenges, and future directions[J]. Ann Clin Transl Neurol, 2019, 6(1): 186-196. DOI: 10.1002/acn3.691.
[3]
Fanou EM, Knight J, Aviv RI, et al. Effect of collaterals on clinical presentation, baseline imaging, complications, and outcome in acute stroke[J]. AJNR Am J Neuroradiol, 2015, 36(12): 2285-2291. DOI: 10.3174/ajnr.A4453.
[4]
李涛, 赵莉莉, 吴宇伦, 等. 侧支循环对非急性前循环大动脉闭塞药物治疗患者长期预后的影响[J]. 中国卒中杂志, 2021, 16(6): 561-566. DOI: 10.3969/j.issn.1673-5765.2021.06.006.
Li T, Zhao LL, Wu YL, et al. Effect of collateral circulation on long-term prognosis in non-acute intracranial anterior circulation large artery occlusion patients treated with conventional medicine[J]. Chin J Stroke, 2021, 16(6): 561-566. DOI: 10.3969/j.issn.1673-5765.2021.06.006.
[5]
Zanaty M, Roa JA, Jabbour PM, et al. Recanalization of the chronically occluded internal carotid artery: review of the literature[J/OL]. World Neurosurg X, 2020, 5: 100067 [2022-06-15]. https://www.sciencedirect.com/science/article/pii/S2590139719301085 DOI: 10.1016/j.wnsx.2019.100067.
[6]
Kang KJ, Yang B, Gong XP, et al. Cerebral hemodynamic changes after endovascular recanalization of symptomatic chronic intracranial artery occlusion[J]. Front Neurol, 2020, 11: 318. DOI: 10.3389/fneur.2020.00318.
[7]
Verlhac S, Ithier G, Bernaudin F, et al. Evolution of extracranial internal carotid artery disease in children with sickle cell Anemia[J]. Stroke, 2022, 53(8): 2637-2646. DOI: 10.1161/STROKEAHA.121.037980.
[8]
Li SJ, Zhao WB, Liu GY, et al. Chronic remote ischemic conditioning for symptomatic internal carotid or middle cerebral artery occlusion: a prospective cohort study[J]. CNS Neurosci Ther, 2022, 28(9): 1365-1371. DOI: 10.1111/cns.13874.
[9]
A G Teixeira RP, Malik SJ, Hajnal JV. Fast quantitative MRI using controlled saturation magnetization transfer[J]. Magn Reson Med, 2019, 81(2): 907-920. DOI: 10.1002/mrm.27442.
[10]
Menon BK, Smith EE, Modi J, et al. Regional leptomeningeal score on CT angiography predicts clinical and imaging outcomes in patients with acute anterior circulation occlusions[J]. AJNR Am J Neuroradiol, 2011, 32(9): 1640-1645. DOI: 10.3174/ajnr.A2564.
[11]
Puhr-Westerheide D, Tiedt S, Rotkopf LT, et al. Clinical and imaging parameters associated with hyperacute infarction growth in large vessel occlusion stroke[J]. Stroke, 2019, 50(10): 2799-2804. DOI: 10.1161/STROKEAHA.119.025809.
[12]
Peng G, Lu WP, Chen K, et al. Study on collateral circulation level and prognosis of acute ischemic stroke by 4D CTA-CTP integrated technology and serum S100B[J/OL]. Microvasc Res, 2022, 140: 104270 [2022-01-15]. https://www.sciencedirect.com/science/article/abs/pii/S0026286221001400. DOI: 10.1016/j.mvr.2021.104270.
[13]
Seiler A, Brandhofe A, Gracien RM, et al. DSC perfusion-based collateral imaging and quantitative T2 mapping to assess regional recruitment of leptomeningeal collaterals and microstructural cortical tissue damage in unilateral steno-occlusive vasculopathy[J]. J Cereb Blood Flow Metab, 2021, 41(1): 67-81. DOI: 10.1177/0271678X19898148.
[14]
Baron JC. Selective neuronal loss progression in chronic carotid or middle cerebral artery obstruction is accentuated by lower follow-up systolic blood pressure[J]. J Neurol Neurosurg Psychiatry, 2019, 90(9): 964. DOI: 10.1136/jnnp-2019-320943.
[15]
Thirugnanachandran T, Beare R, Mitchell M, et al. Anterior Cerebral Artery Stroke: Role of Collateral Systems on Infarct Topography[J]. Stroke, 2021, 52(9): 2930-2938. DOI: 10.1161/STROKEAHA.120.032867.
[16]
Jindal G, Miller T, Raghavan P, et al. Imaging evaluation and treatment of vascular lesions at the skull base[J]. Radiol Clin North Am, 2017, 55(1): 151-166. DOI: 10.1016/j.rcl.2016.08.003.
[17]
Chatterjee D, Nagarajan K, Narayan SK, et al. Regional leptomeningeal collateral score by computed tomographic angiography correlates with 3-month clinical outcome in acute ischemic stroke[J]. Brain Circ, 2020, 6(2): 107-115. DOI: 10.4103/bc.bc_55_19.
[18]
Li SJ, Zhao WB, Liu GY, et al. Chronic remote ischemic conditioning for symptomatic internal carotid or middle cerebral artery occlusion: a prospective cohort study[J]. CNS Neurosci Ther, 2022, 28(9): 1365-1371. DOI: 10.1111/cns.13874.
[19]
Yuan HW, Ji RJ, Wang AL, et al. A grading scale for pial collaterals in middle cerebral artery total occlusion based on time-of-flight MR angiography source images[J]. Magn Reson Med Sci, 2019, 18(1): 62-69. DOI: 10.2463/mrms.mp.2018-0001.
[20]
Baek JH, Kim BM, Kim JW, et al. Utility of leptomeningeal collaterals in predicting intracranial atherosclerosis-related large vessel occlusion in endovascular treatment[J/OL]. J Clin Med, 2020, 9(9): 2784 [2022-06-25]. https://www.mdpi.com/2077-0383/9/9/2784. DOI: 10.3390/jcm9092784.
[21]
张龙江, 卢光明. 全身CT血管成像诊断学[M]. 2版. 北京: 军事科学出版社, 2020.
Zhang LJ, Lu GM. Whole body CT angiography[M]. Beijing: Military Science Press, 2020.
[22]
(美)Robert W. Song Hurst, (美)Robert H. Rosenwasser DOI: . 李佑祥, 吕明 DOI: . 介入神经放射学[M]. 北京: 科学出版社, 2011.
Interventional neuroradiology[M]. Beijing: Science Press, 2011.
[23]
徐群渊 DOI: . 格氏解剖学临床实践的解剖学基础(第39版)[M]北京, 北京大学出版社, 2008.
Xu Qunyuan. Anatomical Basis of Clinical Practice of Gesellschner's Anatomy (39th edition)[M] Beijing: Peking University Press, 2008.
[24]
Roux E, Bougaran P, Dufourcq P, et al. Fluid shear stress sensing by the endothelial layer[J/OL]. Front Physiol, 2020, 11: 861 [2022-06-15]. https://www.frontiersin.org/articles/10.3389/fphys.2020.00861/full. DOI: 10.3389/fphys.2020.00861.
[25]
Klems A, van Rijssel J, Ramms AS, et al. The GEF Trio controls endothelial cell size and arterial remodeling downstream of Vegf signaling in both zebrafish and cell models[J/OL]. Nat Commun, 2020, 11(1): 5319 [2022-06-15]. https://www.nature.com/articles/s41467-020-19008-0. DOI: 10.1038/s41467-020-19008-0.
[26]
Sato Y, Falcone-Juengert J, Tominaga T, et al. Remodeling of the neurovascular unit following cerebral ischemia and hemorrhage[J/OL]. Cells, 2022, 11(18): 2823 [2022-06-15] https://www.mdpi.com/2073-4409/11/18/2823. DOI: 10.3390/cells11182823.
[27]
Bonnin P, Kubis N, Charriaut-Marlangue C. Collateral supply in preclinical cerebral stroke models[J]. Transl Stroke Res, 2022, 13(4): 512-527. DOI: 10.1007/s12975-021-00969-3.
[28]
Marti HJH, et al. Hypoxia-induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia[J]. Am J Pathol, 2000, 156(3): 965-976. DOI: 10.1016/S0002-9440(10)64964-4.
[29]
Kaloss AM, Theus MH. Leptomeningeal anastomoses: mechanisms of pial collateral remodeling in ischemic stroke[J/OL]. WIREs Mech Dis, 2022, 14(4): e1553 [2022-06-15]. https://wires.onlinelibrary.wiley.com/doi/full/10.1002/wsbm.1553. DOI: 10.1002/wsbm.1553.
[30]
Yashiro S, Kameda H, Ai CD, et al. Evaluation of lenticulostriate arteries changes by 7 T magnetic resonance angiography in type 2 diabetes[J]. J Atheroscler Thromb, 2018, 25(10): 1067-1075. DOI: 10.5551/jat.43869.

上一篇 脑灰质体积及结构协变网络在无神经心理障碍的维持性血液透析患者中变化特征
下一篇 不同机器学习模型对比增强T1加权图像影像组学鉴别脑转移瘤肺癌与非肺癌原发灶效能分析
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2