分享:
分享到微信朋友圈
X
临床研究
初探T1 mapping和APTw成像对慢性肾病的诊断价值
王悦 鞠烨 卜欣淼 陈丽华 王楠 刘爱连

Cite this article as: WANG Y, JU Y, BU X M, et al. The diagnostic value of T1 mapping and APTw imaging in chronic kidney disease[J]. Chin J Magn Reson Imaging, 2023, 14(2): 56-60, 67.本文引用格式:王悦, 鞠烨, 卜欣淼, 等. 初探T1 mapping和APTw成像对慢性肾病的诊断价值[J]. 磁共振成像, 2023, 14(2): 56-60, 67. DOI:10.12015/issn.1674-8034.2023.02.010.


[摘要] 目的 初探纵向弛豫时间定量成像(T1 mapping)和酰胺质子转移加权(amide proton transfer weighted, APTw)成像鉴别慢性肾病(chronic kidney disease, CKD)患者与健康人群的价值。材料与方法 回顾性分析2019年8月至2020年10月行3.0 T MRI检查的CKD患者病例资料共21例(女6例,男15例),所有患者均经大连医科大学附属第一医院肾内科医师依据CKD临床实践指南确诊;同时收集24例健康志愿者临床资料作为对照组。将所有原始图像导入ISP工作站,生成伪彩图。由两名影像科诊断医师采用双盲法分别从肾的上极、中部、下极各选择一个层面并于皮质和髓质中分别放置感兴趣区(region of interest, ROI),面积约10~20 mm2,避开肾窦、大血管及肾周组织。测量所得皮髓质T1值与APT值应用SPSS 26.0软件进行统计学分析:应用组内相关系数(intra-class correlation coefficients, ICC)进行观察者间测量结果一致性检验;根据数据正态分布情况,采用独立样本t检验或Mann-Whitney U检验分析两组间参数值差异,P<0.05为差异具有统计学意义;采用受试者工作特征(receiver operating characteristic, ROC)曲线分析各参数诊断效能,根据最大约登指数得到相对应的阈值、敏感度和特异度,并计算曲线下面积(area under the curve, AUC)值。结果 两位观察者间测量结果一致性良好(ICC>0.75)。CKD组双肾皮质T1值和皮质APT值显著高于健康对照组(P<0.05);左肾皮质T1值鉴别CKD的AUC值为0.887,敏感度66.7%,特异度100.0%;左肾皮质APT值鉴别CKD的AUC值为0.966,敏感度95.2%,特异度95.8%;右肾皮质T1值鉴别CKD的AUC值为0.960,敏感度76.2%,特异度100.0%;右肾皮质APT值鉴别CKD的AUC值为0.921,敏感度85.7%,特异度91.7%。结论 T1 mapping与APTw成像可无创有效鉴别CKD,基于二者的定量参数在一定程度上反映了单侧肾脏各自结构与功能的改变,有望为临床疾病诊断提供一定的参考价值。
[Abstract] Objective To explore the value of T1 mapping and amide proton transfer weighted (APTw) imaging in differentiating chronic kidney disease (CKD) patients from healthy people.Materials and Methods A total of 21 cases of patients (6 females, 15 males) with CKD who underwent 3.0 T MRI from August 2019 to October 2020 were retrospectively collected. All patients were diagnosed according to the clinical practice guidelines of CKD in the department of nephrology of the First Affiliated Hospital of Dalian Medical University. At the same time, the data of 24 healthy volunteers were collected as the control group. All raw images were imported into the ISP workstation to generate pseudo-color images. Regions of interest (ROIs) of 10-20 mm2 were placed in the cortex and medulla, respectively. The ROIs were selected from the upper, middle and lower pole of the kidney by two radiologists in a double-blind method, avoiding the renal sinus, large blood vessels and perirenal tissues. The T1 values and APT values of the cortex and medulla were statistically analyzed by SPSS 26.0 software. Intra-class correlation coefficients (ICC) were used to test the consistency of the measurement results between observers. Independent sample t test or Mann-Whitney U test was used to analyze the difference of parameter values between the two groups according to the normal distribution of data, and P<0.05 was considered statistically significant. Receiver operating characteristic (ROC) curve was used to analyze the diagnostic efficacy of each parameter. The corresponding threshold, sensitivity and specificity were obtained according to the maximum Youden index, and the area under the curve (AUC) was calculated.Results The inter-observer agreement was good (ICC>0.75). The renal cortical T1 value and cortical APT value in CKD group were significantly higher than those in healthy control group (P<0.05). The AUC value of T1 value of left renal cortex in differentiating CKD was 0.887, the sensitivity was 66.7%, and the specificity was 100.0%. The AUC value of APT value of left renal cortex in identifying CKD was 0.966, with a sensitivity of 95.2% and a specificity of 95.8%. The AUC value of T1 value of right renal cortex in differentiating CKD was 0.960, the sensitivity was 76.2%, and the specificity was 100.0%. The APT value of right renal cortex had a AUC value of 0.921, a sensitivity of 85.7%, and a specificity of 91.7% for identifying CKD.Conclusions T1 mapping and APTw imaging can noninvasiously and effectively identify CKD. The quantitative parameters based on T1 mapping and APTw imaging can reflect the structural and functional changes of the left and right kidneys to a certain extent, which is expected to provide certain reference value for clinical disease diagnosis.
[关键词] 慢性肾病;T1 mapping;酰胺质子转移成像;磁共振成像;鉴别诊断
[Keywords] chronic kidney disease;T1 mapping;amide proton transfer imaging;functional magnetic resonance imaging;differential diagnosis

王悦 1   鞠烨 1   卜欣淼 1   陈丽华 1   王楠 1   刘爱连 1, 2*  

1 大连医科大学附属第一医院放射科,大连 116011

2 大连市医学影像人工智能工程技术研究中心,大连 116011

*通信作者:刘爱连,E-mail:cjr.liuailian@vip.163.com

作者贡献声明::刘爱连设计本研究的方案,解释本研究的数据,对稿件重要内容进行了修改;王悦起草和撰写稿件,获取、分析或解释本研究的数据;鞠烨、卜欣淼、陈丽华、王楠获取、分析本研究的数据,对稿件重要内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


收稿日期:2022-08-02
接受日期:2023-01-12
中图分类号:R445.2  R692 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2023.02.010
本文引用格式:王悦, 鞠烨, 卜欣淼, 等. 初探T1 mapping和APTw成像对慢性肾病的诊断价值[J]. 磁共振成像, 2023, 14(2): 56-60, 67. DOI:10.12015/issn.1674-8034.2023.02.010.

0 前言

       全球的肾脏疾病患者基数是巨大的,有超过百分之十的成年人口患有慢性肾病(chronic kidney disease, CKD)[1]。目前临床上对于CKD诊断的主要依据有肾脏病预后质量倡议(Kidney Disease Outcome Quality Initiative, KDOQI)[2]和改善全球肾脏病预后组织(Kidney Disease: Improving Global Outcomes, KDIGO)[3]工作组所制定的临床实践指南;我国专家学者基于以上制定了适合国人的《CKD早期筛查、诊断及防治指南(2022年版)》[4],即基于肾损伤标志和(或)估算肾小球滤过率(estimation of glomerular filtration rate, eGFR)下降指标,持续时间超过3个月可诊断为CKD。常规实验室检查指标如eGFR、血清肌酐、蛋白尿等虽作为CKD的主要诊断指标,但敏感度一般,且难以反映单侧肾脏的功能改变。病理穿刺活检为CKD诊断的金标准,但取样局限、具有一定的有创性且易出现副作用。因此,寻找一种无创、有效且能分别反映单侧肾脏组织学及功能改变的方法有望在一定程度上减轻患者痛苦和负担,并有利于疾病的准确诊断及预后改善。

       常规影像学检查仅能反映肾脏形态学改变,而近年来新兴的功能磁共振成像(functional magnetic resonance imaging, fMRI)技术,可从组织学水平上反映肾脏扩散、灌注、血流等功能改变,多种基于fMRI的定量影像学标志物具有无创性评估CKD肾脏功能改变的潜能[5]。其中,T1 mapping是一种新型定量MRI技术,可反映组织含水量及纤维化程度,现已广泛应用于心肌纤维化程度及肝脏纤维化程度和分期等的评估中[6, 7, 8, 9];近年来,该技术逐渐应用于肾脏,如评估IgA肾病、慢性肾小球肾炎、移植肾的纤维化程度等[10, 11, 12, 13]。酰胺质子转移加权(amide proton transfer weighted, APTw)成像基于内源性化学交换饱和转移技术,可无创无对比剂检测组织内源性移动蛋白和多肽中酰胺质子浓度的变化及体内pH值改变[14],现已应用于神经系统[14]、子宫[15]、直肠[16, 17]等中;但其应用于肾脏疾病的研究较为罕见,本研究团队JU等[18]、王悦等[19]利用APTw评估CKD不同程度肾功能损害,但测量结果仅基于右肾,难以全面反映双侧肾脏损害。综上,本研究拟创新性地应用T1 mapping和APTw成像通过测量单侧肾脏皮髓质定量参数鉴别CKD患者与健康人群,并初探二者在反映CKD单肾组织学改变的价值。

1 材料与方法

1.1 临床资料

       回顾性分析2019年8月至2020年10月于大连医科大学附属第一医院行3.0 T MRI检查的CKD患者病例资料,所有患者均经大连医科大学附属第一医院肾内科依据《慢性肾脏病早期筛查、诊断及防治指南(2022年版)》[4]确诊。CKD组入组标准:(1)依据指南临床明确诊断为CKD的患者;(2)行MR检查前未接受手术、透析等治疗;(3)各MR扫描序列完整齐全,包括常规肾脏扫描序列T2WI及T1 mapping、APTw序列。排除标准:(1)肾脏占位性病变;(2)MRI图像伪影严重,影响参数测量;(3)出现肾萎缩征象。同时收集定期体检的年龄大于18周岁的健康志愿者临床资料作为对照组。排除标准:(1)既往存在全身代谢或内分泌疾病、糖尿病或高血压等病史;(2)存在MRI检查禁忌证;(3)图像质量较差或MR扫描序列不全。本研究遵守《赫尔辛基宣言》,并经大连医科大学附属第一医院医学伦理委员会批准,免除受试者知情同意,批准文号:PJ-KS-KY-2021-250。

1.2 MRI扫描

       应用3.0 T MR扫描仪(Ingenia 3.0 T CX;Philips Healthcare,Best,荷兰),32通道腹部线圈。所有受试者都进行肾脏APTw、T1 mapping和T2WI扫描。扫描顺序:轴向T2WI,T1 mapping和APTw成像,其中T2WI为呼吸门控,T1 mapping患者需屏气,APTw为自由呼吸。详细参数如表1所示。

表1  各序列的扫描参数
Tab. 1  The parameters of each sequence

1.3 图像分析

       将所有原始图像导入ISP工作站,生成伪彩图。由两位分别具有2年和6年腹部MR诊断经验的放射科医师采用双盲法参照T2WI在T1 mapping与APTw图像上分别从肾的上极、中部、下极各选择一个层面并于左右肾皮质和髓质中分别放置椭圆形感兴趣区(region of interest, ROI),面积约10~20 mm2,注意避开肾窦、大血管及肾周组织(图1),记录两名观察者测得的T1 mapping定量参数值(T1值)和APTw定量参数值(APT值)。

图1  女,48岁,慢性肾病患者。1A:T2WI图像;1B:右肾酰胺质子转移加权(APTw)-T2WI融合图像,皮质APT值为1.2%,而髓质为0.9%;1C:右肾T1 mapping-T2WI融合图像,皮质T1值为1478.1 ms,而髓质为1690.3 ms。
图2  各参数鉴别慢性肾病组与健康对照组诊断效能的受试者工作特征(ROC)曲线。
Fig. 1  A 48-year-old woman with chronic kidney disease (CKD). 1A: T2WI image; 1B: Amide proton transfer weighted (APTw)-T2WI fusion images of the right kidney shows that the APT value is 1.2% in the cortex and 0.9% in the medulla. 1C: T1 mapping-T2WI fusion images of the right kidney, shows T1 values of 1478.1 ms in the cortex and 1690.3 ms in the medulla.
Fig. 2  The receiver operating characteristic (ROC) curves of the efficacy of each parameter to distinguish the chronic kidney disease group and healthy control group.

1.4 统计学分析

       采用SPSS 26.0软件进行统计学分析。临床资料等分类变量采用卡方检验(chi-square test)或Fisher确切概率法(Fisher exact test)进行比较;应用组内相关系数(intra-class correlation coefficients, ICC)对两位观察者的测量结果进行一致性检验,ICC≥0.75表示一致性良好,0.50<ICC<0.75表示一致性尚可,ICC≤0.50表示一致性较差。若一致性良好,取二者平均值继续进行分析。根据是否符合正态性,分别采用独立样本t检验和Mann-Whitney U检验分析两位观测者获得的T1值与APT值的差异,当P<0.05时,差异有统计学意义。采用受试者工作特征(receiver operating characteristic, ROC)曲线分析两组的鉴别诊断效能,并计算ROC曲线下面积(area under the curve, AUC)值,根据最大约登指数得到相对应的阈值、敏感度和特异度。

2 结果

2.1 CKD组与健康对照组临床资料

       本研究共纳入了CKD组病例资料21例,男15例,女6例,年龄(44.5±13.4)岁;健康对照组24例,男15例,女9例,年龄(40.9±8.7)岁。CKD组与健康对照组年龄(t=3.41,P=0.152)及性别(χ2=0.402,P=0.526)差异无统计学意义。

2.2 两名观察者数据一致性检验

       两名观察者的一致性检验结果良好(ICC值均大于0.75)(表2)。

表2  两名观察者的组内相关系数(ICC)的检验值
Tab. 2  The intra-class correlation coefficients (ICC) test values of two observers

2.3 两组T1值和APT值的比较

       K-S检验结果显示右肾皮质APT值、左肾皮髓质T1值及左肾髓质APT值符合正态分布(P>0.05),用均数±标准差表示;而右肾皮髓质T1值、右肾髓质APT值及左肾皮质APT值不符合正态分布(P<0.05),用中位数(四分位间距)表示。

       CKD组与健康对照组左、右肾皮质的T1值及APT值差异具有统计学意义(P<0.05),而两组间左、右肾髓质T1值及APT值差异无统计学意义(P>0.05),详见表3

表3  左、右肾皮髓质T1值与APT值
Tab. 3  The T1 values and APT values in the left and right kidneys

2.4 诊断效能比较

       左肾皮质T1值鉴别CKD的AUC值为0.887,敏感度66.7%,特异度100.0%;左肾皮质APT值鉴别CKD的AUC值为0.966,敏感度95.2%,特异度95.8%;右肾皮质T1值鉴别CKD的AUC值为0.960,敏感度76.2%,特异度100.0%;右肾皮质APT值鉴别CKD的AUC值为0.921,敏感度85.7%,特异度91.7%(图2表4)。

表4  双肾皮髓质各参数诊断效能
Tab. 4  The diagnostic efficiency of each parameter in the left and right kidneys

3 讨论

       本研究同时应用了T1 mapping与APTw新型定量MRI技术,通过测量单侧肾脏皮髓质定量参数来鉴别CKD与健康对照组。结果显示CKD组左肾皮质T1值、APT值及右肾皮质T1值、APT值显著高于健康对照组(P<0.05),且上述参数在鉴别CKD与健康对照时均具有较高的诊断效能,T1值与APT值可分别从不同角度反映CKD时单侧肾脏纤维化及蛋白质代谢等组织学改变,可为临床疾病诊断及预后评估提供一定的参考价值。

3.1 T1 mapping

       T1 mapping在肾脏疾病上的应用日益增多[20],T1弛豫时间反映组织结构上的改变,与纤维化及水肿程度有关。FRIEDLI等[13]发现T1值与移植肾的纤维化和炎症程度均有较好的相关性,可用于评价移植肾间质纤维化程度,因此T1 mapping有望成为无创性评估肾脏纤维化程度的有效方式。本研究结果显示CKD组左肾皮质T1值及右肾皮质T1值显著高于健康对照组(P<0.05),与既往GILLIS等[21]、WU等[11]研究结果相同:一方面,CKD患者存在不同程度的肾小球硬化、肾小管萎缩和间质纤维化[22],可引起T1值升高;另一方面,CKD发生时肾脏产生炎症、氧化应激等损伤,细胞内外水份积聚,导致细胞肿胀和间质水肿,使得T1弛豫时间延长,T1值升高。此外,细胞外基质(extracellular matrix, ECM)的积聚也会导致细胞水肿,肾脏含水量增加,T1值也随之增加,故CKD患者的左、右肾皮质T1值高于健康对照组[23, 24]。与本研究不同的是,WU等[11]的研究测量了双侧肾脏皮髓质T1值,差异性分析显示双侧皮髓质T1值差异无统计学意义(P>0.05),随后取双侧肾脏皮髓质T1值的均值进行后续分析;而本研究直接将左、右两侧肾脏皮髓质T1值作为参数分别评估其诊断CKD的效能。

       本研究结果显示CKD组与健康对照组间左肾髓质T1值及右肾髓质T1值均无显著差异(P>0.05),与既往DEKKERS等[10]结果相似,这可能与T1 mapping的皮质-髓质分化有关,肾脏皮质主要由肾小球及部分肾小管组成,髓质主要是肾小管及集合管组成,皮、髓质的组织学基础和含水量不同,且髓质含水量较皮质丰富[25];基于此,我们推测CKD时,即使肾脏组织存在细胞及间质水肿,髓质间含水量改变可能较皮质相对不明显[5, 10],因此T1值较正常肾脏间差异无统计学意义。

3.2 APTw成像

       APTw成像应用于肾脏疾病的研究国内外罕见,本研究结果显示CKD组左肾皮质APT值及右肾皮质APT值显著高于健康对照组(P<0.05)。既往JU等[18]的研究应用APTw成像评估CKD患者肾损害程度,结果显示随着肾损害程度的增加,皮质APT值随之升高,与本研究结果类似。这可能是因为在慢性肾损伤过程中,肾脏的病理生理变化包括肾小球系膜增生、基底膜增厚、ECM积聚,随后发生不可逆性肾小球硬化及肾小管间质纤维化等[22];其中ECM主要由胶原蛋白、非胶原糖蛋白和蛋白聚糖组成,因此CKD患者的双侧肾脏皮质APT值显著高于健康对照组。值得一提的是,JU等[18]的研究基于右肾皮髓质定量测量加以评估,而本研究同时测量了双侧肾脏的皮髓质定量参数值,可同时反映双侧肾脏组织学改变。

       本研究结果显示CKD组与健康对照组间左肾髓质APT值及右肾髓质APT值均无显著差异(P>0.05),与JU等[18]研究得出CKD组髓质APT值较健康对照组升高的结论不同。可能是因为肾脏皮质血流灌注较髓质丰富,因此髓质受炎症、氧化应激及纤维化等损伤影响较皮质相对不明显,CKD时肾脏髓质内蛋白含量与健康对照组相比变化可能不显著,因此,CKD组与健康对照组髓质APT值无显著差异。

3.3 各参数的诊断效能分析

       本研究结果显示左肾皮质T1值、左肾皮质APT值、右肾皮质T1值与右肾皮质APT值在鉴别CKD与健康对照时均具有较高的诊断效能。

       近年来,APTw成像作为一种新型的分子MRI技术已成为研究热点,该技术已应用于子宫[26]、直肠[27, 28]、前列腺[29]等疾病中,且衍生出的参数APT信号强度值在多种疾病的诊断与预后评估等方面均显示出了良好的诊断效能。MA等[30]研究得出APT值独立评估微卫星不稳定性状态的AUC值为0.894,APTw有望成为临床上无创评估子宫内膜癌微卫星不稳定性状态的有效指标;董宛等[27]利用APTw定量区分直肠癌化疗和未化疗病灶,诊断效能的AUC值为0.930,提示APTw具有评估直肠癌化疗效果的潜能,可作为非侵入性检查在术前预测直肠癌化疗效果。APTw在CKD方面的研究较为少见,JU等[18]应用APTw成像评估CKD患者肾损害程度,右肾皮质与髓质APT值在区分CKD不同程度肾损伤的肾脏功能及健康对照组时诊断效能的AUC值均在0.80以上,APTw有望成为临床上一种方便且可重复性好的评估肾功能的方式,具有一定的研究价值。本研究基于双肾APT值定量评估,最终结果得出右肾皮质APT值鉴别CKD与健康对照组的特异度(100.0%)较高,但敏感度(76.2%)稍低,这说明其虽对于CKD的诊断敏感性较低,但可为CKD的排除诊断提供有力信息;而左肾皮质APT值的敏感度(95.2%)和特异度(95.8%)均较高,诊断效能的AUC值(0.966)也最高,有望成为一项可靠的影像学标志物进行CKD的有效诊断与检出。

       T1 mapping现已纳入临床常规心脏MR检查中,主要用于评估心肌纤维化程度并应用于多种心脏疾病的诊断与预后评估中[31, 32, 33, 34],该技术还可用于评估腹部器官如肝脏、肾脏等的纤维化程度。WU等[11]研究得出皮质T1值在评估慢性肾小球肾炎肾脏纤维化程度的诊断效能良好,AUC值为0.778;商芳芳等[35]研究显示肾皮质T1值预测糖尿病肾病轻、中、重度肾功能损伤的AUC值分别为0.796、0.781、0.781,说明T1 mapping对评估糖尿病肾病肾脏功能及肾脏病理间质慢性病变有一定价值。既往研究已表明T1 mapping在评估CKD的潜在应用价值。本研究结果得出左肾皮质T1值与右肾皮质T1值鉴别CKD与健康对照组诊断效能的AUC值分别为0.887、0.921,但左肾皮质T1值的特异度(100.0%)较高,敏感度(66.7%)相对较低,该参数可能有助于CKD的排除诊断;而右肾皮质T1值特异度(91.7%)、敏感度(85.7%)均较高,在CKD的诊断与鉴别中具有一定的临床应用价值。

3.4 局限性

       本研究尚存在以下局限性:(1)病例数较少,有待进一步扩大样本量进行深入研究;(2)部分图像存在少许伪影;(3)未依据患者eGFR等指标将CKD患者细分为不同程度肾损害组,本研究仅基于诊断与鉴别层面,未做到对肾脏损害程度的评估;(4)双侧肾脏皮髓质各参数值间的相关性及差异性,以及双侧皮髓质参数值与eGFR间的相关性等未详细讨论,后续将补充样本量深入探究。

4 结论

       综上所述,T1 mapping与APTw成像均可无创且有效鉴别CKD与健康对照,二者的定量参数在一定程度上反映了CKD时单侧肾脏纤维化程度及蛋白质含量改变,其中左肾皮质APT值有利于CKD的有效检出,左肾皮质T1值与右肾皮质APT值为CKD的排除提供了一定的参考依据。二者均为疾病的诊断筛查及无创评估提供了一种更为安全有效的方法,具有潜在临床应用价值。

[1]
SHLIPAK M G, TUMMALAPALLI S L, BOULWARE L E, et al. The case for early identification and intervention of chronic kidney disease: conclusions from a Kidney Disease: improving Global Outcomes (KDIGO) Controversies Conference[J]. Kidney Int, 2021, 99(1): 34-47. DOI: 10.1016/j.kint.2020.10.012.
[2]
IKIZLER T A, CUPPARI L. The 2020 updated KDOQI clinical practice guidelines for nutrition in chronic kidney disease[J]. Blood Purif, 2021, 50(4/5): 667-671. DOI: 10.1159/000513698.
[3]
KIDNEY DISEASE: IMPROVING GLOBAL OUTCOMES KDIGO) DIABETES WORK GROUP. KDIGO 2022 clinical practice guideline for diabetes management in chronic kidney disease[J]. Kidney Int, 2022, 102(5S): S1-S127. DOI: 10.1016/j.kint.2022.06.008.
[4]
高翔, 梅长林. 《慢性肾脏病早期筛查、诊断及防治指南(2022年版)》解读[J]. 中国实用内科杂志, 2022, 42(9): 735-739. DOI: 10.19538/j.nk2022090108.
GAO X, MEI C L. Interpretation of guideline for early screening, diagnosis, prevention and treatment of chronic kidney disease(2022 edition)[J]. Chin J Pract Intern Med, 2022, 42(9): 735-739. DOI: 10.19538/j.nk2022090108.
[5]
ALNAZER I, BOURDON P, URRUTY T, et al. Recent advances in medical image processing for the evaluation of chronic kidney disease[J/OL]. Med Image Anal, 2021, 69: 101960 [2022-08-01]. https://www.sciencedirect.com/science/article/abs/pii/S1361841521000062. DOI: 10.1016/j.media.2021.101960.
[6]
FARRAG N A, LOCHBIHLER A, WHITE J A, et al. Evaluation of fully automated myocardial segmentation techniques in native and contrast-enhanced T1-mapping cardiovascular magnetic resonance images using fully convolutional neural networks[J]. Med Phys, 2021, 48(1): 215-226. DOI: 10.1002/mp.14574.
[7]
ALABED S, SAUNDERS L, GARG P, et al. Myocardial T1-mapping and extracellular volume in pulmonary arterial hypertension: a systematic review and meta-analysis[J]. Magn Reson Imaging, 2021, 79: 66-75. DOI: 10.1016/j.mri.2021.03.011.
[8]
UGANDER M. Exercise CMR T1 mapping for myocardial ischemia testing: No gad, No drugs, No problem?[J]. JACC Cardiovasc Imaging, 2020, 13(3): 681-683. DOI: 10.1016/j.jcmg.2019.06.005.
[9]
WANG Q, LIU H F, ZHU Z H, et al. Feasibility of T1 mapping with histogram analysis for the diagnosis and staging of liver fibrosis: Preclinical results[J]. Magn Reson Imaging, 2021, 76: 79-86. DOI: 10.1016/j.mri.2020.11.006.
[10]
DEKKERS I A, PAIMAN E H M, DE VRIES A P J, et al. Reproducibility of native T1 mapping for renal tissue characterization at 3T[J]. J Magn Reson Imaging, 2019, 49(2): 588-596. DOI: 10.1002/jmri.26207.
[11]
WU J H, SHI Z Y, ZHANG Y, et al. Native T1 Mapping in Assessing Kidney Fibrosis for Patients With Chronic Glomerulonephritis[J/OL]. Front Med (Lausanne), 2021, 8: 772326 [2022-08-01]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8558353/. DOI: 10.3389/fmed.2021.772326.
[12]
GRAHAM-BROWN M P, SINGH A, WORMLEIGHTON J, et al. Association between native T1 mapping of the kidney and renal fibrosis in patients with IgA nephropathy[J/OL]. BMC Nephrol, 2019, 20(1): 256 [2022-08-01]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6621982/. DOI: 10.1186/s12882-019-1447-2.
[13]
FRIEDLI I, CROWE L A, BERCHTOLD L, et al. New magnetic resonance imaging index for renal fibrosis assessment: a comparison between diffusion-weighted imaging and T1 mapping with histological validation[J/OL]. Sci Rep, 2016, 6: 30088 [2022-08-01]. https://www.nature.com/articles/srep30088. DOI: 10.1038/srep30088.
[14]
ZHANG H, ZHOU J Y, PENG Y. Amide proton transfer-weighted MR imaging of pediatric central nervous system diseases[J]. Magn Reson Imaging Clin N Am, 2021, 29(4): 631-641. DOI: 10.1016/j.mric.2021.06.012.
[15]
MENG N, FANG T, FENG P Y, et al. Amide proton transfer-weighted imaging and multiple models diffusion-weighted imaging facilitates preoperative risk stratification of early-stage endometrial carcinoma[J]. J Magn Reson Imaging, 2021, 54(4): 1200-1211. DOI: 10.1002/jmri.27684.
[16]
LI J, LIN L J, GAO X M, et al. Amide Proton Transfer Weighted and Intravoxel Incoherent Motion Imaging in Evaluation of Prognostic Factors for Rectal Adenocarcinoma[J/OL]. Front Oncol, 2022, 11: 783544 [2022-08-01]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8761907/. DOI: 10.3389/fonc.2021.783544.
[17]
NISHIE A, TAKAYAMA Y, ASAYAMA Y, et al. Amide proton transfer imaging can predict tumor grade in rectal cancer[J]. Magn Reson Imaging, 2018, 51: 96-103. DOI: 10.1016/j.mri.2018.04.017.
[18]
JU Y, LIU A L, WANG Y, et al. Amide proton transfer magnetic resonance imaging to evaluate renal impairment in patients with chronic kidney disease[J]. Magn Reson Imaging, 2022, 87: 177-182. DOI: 10.1016/j.mri.2021.11.015.
[19]
王悦, 刘爱连, 鞠烨, 等. 慢性肾病患者右肾皮髓质的APT与mDixon-Quant相关性研究[J]. 磁共振成像, 2022, 13(3): 71-75. DOI: 10.12015/issn.1674-8034.2022.03.014.
WANG Y, LIU A L, JU Y, et al. Study on the correlation between APT and mDixon-Quant in the right renal cortex and medulla of patients with chronic kidney disease[J]. Chin J Magn Reson Imaging, 2022, 13(3): 71-75. DOI: 10.12015/issn.1674-8034.2022.03.014.
[20]
HECTORS S J, GARTEISER P, DOBLAS S, et al. MRI mapping of renal T1: basic concept[J]. Methods Mol Biol Clifton N J, 2021, 2216: 157-169. DOI: 10.1007/978-1-0716-0978-1_9.
[21]
GILLIS K A, MCCOMB C, PATEL R K, et al. Non-contrast renal magnetic resonance imaging to assess perfusion and corticomedullary differentiation in health and chronic kidney disease[J]. Nephron, 2016, 133(3): 183-192. DOI: 10.1159/000447601.
[22]
RUIZ-ORTEGA M, RAYEGO-MATEOS S, LAMAS S, et al. Targeting the progression of chronic kidney disease[J]. Nat Rev Nephrol, 2020, 16(5): 269-288. DOI: 10.1038/s41581-019-0248-y.
[23]
WOLF M, DE BOER A, SHARMA K, et al. Magnetic resonance imaging T1- and T2-mapping to assess renal structure and function: a systematic review and statement paper[J]. Nephrol Dial Transplant, 2018, 33(suppl_2): ii41-ii50. DOI: 10.1093/ndt/gfy198.
[24]
COX E F, BUCHANAN C E, BRADLEY C R, et al. Multiparametric renal magnetic resonance imaging: validation, interventions, and alterations in chronic kidney disease[J/OL]. Front Physiol, 2017, 8: 696 [2022-08-01]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5603702/.
[25]
MORA-GUTIÉRREZ J M, FERNÁNDEZ-SEARA M A, ECHEVERRIA-CHASCO R, et al. Perspectives on the Role of Magnetic Resonance Imaging (MRI) for Noninvasive Evaluation of Diabetic Kidney Disease[J/OL]. J Clin Med, 2021, 10(11): 2461 [2022-08-01]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8199575/. DOI: 10.3390/jcm10112461.
[26]
马长军, 刘爱连, 田士峰, 等. 初探APTw联合mDixon-Quant序列鉴别Ⅰ期子宫内膜癌与子宫内膜息肉的价值[J]. 临床放射学杂志, 2022, 41(2): 372-376. DOI: 10.13437/j.cnki.jcr.2022.02.007.
MA C J, LIU A L, TIAN S F, et al. Preliminary study on the application value of APTw combined with mDixon-quant sequence in differentiating early endometrial carcinoma from endometrial polyp[J]. J Clin Radiol, 2022, 41(2): 372-376. DOI: 10.13437/j.cnki.jcr.2022.02.007.
[27]
董宛, 刘爱连, 陈安良, 等. 酰胺质子转移加权和扩散峰度成像对直肠癌化疗和未化疗的定量对比研究[J]. 中国医学影像学杂志, 2022, 30(1): 54-59. DOI: 10.3969/j.issn.1005-5185.2022.01.012.
DONG W, LIU A L, CHEN A L, et al. Comparison of amide proton transfer-weighted and diffusion kurtosis imaging in quantifying rectal cancer with and without chemotherapy[J]. Chin J Med Imaging, 2022, 30(1): 54-59. DOI: 10.3969/j.issn.1005-5185.2022.01.012.
[28]
董宛, 陈安良, 刘爱连, 等. 初探酰胺质子转移加权和T2 mapping对直肠癌化疗和未化疗的定量对比研究[J]. 磁共振成像, 2021, 12(7): 24-28. DOI: 10.12015/issn.1674-8034.2021.07.005.
DONG W, CHEN A L, LIU A L, et al. Comparation of amide proton transfer-weighted and T2 mapping in quantifying rectal cancer with and without chemotherapy: a preliminary study[J]. Chin J Magn Reson Imaging, 2021, 12(7): 24-28. DOI: 10.12015/issn.1674-8034.2021.07.005.
[29]
李茜玮, 陈丽华, 王楠, 等. 初探酰胺质子加权联合mDixon-Quant序列评估前列腺癌骨转移的价值[J]. 中国临床医学影像杂志, 2022, 33(8): 540-545. DOI: 10.12117/jccmi.2022.08.002.
LI X W, CHEN L H, WANG N, et al. Preliminary study on the application of amide proton transfer-weighted combined with mDixon-Quant imaging in differentiating bone metastasis of prostate cancer[J]. J China Clin Med Imaging, 2022, 33(8): 540-545. DOI: 10.12117/jccmi.2022.08.002.
[30]
MA C J, TIAN S F, SONG Q L, et al. Amide Proton Transfer-Weighted Imaging Combined With Intravoxel Incoherent Motion for Evaluating Microsatellite Instability in Endometrial Cancer[J/OL]. J Magn Reson Imaging, 2022, 57(2): 493-505 [2022-08-01]. https://onlinelibrary.wiley.com/doi/10.1002/jmri.28287. DOI: 10.1002/jmri.28287.
[31]
GASPAR A S, MALTÊS S, MARQUES H, et al. Myocardial T1 mapping with magnetic resonance imaging - a useful tool to understand the diseased heart[J]. Portuguese J Cardiol Off J Portuguese Soc Cardiol, 2022, 41(1): 61-69. DOI: 10.1016/j.repc.2021.04.005.
[32]
MARQUES T D S S, FERNANDES A M S, DANTAS JÚNIOR R N, et al. Clinical heart failure stratification through native T1 mapping: experience of a referral service[J]. Arq Bras Cardiol, 2021, 116(5): 919-925. DOI: 10.36660/abc.20190782.
[33]
JIA Z, WANG L H, JIA Y Q, et al. Detection of acute myocarditis using T1 and T2 mapping cardiovascular magnetic resonance: a systematic review and meta-analysis[J]. J Appl Clin Med Phys, 2021, 22(10): 239-248. DOI: 10.1002/acm2.13365.
[34]
SECCHI F, ALÌ M, MONTI C B, et al. Right and left ventricle native T1 mapping in systolic phase in patients with congenital heart disease[J]. Acta Radiol, 2021, 62(3): 334-340. DOI: 10.1177/0284185120924563.
[35]
商芳芳, 施钊钰, 王垚, 等. 应用Native T1-mapping成像在评估糖尿病肾脏疾病患者肾功能及病理损伤中的价值[J]. 中国糖尿病杂志, 2022, 30(7): 507-512. DOI: 10.3969/j.issn.1006-6187.2022.07.006.
SHANG F F, SHI Z Y, WANG Y, et al. Application of Native T1? mapping imaging in diabetic kidney disease[J]. Chin J Diabetes, 2022, 30(7): 507-512. DOI: 10.3969/j.issn.1006-6187.2022.07.006.

上一篇 T2 mapping影像组学特征鉴别乳腺病灶良恶性的临床应用初探
下一篇 基于原发灶的磁共振ADC图、T2WI影像组学模型预测前列腺癌骨转移的价值
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2