分享:
分享到微信朋友圈
X
临床研究
高原脑水肿的多模态MRI表现
龙昌友 鲍海华

Cite this article as: LONG C Y, BAO H H. Multimodal MRI manifestations of high altitude cerebral edema[J]. Chin J Magn Reson Imaging, 2023, 14(2): 21-26, 55.本文引用格式:龙昌友, 鲍海华. 高原脑水肿的多模态MRI表现[J]. 磁共振成像, 2023, 14(2): 21-26, 55. DOI:10.12015/issn.1674-8034.2023.02.004.


[摘要] 目的 基于T1加权成像(T1-weighted imaging, T1WI)、T2加权成像(T2-weighted imaging, T2WI)、液体衰减反转恢复(fluid attenuated inversion recovery, FLAIR)序列、扩散加权成像(diffusion weighted imaging, DWI)、磁敏感加权成像(susceptibility weighted imaging, SWI)及表观扩散系数(apparent diffusion coefficient, ADC)值综合分析高原脑水肿(high altitude cerebral edema, HACE)的脑部影像表现,并探讨其损伤特点。材料与方法 回顾性分析2012年1月至2022年8月确诊的30例HACE患者一般临床资料并依据临床症状进行分型,然后均行头颅多序列(T1WI、T2WI、FLAIR、DWI)MRI扫描,其中9例HACE患者还行SWI扫描,最后对所得图像进行分析。结果 (1)30例HACE患者根据临床症状分为12例轻型、18例重型。轻、重型HACE患者在性别、年龄、白细胞、中性粒细胞及葡萄糖含量上差异无统计学意义(P均>0.05)。(2)重型HACE分布于深部和近皮质白质、胼胝体的水肿范围明显大于轻型HACE,胼胝体压部ADC值明显低于轻型HACE,以上差异均有统计学意义(分别为P<0.001,P=0.001,P=0.049)。(3)在轻、重型HACE患者中,DWI信号强度均明显高于MRI常规序列(T1WI、T2WI、FLAIR),差异有统计学意义(分别为P=0.008,P=0.025)。(4)重型HACE中7例出现双侧丘脑层面皮质脊髓束水肿(7/18,38.9%),SWI示5例出现脑微出血(cerebral microbleeds, CMB),以胼胝体为中心(5/9,55.6%)。结论 DWI序列对HACE评价有明显的优势。重型较轻型HACE患者脑白质损伤更重、范围更大,以胼胝体显著,部分还可出现CMB和皮质脊髓束水肿。
[Abstract] Objective Based on T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), fluid attenuated inversion recovery (FLAIR), diffusion weighted imaging (DWI), susceptibility weighted imaging (SWI) and apparent diffusion coefficient (ADC) value, the brain imaging manifestations of high-altitude cerebral edema (HACE) were comprehensively analyzed, and to explore its damage characteristics.Materials and Methods Thirty patients with HACE diagnosed from January 2012 to August 2022 were collected. The general clinical data of the patients were statistically analyzed and classified according to clinical symptoms. Then, all patients underwent multi-sequence (T1WI, T2WI, FLAIR, DWI) MRI examination, among which 9 patients also underwent SWI examination. Finally, the images were analyzed.Results (1) According to the clinical symptoms, 30 cases of HACE were divided into 12 mild cases and 18 severe cases. There was no significant difference in gender, age, leukocyte, neutrophil and glucose content between mild and severe HACE (all P>0.05). (2) The edema range of severe HACE in deep and juxtacortical white matter and corpus callosum was significantly larger than that of mild HACE, and the ADC value in the splenium of corpus callosum was significantly lower than that of mild HACE, and the above differences were statistically significant (P<0.001, P=0.001, P=0.049, respectively). (3) In mild and severe HACE, the signal intensity of DWI was significantly higher than that of conventional MRI sequences (T1WI, T2WI, FLAIR), and the difference was statistically significant (P=0.008, P=0.025, respectively). (4) In severe HACE, 7 cases had obvious bilateral thalamic level corticospinal tract edema (7/18, 38.9%), and SWI showed 5 cases with cerebral microbleeds (CMB), with the corpus callosum as the center (5/9, 55.6%).Conclusions DWI sequence has obvious advantages in the evaluation of HACE. The white matter injury in severe HACE is more severe and extensive than that in mild HACE, especially in corpus callosum, and some of them may also have CMBs and corticospinal tract edema.
[关键词] 高原;脑水肿;脑微出血;磁共振成像;扩散加权成像;表观扩散系数;磁敏感加权成像
[Keywords] high altitude;cerebral edema;cerebral microbleeds;magnetic resonance imaging;diffusion weighted imaging;apparent diffusion coefficient;susceptibility weighted imaging

龙昌友    鲍海华 *  

青海大学附属医院影像中心,西宁 810001

*通信作者:鲍海华,E-mail:baohelen2@sina.com

作者贡献声明::鲍海华设计本研究的方案,对稿件重要的智力内容进行了修改;龙昌友起草和撰写稿件,获取、分析本研究的数据;鲍海华获得了青海省省级临床重点专科建设项目基金资助。全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 青海省省级临床重点专科建设项目
收稿日期:2022-08-16
接受日期:2023-02-03
中图分类号:R445.2  R742.7 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2023.02.004
本文引用格式:龙昌友, 鲍海华. 高原脑水肿的多模态MRI表现[J]. 磁共振成像, 2023, 14(2): 21-26, 55. DOI:10.12015/issn.1674-8034.2023.02.004.

0 前言

       高原脑水肿(high altitude cerebral edema, HACE)是一种与高原疾病相关的严重且可能致命的疾病,通常被认为是急性高原病(acute mountain sickness, AMS)的晚期[1, 2, 3],我国也把HACE归为重型急性高原病[4](acute high altitude disease, AHAD)。当长期生活在低海拔地区的人到达海拔3000米以上的高原地区时容易发生,特别是短时间迅速进入高原地区时。由于高原地区低压低氧、寒冷干燥等环境特点引起机体一系列变化,若适应不良,就可能会发生HACE[5]。HACE以共济失调、疲劳和精神状态改变为特征,其他的临床表现还有头痛、行为改变、幻觉、精神错乱、定向障碍、意识水平下降、局灶性神经系统体征和昏迷等,可表现为与器质性脑综合征症状特征相一致的疾病[3]。如果不及时诊治,患者可能会在24 h内迅速进展为昏迷和死亡[6, 7, 8]。以往研究多以MRI常规序列[T1加权成像(T1-weighted imaging, T1WI)、T2加权成像(T2-weighted imaging, T2WI)、液体衰减反转恢复(fluid attenuated inversion recovery, FLAIR)序列]扫描为主[9, 10, 11],很少有研究行扩散加权成像(diffusion weighted imaging, DWI)和磁敏感加权成像(susceptibility weighted imaging, SWI)扫描[12]。本研究不仅对所有HACE患者均行T1WI、T2WI、FLAIR、DWI序列扫描,还对部分患者行SWI序列扫描。据我们所知,本文是首次对胼胝体压部表观扩散系数(apparent diffusion coefficient, ADC)值进行测量,能够更加客观定量地评价HACE的损伤程度。因此,我们的研究更加全面地探讨了HACE的影像学特点,旨在对HACE患者的早期诊断及治疗提供更多的指导及帮助。

1 材料与方法

1.1 临床资料

       本回顾性研究遵守《赫尔辛基宣言》,经青海大学附属医院医学伦理委员会批准,免除受试者知情同意,批准文号:P-SL-2022-014。收集青海大学附属医院2012年1月至2022年8月经临床确诊为HACE的30例患者病例,其中女6例、男24例,年龄(37.40±11.72)岁。根据临床症状将HACE患者分为轻型(头痛、头晕、恶心、呕吐、四肢乏力等症状)和重型(四肢抽搐、意识障碍等神经系统症状)。30例HACE患者中,17例为从平原初到3000米以上高原,13例为从海拔2000米左右地区到达3500米以上更高海拔地区。纳入标准:(1)符合我国高原病命名、分型及诊断标准[4]中HACE的诊断标准;(2)在我院做了MRI检查且图像符合诊断要求。排除标准:(1)急性脑血管病、急性药物或一氧化碳中毒、癫痫、脑膜炎、脑炎;(2)颅内既往或现在有其他器质性疾病。

1.2 仪器与方法

       本研究MRI数据采用西门子Prisma 3.0 T磁共振扫描仪与头颅线圈扫描获得。患者取仰卧位,30例均行横断位T1WI、T2WI、FLAIR、DWI序列扫描,其中9例还行横断位SWI序列扫描。T1WI、T2WI、FLAIR、DWI序列层厚均为5 mm,层间隙均为30%,矩阵均为256×256,SWI序列层厚为1.5 mm,层间隙为20%,矩阵为246×256。T1WI采集参数:TR 150 ms,TE 2.5 ms,FOV 230 mm×230 mm,矩阵256×256;T2WI采集参数:TR 5000 ms,TE 81 ms,FOV 230 mm×230 mm,矩阵256×256;FLAIR采集参数:TR 8000 ms,TE 117 ms,FOV 230 mm×230 mm,矩阵256×256;DWI采集参数:TR 32300 ms,TE 65 ms,FOV 230 mm×230 mm,矩阵256×256;SWI采集参数:TR 27 ms,TE 20 ms,FOV 230 mm×230 mm,矩阵246×256。

1.3 图像分析

       本文将T1WI、T2WI、FLAIR序列统称为MRI常规序列。由两位拥有10年以上工作经验的影像诊断医师在不了解患者任何病例资料的情况下对所有患者头颅MRI常规序列、DWI序列及9例SWI序列图像进行观察分析,当结果出现分歧时,由两位医师进一步讨论解决,直到双方达成共识。然后统计出HACE的分布特征和脑微出血(cerebral microbleeds, CMB)的发生率,最后根据胼胝体区域水肿的分布进一步分型。

       在T1WI序列中,当信号强度稍低于正常脑白质时,称为轻度低信号,当信号强度明显低于正常脑白质时,称为明显低信号。在T2WI和FLAIR序列中,当信号强度稍高于正常脑白质时,称为轻度高信号,当信号强度明显高于正常脑白质时,称为明显高信号[13]。在DWI序列中,当信号强度稍高于正常脑白质时,称为轻度高信号,当信号强度明显高于正常脑白质时,称为明显高信号。我们将脑白质分为室旁白质、室周白质、深部白质、近皮质白质[14]

       胼胝体压部ADC值的定量分析:把DWI序列图像导入后处理软件(Philips IntelliSpace Portal)中,然后在MR Diffusion程序上对胼胝体压部水肿最明显处进行ADC值测量,感兴趣区(region of interest, ROI)略小于水肿范围,以避免部分容积效应影响。当脑白质水肿最明显区域出现在胼胝体压部中间时,则对中间白质水肿区测量三次,然后计算ADC平均值。当脑白质水肿最明显区域对称性出现在胼胝体压部两侧时,则对胼胝体压部两侧分别测量三次,共6次,然后计算ADC平均值。

1.4 统计学方法

       使用SPSS 25.0统计软件分析,数据采用例(n)或百分率(%)表示,计量资料比较采用独立样本t检验或两样本秩和检验;定性二分类数据比较采用卡方或者配对卡方检验;定性二分类等级资料比较采用配对秩和检验,以P<0.05为差异具有统计学意义。

2 结果

2.1 一般资料

       30例HACE患者根据临床症状分为12例轻型、18例重型,轻、重型HACE患者白细胞、中性粒细胞及葡萄糖含量均不同程度升高,但两组的一般临床资料差异无统计学意义(P均>0.05),详见表1

表1  30例轻、重型HACE患者临床资料
Tab. 1  Clinical data of 30 patients with mild and severe HACE

2.2 头颅MRI表现

       所有HACE患者颅内均出现不同程度对称性白质水肿,且以胼胝体压部显著,重型HACE患者中7例出现双侧丘脑层面皮质脊髓束水肿(7/18,38.9%)。重型HACE分布于深部和近皮质白质的水肿范围明显大于轻型HACE,差异有统计学意义(P<0.001)。12例轻型HACE患者室旁和室周白质对称性水肿发生率为100.0%(12/12),0例并发深部和近皮质白质水肿(0/12,0%),见图1;18例重型HACE患者室旁和室周白质水肿发生率为100.0%(18/18),其中13例并发深部和近皮质白质水肿(13/18,72.2%),见图2。在轻型HACE中,DWI信号强度明显高于MRI常规序列,差异有统计学意义(P=0.008),其中DWI明显高信号7例(7/12,58.3%),轻度高信号5例(5/12,41.7%);MRI常规序列中明显高信号0例(0/12,0%),轻度高信号12例(12/12,100.0%)。在重型HACE中,DWI信号强度明显高于MRI常规序列,差异有统计学意义(P=0.025),其中DWI明显高信号15例(15/18,83.3%),轻度高信号3例(3/18,16.7%);MRI常规序列中明显高信号7例(7/18,38.9%),轻度高信号11例(11/18,61.1%)。重型HACE分布于胼胝体的水肿范围明显大于轻型HACE,差异有统计学意义(P=0.001),见表2。其中12例轻型HACE患者局限性胼胝体压部中央性水肿发生率为83.3%(10/12),局限性胼胝体压部对称性水肿发生率为16.7%(2/12);18例重型HACE患者局限性胼胝体压部中央性水肿发生率为16.7%(3/18),局限性胼胝体压部对称性水肿发生率为44.4%(8/18),弥漫性胼胝体对称性水肿发生率为38.9%(7/18),见图3。SWI序列显示:CMB发生率为55.6%(5/9),均为重型HACE,以胼胝体为中心,且1例颅内弥漫性CMB患者发生死亡,见图2。轻、重型HACE患者的白质区水肿均为缺血缺氧性改变,DWI表现为高信号,ADC值不同程度减低,且重型HACE胼胝体压部ADC值明显低于轻型HACE[轻、重型HACE患者室旁和室周(胼胝体压部)白质水肿区域ADC平均值:0.63(0.09)vs. 0.52(0.29)],差异有统计学意义(Z=-1.969,P=0.049)。

图1  轻型高原脑水肿患者。1A:T1WI示胼胝体压部呈对称性稍低信号;1B:T2WI示胼胝体压部呈对称性稍高信号;1C:液体衰减反转恢复序列示胼胝体压部呈对称性稍高信号;1D:扩散加权成像(DWI)示胼胝体压部呈对称性高信号;1E:表观扩散系数图示胼胝体压部呈对称性低信号;1F:DWI示胼胝体压部中央呈高信号。
Fig. 1  Mild high altitude cerebral edema patient. 1A: T1WI shows symmetrical slightly hypointensity in the splenium of the corpus callosum; 1B: T2WI shows symmetrical slightly hyperintensity in the splenium of the corpus callosum; 1C: fluid attenuated inversion recovery shows symmetrical slightly hyperintensity in the splenium of the corpus callosum; 1D: Diffusion weighted imaging (DWI) shows symmetrical hyperintensity in the splenium of the corpus callosum; 1E: Apparent diffusion coefficient shows symmetrical hypointensity in the splenium of the corpus callosum; 1F: DWI shows hyperintensity in the center of the splenium of the corpus callosum.
图2  重型高原脑水肿患者。2A:T1WI示胼胝体压部和膝部呈对称性低信号;2B:T2WI示胼胝体压部和膝部呈对称性高信号;2C:液体衰减反转恢复序列示胼胝体压部和膝部呈对称性高信号;2D~2F:扩散加权成像示双侧皮质脊髓束、半卵圆中心、胼胝体压部和膝部呈对称性高信号;2G:表观扩散系数图示胼胝体压部和膝部呈对称性低信号;2H:磁敏感加权成像示脑实质内对称性弥漫分布斑点状低信号,以胼胝体压部和膝部显著。
Fig. 2  Severe high altitude cerebral edema patient. 2A: T1WI shows symmetrical hypointensity in the splenium and knee of the corpus callosum; 2B: T2WI shows symmetrical hyperintensity in the splenium and knee of the corpus callosum; 2C: Fluid attenuated inversion recovery shows symmetrical hyperintensity in the splenium and knee of the corpus callosum; 2D-2F: DWI shows symmetrical hyperintensity in bilateral corticospinal tract, semioval center, splenium of corpus callosum and knee; 2G: Apparent diffusion coefficient shows symmetrical hypointensity in the splenium and knee of the corpus callosum;2H: Susceptibility weighted imaging shows symmetrically diffuse speckled hypointensity in the brain parenchyma, especially in the splenium of the corpus callosum and knee.
图3  胼胝体区域水肿分型。3A~3B:扩散加权成像(DWI)示胼胝体膝、干、压部呈对称性高信号;3C~3D:DWI示胼胝体压部呈对称性高信号;3E~3F:DWI示胼胝体压部中央呈高信号。
Fig. 3  Classification of edema in corpus callosum region. 3A-3B: Diffusion weighted imaging (DWI) shows symmetrical hyperintensity in the splenium, trunk, and knee of the corpus callosum; 3C-3D: DWI shows symmetrical hyperintensity in the splenium of the corpus callosum; 3E-3F: DWI shows hyperintensity in the center of the splenium of the corpus callosum.
表2  30例HACE胼胝体区域水肿分布
Tab. 2  Distribution of edema in corpus callosum in 30 cases of HACE

3 讨论

       本研究通过多模态MRI对轻、重型HACE进行了主观性评估及定量评价并根据胼胝体区域水肿分布进一步分型。研究结果表明DWI序列最有助于评价轻、重型HACE。轻型HACE损伤范围主要局限性于室旁及室周白质。重型HACE损伤范围不仅累及深部和近皮质白质,而且胼胝体区域损伤范围更大、程度更重,还易并发CMB及皮质脊髓束水肿。很少有研究对HACE进行多模态MRI研究,且本研究是首次利用ADC值对HACE进行定量分析并进一步分型,使我们能够更加清楚地了解HACE的损伤特点,为早期诊断及治疗提供更多的指导及帮助。

3.1 HACE的病理生理机制及相应MRI表现

       HACE的病理生理机制目前普遍认为是细胞毒性水肿及血管源性水肿[3]。血管源性水肿是指由于血脑屏障通透性增加而导致的细胞外水分积聚[15],即由于血管内皮生长因子、一氧化氮、反应性细胞因子和自由基等神经激素与血流动力学反应的相互作用而导致缺氧,从而诱导微血管毛细血管床渗漏,最终导致血脑屏障破坏及颅内压升高[16]。细胞毒性水肿是指由于缺氧导致的自由基形成,导致Na+/K+-APT酶受损、氧化应激、星形胶质细胞肿胀,并由此产生细胞毒性水肿[15]。当人们从平原初到高原,或短时间内从高海拔地区到达更高海拔地区,如果遇到某些外环境因素的影响,如寒冷、感冒、免疫力下降等,使机体对缺氧的耐受力下降。而脑耗氧量非常大,它是对缺氧非常敏感的器官[17, 18, 19]。当缺氧时能导致脑细胞肿胀,在T1WI、T2WI上表现为弛豫时间延长即T1WI呈低信号,T2WI呈高信号。在HACE的早期,缺氧的时候因为细胞钠-钾泵功能失调,导致细胞内水分子增加而出现肿胀,使水分子扩散运动受到限制,即DWI表现为高信号,ADC值显著降低,此时可能在T1WI、T2WI、FLAIR上信号表现不是很明显,甚至无表现[9]。李素芝等[10]的研究发现,在最后确诊为HACE的36例患者中,22例在HACE早期即在出现精神、神经症状之前就出现了脑实质内MRI异常信号,表现为斑点状和小片状T1WI低信号和T2WI高信号。在本研究中,30例HACE患者脑白质水肿区域在MRI各序列上均出现了不同程度信号异常。且在轻、重型HACE中,DWI序列信号强度均明显高于MRI常规序列,差异有统计学意义,其中在轻型HACE中差异更加显著。因此我们认为,DWI序列对HACE脑白质损伤的评估优势最大,以轻型HACE显著。

3.2 MRI对HACE的评价分析

       HACE在MRI上通常表现为T1WI低信号、T2WI高信号、FLAIR高信号、DWI高信号、ADC值不同程度减低。陈辉武等[11]的研究发现HACE在MRI上的表现为弥漫性改变,胼胝体、大脑、丘脑、脑干以及小脑均可受累,且是以胼胝体为中心,具有一定的特征性。谭健等[9]的研究发现HACE在胼胝体、大脑皮层下白质、小脑、扣带回及透明隔等区域受累,表现为T1WI低信号、T2WI高信号、FLAIR高信号、DWI高信号。HACKETT等[12]的研究中发现8例HACE患者首次MRI扫描均出现T2WI和FALIR高信号,主要为胼胝体、皮质下白质、脑室周围白质受累,且以胼胝体和皮质下白质为主。一些学者[16, 20]也报道了HACE患者在以胼胝体为中心的大脑白质区出现了T1WI低信号、T2WI和FLAIR高信号,进行了DWI序列扫描的患者则因扩散受限而表现为高信号。本研究中,所有HACE患者均发生室旁和室周白质对称性水肿,且在18例重型HACE患者中有13例出现深部和近皮质白质水肿,这与以往研究相符。研究发现轻、重型HACE均可出现不同程度室旁和室周白质水肿,而重型HACE深部和近皮质水肿分布范围明显大于轻型HACE,说明随着HACE程度加重,水肿的范围也逐渐从室旁和室周白质向深部和近皮质白质扩散。本研究还发现30例HACE患者主要表现为对称性白质水肿,且以胼胝体压部显著。我们根据患者胼胝体水肿的分布进一步分型,发现了重型HACE胼胝体水肿分布范围明显大于轻型HACE,且重型胼胝体压部水肿区域ADC值明显低于轻型HACE,以上差异均具有统计学意义。所以我们认为重型HACE因缺血缺氧引起的水肿损伤范围更大,损伤程度更重。另外,7例重型HACE患者还出现了双侧丘脑层面皮质脊髓束明显水肿,这导致了患者出现肢体抽搐等自主运动功能受损表现。

3.3 SWI对HACE的评价分析

       CMB被定义为是一种小的(<10 mm)、低信号、圆形或卵圆形病变,可以通过T2*梯度加权回波和SWI序列检测出[21, 22, 23],其周围一般不会出现水肿现象[24]。组织病理学检查表明,CMB是点状出血病灶,含有含铁血黄素沉积物,很可能是由脑小血管(如小动脉和毛细血管)的红细胞渗漏引起[23],形成的原因是小血管变性状态导致的血液外渗,以及随后从红细胞释放的血红蛋白的分解[25]。CMB与脑出血、缺血性脑卒中、痴呆、帕金森病、阿尔茨海默病等有关[23, 26, 27, 28, 29],也可见于高原缺氧引起的损伤[30]。在HACKETT等[12]的研究中,接受了SWI检查的6例患者均出现了广泛的CMB征象,且以胼胝体和皮质下白质区最显著。一些学者也报道了HACE患者在颅内出现广泛的CMB,尤其是胼胝体、大脑白质和半卵圆中心[16, 31]。在本研究中,9例行SWI扫描的重型HACE患者有5例出现了CMB,均以胼胝体为中心,且1例颅内弥漫性CMB患者发生死亡。一些研究认为CMB可导致认知功能障碍和增加脑卒中的风险[25,29],甚至是发生死亡[32]。因此我们认为当患者出现CMB时,往往提示预后不良,应当及时治疗。

3.4 不足与展望

       本研究中大部分HACE患者因旅游从平原初到高原,在临床症状得到缓解后就迅速返回了平原地区,因此我们无法继续对患者进行随访观察。本研究发现部分重型HACE患者出现了双侧丘脑层面皮质脊髓束水肿,我们接下来将对HACE患者行扩散张量成像检查,以便更准确的量化评估皮质脊髓束的损伤。

4 结论

       综上所述,HACE为缺血缺氧性改变,对称性累及脑白质区,以胼胝体压部最敏感,重型较轻型HACE脑白质损伤的范围更大,程度更重。MRI各序列均可对HACE的颅内水肿等损伤进行评估,但以DWI序列优势最显著。部分重型HACE患者还可出现CMB和双侧丘脑层面皮质脊髓束水肿,当患者出现CMB时,往往提示病情出现恶化并可能导致预后不良,应积极治疗。

[1]
BRENT M B. A review of the skeletal effects of exposure to high altitude and potential mechanisms for hypobaric hypoxia-induced bone loss[J/OL]. Bone, 2022, 154: 116258 [2022-08-15]. https://pubmed.ncbi.nlm.nih.gov/34781048/. DOI: 10.1016/j.bone.2021.116258.
[2]
SAVIOLI G, CERESA I F, GORI G, et al. Pathophysiology and Therapy of High-Altitude Sickness: Practical Approach in Emergency and Critical Care[J/OL]. J Clin Med, 2022, 11(14): 3937 [2022-08-15]. https://pubmed.ncbi.nlm.nih.gov/35887706/. DOI: 10.3390/jcm11143937.
[3]
TURNER R, GATTERER H, FALLA M, et al. High-altitude cerebral edema: its own entity or end-stage acute mountain sickness?[J]. J Appl Physiol (1985), 2021, 131(1): 313-325. DOI: 10.1152/japplphysiol.00861.2019.
[4]
中华医学会第三次全国高原医学学术讨论会. 我国高原病命名、分型及诊断标准[J]. 高原医学杂志, 2010, 20(1): 9-11. DOI: 10.3969/j.issn.1007-3809.2010.01.004.
The third National Plateau Medicine Symposium of the Chinese Medical Association. Nomenclature, classification and diagnostic criteria of altitude sickness in China[J]. Journal of High Altitude Medicine, 2010, 20(1): 9-11. DOI: 10.3969/j.issn.1007-3809.2010.01.004.
[5]
ZELMANOVICH R, PIERRE K, FELISMA P, et al. High Altitude Cerebral Edema: Improving Treatment Options[J]. Biologics (Basel), 2022, 2(1): 81-91. DOI: 10.3390/biologics2010007.
[6]
GONZALEZ GARAY A, MOLANO FRANCO D, NIETO ESTRADA V H, et al. Interventions for preventing high altitude illness: Part 2. Less commonly-used drugs[J/OL]. Cochrane Database Syst Rev, 2018, 3(3): CD012983 [2022-08-15]. https://pubmed.ncbi.nlm.nih.gov/29529715/. DOI: 10.1002/14651858.CD012983.
[7]
NIETO ESTRADA V H, MOLANO FRANCO D, MEDINA R D, et al. Interventions for preventing high altitude illness: Part 1. Commonly-used classes of drugs[J/OL]. Cochrane Database Syst Rev, 2017, 6(6): CD009761 [2022-08-15]. https://pubmed.ncbi.nlm.nih.gov/28653390/. DOI: 10.1002/14651858.CD009761.pub2.
[8]
KHODAEE M, GROTHE H L, SEYFERT J H, et al. Athletes at High Altitude[J]. Sports Health, 2016, 8(2): 126-132. DOI: 10.1177/1941738116630948.
[9]
谭健, 王劲武, 陈辉武, 等. 高原脑水肿的MRI检查方法[J]. 西南国防医药, 2005, 15(1): 61-62. DOI: 10.3969/j.issn.1004-0188.2005.01.030.
TAN J, WANG J W, CHEN H W, et al. Application of MRI in examination of high altitude cerebral edema[J]. Medical Journal of National Defending Forces in Southwest China, 2005, 15(1): 61-62. DOI: 10.3969/j.issn.1004-0188.2005.01.030.
[10]
李素芝, 谭健, 刘斌, 等. 高原脑水肿的早期影像学表现探讨[J]. 西南国防医药, 2010, 20(5): 527-529. DOI: 10.3969/j.issn.1004-0188.2010.05.027.
LI S Z, TAN J, LIU B, et al. Investigation of pulmonary image of high altitude cerebral edema in early stage[J]. Medical Journal of National Defending Forces in Southwest China, 2010, 20(5): 527-529. DOI: 10.3969/j.issn.1004-0188.2010.05.027.
[11]
陈辉武, 王劲武, 刘洁, 等. 高原脑水肿的MRI诊断[J]. 西南国防医药, 2006, 16(5): 525-527. DOI: 10.3969/j.issn.1004-0188.2006.05.029.
CHEN H W, WANG J W, LIU J, et al. Magnetic resonance imaging of high altitude cerebral edema[J]. Medical Journal of National Defending Forces in Southwest China, 2006, 16(5): 525-527. DOI: 10.3969/j.issn.1004-0188.2006.05.029.
[12]
HACKETT P H, YARNELL P R, WEILAND D A, et al. Acute and Evolving MRI of High-Altitude Cerebral Edema: Microbleeds, Edema, and Pathophysiology[J]. AJNR Am J Neuroradiol, 2019, 40(3): 464-469. DOI: 10.3174/ajnr.A5897.
[13]
BROKINKEL B, HINRICHS F L, SCHIPMANN S, et al. Predicting postoperative seizure development in meningiomas - Analyses of clinical, histological and radiological risk factors[J/OL]. Clin Neurol Neurosurg, 2021, 200: 106315 [2022-08-15]. https://pubmed.ncbi.nlm.nih.gov/33092928/. DOI: 10.1016/j.clineuro.2020.106315.
[14]
KIM K W, MACFALL J R, PAYNE M E. Classification of white matter lesions on magnetic resonance imaging in elderly persons[J]. Biol Psychiatry, 2008, 64(4): 273-280. DOI: 10.1016/j.biopsych.2008.03.024.
[15]
HACKETT P H, YARNELL P R, HILL R, et al. High-altitude cerebral edema evaluated with magnetic resonance imaging: clinical correlation and pathophysiology[J]. JAMA, 1998, 280(22): 1920-1925. DOI: 10.1001/jama.280.22.1920.
[16]
MEDHI G, LACHUNGPA T, SAINI J. Neuroimaging features of fatal high-altitude cerebral edema[J]. Indian J Radiol Imaging, 2018, 28(4): 401-405. DOI: 10.4103/ijri.IJRI_296_18.
[17]
BURTSCHER J, MALLET R T, BURTSCHER M, et al. Hypoxia and brain aging: Neurodegeneration or neuroprotection?[J/OL]. Ageing Res Rev, 2021, 68: 101343 [2022-08-15]. https://pubmed.ncbi.nlm.nih.gov/33862277/. DOI: 10.1016/j.arr.2021.101343.
[18]
MA J, WANG C, SUN Y, et al. Comparative study of oral and intranasal puerarin for prevention of brain injury induced by acute high-altitude hypoxia[J/OL]. Int J Pharm, 2020, 591: 120002 [2022-08-15]. https://pubmed.ncbi.nlm.nih.gov/33141084/. DOI: 10.1016/j.ijpharm.2020.120002.
[19]
SHAW D M, CABRE G, GANT N. Hypoxic Hypoxia and Brain Function in Military Aviation: Basic Physiology and Applied Perspectives[J/OL]. Front Physiol, 2021, 12: 665821 [2022-08-15]. https://pubmed.ncbi.nlm.nih.gov/34093227/. DOI: 10.3389/fphys.2021.665821.
[20]
URUSHIDA Y, KIKUCHI Y, SHIMIZU C, et al. Improved Neuroimaging Findings and Cognitive Function in a Case of High-altitude Cerebral Edema[J]. Intern Med, 2021, 60(8): 1299-1302. DOI: 10.2169/internalmedicine.5747-20.
[21]
HALLER S, VERNOOIJ M W, KUIJER J, et al. Cerebral Microbleeds: Imaging and Clinical Significance[J]. Radiology, 2018, 287(1): 11-28. DOI: 10.1148/radiol.2018170803.
[22]
WARDLAW J M, SMITH E E, BIESSELS G J, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration[J]. Lancet Neurol, 2013, 12(8): 822-838. DOI: 10.1016/S1474-4422(13)70124-8.
[23]
WANG H L, ZHANG C L, QIU Y M, et al. Dysfunction of the Blood-brain Barrier in Cerebral Microbleeds: from Bedside to Bench[J]. Aging Dis, 2021, 12(8): 1898-1919. DOI: 10.14336/AD.2021.0514.
[24]
郭霞, 王楠, 吴丽娥. 脑微出血与认知功能障碍的研究进展[J]. 内科理论与实践, 2020, 15(3): 152-155. DOI: 10.16138/j.1673-6087.2020.03.004.
GUO X, WANG N, WU L E. Research progress of cerebral microbleeds and cognitive impairment[J]. Journal of Internal Medicine Concepts & Practice, 2020, 15(3): 152-155. DOI: 10.16138/j.1673-6087.2020.03.004.
[25]
LITAK J, MAZUREK M, KULESZA B, et al. Cerebral Small Vessel Disease[J/OL]. Int J Mol Sci, 2020, 21(24): 9729 [2022-08-15]. https://pubmed.ncbi.nlm.nih.gov/33419271/. DOI: 10.3390/ijms21249729.
[26]
AKOUDAD S, WOLTERS F J, VISWANATHAN A, et al. Association of Cerebral Microbleeds With Cognitive Decline and Dementia[J]. JAMA Neurol, 2016, 73(8): 934-943. DOI: 10.1001/jamaneurol.2016.1017.
[27]
VAN AGTMAAL M, HOUBEN A, POUWER F, et al. Association of Microvascular Dysfunction With Late-Life Depression: A Systematic Review and Meta-analysis[J]. JAMA Psychiatry, 2017, 74(7): 729-739. DOI: 10.1001/jamapsychiatry.2017.0984.
[28]
DING J, SIGURDSSON S, GARCIA M, et al. Risk Factors Associated With Incident Cerebral Microbleeds According to Location in Older People: The Age, Gene/Environment Susceptibility (AGES)-Reykjavik Study[J]. JAMA Neurol, 2015, 72(6): 682-688. DOI: 10.1001/jamaneurol.2015.0174.
[29]
PUY L, PASI M, RODRIGUES M, et al. Cerebral microbleeds: from depiction to interpretation[J/OL]. J Neurol Neurosurg Psychiatry, 2021: jnnp-2020-323951 [2022-08-15]. https://pubmed.ncbi.nlm.nih.gov/33563804/. DOI: 10.1136/jnnp-2020-323951.
[30]
HOFFMANN A, KUNZE R, HELLUY X, et al. High-Field MRI Reveals a Drastic Increase of Hypoxia-Induced Microhemorrhages upon Tissue Reoxygenation in the Mouse Brain with Strong Predominance in the Olfactory Bulb[J/OL]. PLoS One, 2016, 11(2): e0148441 [2022-08-15]. https://pubmed.ncbi.nlm.nih.gov/26863147/. DOI: 10.1371/journal.pone.0148441.
[31]
PICHLER HEFTI J, HOIGNÉ-PERRET P, KOTTKE R. Extensive Microhemorrhages of the Cerebellar Peduncles After High-Altitude Cerebral Edema[J]. High Alt Med Biol, 2017, 18(2): 182-184. DOI: 10.1089/ham.2016.0103.
[32]
LU S, LIU S, WANG S H, et al. Cerebral Microbleed Detection via Convolutional Neural Network and Extreme Learning Machine[J/OL]. Front Comput Neurosci, 2021, 15: 738885 [2022-08-15]. https://pubmed.ncbi.nlm.nih.gov/34566615/. DOI: 10.3389/fncom.2021.738885.

上一篇 MAP-MRI与DCE-MRI在鉴别胶质母细胞瘤与脑转移瘤中的应用价值
下一篇 基于多参数磁共振成像定量分析诊断新生儿胆红素脑病的研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2