分享:
分享到微信朋友圈
X
综述
功能磁共振成像预测较低级别脑胶质瘤分子分型的研究进展
申棚鑫 谭艳

Cite this article as: SHEN P X, TAN Y. Research progress in predicting molecular typing of lower grade glioma by functional magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2023, 14(2): 168-173.本文引用格式:申棚鑫, 谭艳. 功能磁共振成像预测较低级别脑胶质瘤分子分型的研究进展[J]. 磁共振成像, 2023, 14(2): 168-173. DOI:10.12015/issn.1674-8034.2023.02.030.


[摘要] 脑胶质瘤是颅内最常见的恶性肿瘤,复发率高,预后较差。较低级别脑胶质瘤是指2021世界卫生组织中枢神经系统肿瘤分类(World Health Organization Central Nervous System, WHO CNS)分级为2级和3级的肿瘤,较低级别脑胶质瘤的分子分型对其治疗与预后有着重要的指导意义,因此分子分型诊断对脑胶质瘤的临床管理至关重要。分子分型诊断的金标准是病理检测,获取病理组织基因测序,但其有一定的有创性和滞后性。近年来,随着功能磁共振成像(functional MRI, fMRI)的发展,越来越多的研究明确了fMRI预测较低级别胶质瘤分子分型的价值,本文就近年来多种fMRI技术,包括扩散成像、灌注成像、酰胺质子转移成像等,对预测较低级别胶质瘤多种分子分型的研究进展作一综述,并就各种fMRI技术对不同分子分型的预测价值分别进行分析,旨在为预测较低级别胶质瘤分子分型提供影像学指标,从而达到临床精准诊治的目的。
[Abstract] Glioma is the most common intracranial malignant tumor with high recurrence rate and poor prognosis. Lower grade glioma refers to tumors classified into grade 2 and grade 3 by World Health Organization (WHO). Molecular classification of lower grade glioma has important guiding significance for its treatment and prognosis. Therefore, the diagnosis of molecular classification is of great important for clinical management of glioma. The genetic testing based on pathological tissue is the gold standard, which has certain invasiveness and hysteresis quality. In recent years, with the development of functional magnetic resonance imaging, more and more studies have clarified the value of functional magnetic resonance imaging in predicting molecular typing for lower grade glioma. This paper reviews the research progress of functional magnetic resonance imaging in predicting the molecular classification of lower grade gliomas in recent years.
[关键词] 较低级别脑胶质瘤;分子分型;磁共振成像;功能磁共振成像;扩散张量成像;扩散峰度成像;体素内不相干运动;平均表观传播因子磁共振成像;动脉自旋标记;动态磁敏感对比;动态对比增强;酰胺质子转移成像
[Keywords] lower grade glioma;molecular typing;magnetic resonance imaging;functional magnetic resonance imaging;diffusion tensor imaging;diffusion kurtosis imaging;intravoxel incoherent motion;mean apparent propagation factor magnetic resonance imaging;arterial spin labeling;dynamic susceptibility contrast;dynamic contrast-enhanced;amide proton transfer imaging

申棚鑫 1   谭艳 2*  

1 山西医科大学医学影像学院,太原 030001

2 山西医科大学第一医院影像科,太原 030001

*通信作者:谭艳,E-mail:tanyan123456@sina.com

作者贡献声明::谭艳设计本研究的方案,对稿件重要的智力内容进行了修改,获得了国家自然科学基金项目的资助;申棚鑫起草和撰写稿件,获取、分析或解释本研究的文献;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 国家自然科学基金 82071893
收稿日期:2022-09-19
接受日期:2023-01-12
中图分类号:R445.2  R730.264 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2023.02.030
本文引用格式:申棚鑫, 谭艳. 功能磁共振成像预测较低级别脑胶质瘤分子分型的研究进展[J]. 磁共振成像, 2023, 14(2): 168-173. DOI:10.12015/issn.1674-8034.2023.02.030.

0 前言

       弥漫性脑胶质瘤是成人颅内最常见的原发性肿瘤,复发率高,预后较差。根据组织学及临床生物学特征,脑胶质瘤分为1、2、3、4级,较低级别脑胶质瘤(lower-grade gliomas, LGGs)是指2级和3级的肿瘤,其预后相比于4级脑胶质瘤较好[1, 2]。随着对脑胶质瘤的研究不断深入,研究发现同级别脑胶质瘤患者的治疗疗效及预后差异明显,因此,2016 世界卫生组织中枢神经系统肿瘤分类(World Health Organization Central Nervous System, WHO CNS)首次将异柠檬酸脱氢酶(isocitrate dehydrogenase, IDH)及染色体1p/19q分子分型应用于脑胶质瘤诊断,组织学分类联合分子分型的整合诊断模式提升了脑胶质瘤的诊断准确性,有助于对不同分子分型的胶质瘤患者提供个性化治疗方案,从而改善患者的预后[3]。然而,在较低级别脑胶质瘤患者中,患者之间预后依然存在差异,2021 WHO CNS新增分子分型指标,将细胞周期蛋白依赖性激酶抑制剂2A/B(cyclin-dependent kinase inhibitor 2A/B, CDKN2A/B)缺失作为IDH突变型较低级别星型细胞瘤诊断为4级星型细胞瘤的依据,将端粒酶逆转录酶(telomerase reverse transcriptase, TERT)启动子突变、表皮生长因子受体(epidermal growth factor receptor, EGFR)基因扩增、7号染色体增加和10号染色体缺失作为IDH野生型较低级别星形细胞瘤升级为胶质母细胞瘤的分子标志物。因此,准确的分子分型诊断对LGGs的治疗方式选择及预后起着重要的作用[4]

       目前脑胶质瘤基因检测的金标准是对病变组织的病理检测,往往需要穿刺或手术获得病变组织,这有一定的有创性和滞后性。近来年,随着功能磁共振成像(functional MRI, fMRI)技术的发展,扩散张量成像(diffusion tensor imaging, DTI)、扩散峰度成像(diffusion kurtosis imaging, DKI)、体素内不相干运动(intravoxel incoherent motion, IVIM)成像、平均表观传播因子(mean apparent propagation factor, MAP)MRI、动脉自旋标记(arterial spin labeling, ASL)、动态磁敏感对比(dynamic susceptibility contrast, DSC)增强成像、动态对比增强(dynamic contrast-enhanced, DCE)成像、酰胺质子转移(amide proton transfer, APT)成像等技术发展愈加成熟,越来越多的研究明确fMRI预测LGGs分子分型的价值,本文就近年来fMRI预测LGGs分子分型的研究进展作一综述,并就各种fMRI技术对不同分子分型的预测价值分别进行分析,旨在为预测较LGGs分子分型提供影像学指标,达到临床精准诊治的目的。

1 LGGs分子分型的临床意义

       分子分型在LGGs治疗方式的选择及预后具有重要的指导意义。其中,IDH基因突变最为关键,IDH突变存在于80%的LGGs患者中,它是LGGs一个重要的独立有利的预后因素,与IDH野生型相比,IDH突变型胶质瘤患者的预后更好[5, 6, 7];此外,1p/19q共缺失也是LGGs重要的分子标志物之一,与没有1p/19q共缺失的胶质瘤患者相比,1p/19q共缺失患者生存期显著延长[8, 9];O6‐甲基鸟嘌呤‐DNA甲基转移酶(O6 methylgucrine DNA methyltransferase, MGMT)甲基化也是胶质瘤预后的一个重要指标,研究发现,MGMT甲基化的患者总生存期(overall suevival, OS)更长,IDH突变联合MGMT甲基化对替莫唑胺(temozolomide, TMZ)治疗的敏感性较仅有IDH突变没有MGMT甲基化更高[5, 10];α地中海贫血伴智力低下综合征X连锁(alpha thalassaemia/mental retardation syndrome X-linked, ATRX)缺失在IDH突变型患者中与预后关系不大,但是在IDH野生型患者中与良好的预后有关[11, 12];TERT启动子突变作为IDH野生型星形细胞瘤升级为胶质母细胞瘤的三个遗传参数之一,与较低的OS以及无进展生存期(progression free survival, PFS)显著相关[5, 13]

2 fMRI在LGGs分子分型评估的研究现状

2.1 扩散成像在评估分子分型的研究

2.1.1 DTI在评估分子分型的研究

       DTI是通过利用脑组织内水分子向各个方向的扩散MRI信号来间接反映脑组织的微观结构信息,能够反映组织的异质性,在无创的条件下对脑白质纤维束进行分析[14];DTI常用的参数有各向异性分数(fractional anisotropy, FA)、平均扩散系数(mean diffusivity, MD)、轴向扩散系数(axial diffusivity, AD)、径向扩散系数(radial diffusivity, RD)等。

       近年来,越来越多的研究证实了DTI对IDH突变诊断的价值。XIONG等[15]研究84例LGGs患者发现,IDH突变的脑胶质瘤患者最大FA值低于IDH野生型的患者,DTI[最小ADC比值(ratio of the minimal ADC, rmADC)+最大FA比值(ratio of maximal FA, rmFA)]联合常规MRI对IDH突变诊断的敏感度为92.2%,特异度为75.8%,阳性预测值(positive predictive value, PPV)为93.8%,阴性预测值(negative predictive value, NPV)为71.1%;FIGINI等[16]研究2级和3级胶质瘤发现,IDH野生型患者的最大FA值显著高于IDH突变型,曲线下面积(area under the curve, AUC)为0.74,敏感度为62%,特异度为83%,PPV为48%,NPV为90%,IDH野生型的最小MD值显著低于IDH突变型,AUC为0.73,敏感度为71%,特异度67%,PPV为35%,NPV为90%;虽然以上研究均认为最大FA值在区分IDH状态中差异有统计学意义,但是不同研究获取的敏感度、特异度、PPV以及NPV差异较大,可能是由不同研究之间样本量以及结合序列的差异造成的。

       DTI对LGGs其他分子分型的研究越来越多,一些研究发现[15, 16],1p/19q共缺失的LGGs和1p/19q无共缺失的LGGs之间FA值的差异无统计学意义;HUANG 等[17]研究发现,DTI的参数不能预测MGMT甲基化,但DTI的FA值和MD值的组合可以预测TERT启动子突变,AUC为0.841。综上所述,DTI对LGGs IDH、TERT启动子突变的预测有一定的价值,但对1p/19q、MGMT甲基化的预测缺乏特异性。

2.1.2 DKI在评估分子分型的研究

       DKI探测非高斯扩散特性组织复杂的成分和结构,是一种非高斯扩散成像技术[18],DKI常用的参数有轴向峰度(axial kurtosis, KA)、径向峰度(radial kurtosis, Kr)和平均峰度(mean kurtosis, MK)[19]

       近年来,DKI对IDH状态诊断的研究越来越多。TAN等[20]研究58例脑星型细胞瘤发现,相比于IDH突变型的LGGs,IDH野生型的MK、KA、Kr值更高,诊断AUC分别为0.857、0.857、0.849,而两者的MD值及FA值差异无统计学意义;XU等[18]研究51名未治疗的脑胶质瘤患者发现,相比于IDH突变型肿瘤,IDH野生型肿瘤的MK值及FA值显著升高,MD值显著降低,且MK比FA和MD诊断准确性更高;ZHAO等[21]在研究中发现MK、KA、Kr和FA在IDH野生型胶质瘤组中显著升高,MD在IDH野生型胶质瘤组中显著降低,在这些指标中,KA在鉴别IDH状态的价值最高,AUC为0.72,敏感度为74%,特异度为75%。以上研究均认为MK、FA值对IDH状态有鉴别价值,但对MD值判断IDH状态的结果不完全一致,这可能是由于样本量差异以及分级分布不平衡造成的。一些研究[20, 21]发现,DKI参数在预测IDH状态效能方面优于DTI参数,DKI参数比DTI参数更准确、稳定。

       DKI对LGGs其他分子分型近年来也有部分研究。WANG等[19]研究发现,DKI参数在不同ATRX和MGMT状态之间差异没有统计学意义,无法对其状态进行预测。综上所述,DKI参数对LGGs IDH状态的预测有着良好的诊断效能,并优于DTI参数,但对ATRX、MGMT状态的预测缺乏特异性。

2.1.3 IVIM成像在评估分子分型的研究

       IVIM成像能够运用多组b值、双指数拟合算法得出区分单纯水分子扩散运动和血流灌注的量化参数,如慢扩散系数D、快扩散系数D*、灌注分数f[22]。相比于传统灌注,IVIM参数更敏感并且分辨率更高[23],但也有一些研究发现,IVIM获取的D*不稳定[24]

       冯盼盼等[25]研究17例IDH突变型和38例IDH野生型脑胶质瘤发现,IDH突变型的D值和f值显著高于IDH野生型,D值和f值的AUC分别为0.807、0.818,但D*值无显著诊断效能;GU等[23]研究78例脑胶质瘤患者发现,IDH突变型的D值和f值显著高于IDH野生型,这与冯盼盼等[25]的研究结果一致,但是他们发现IDH突变型的D*值显著低于IDH野生型,具有一定的诊断性能,这与冯盼盼等[25]的研究结果相反,这可能是由样本量差异造成的;WANG等[24]则发现在高级别脑胶质瘤中,D*、f值在IDH突变型与IDH野生型之间差异有统计学意义,而在低级别脑胶质瘤中D、D*、f值差异均无统计学意义,这与之前研究结果不完全一致[23, 25],这种差异可能是由样本量差异以及分级分布不平衡造成的。

       IVIM成像对LGGs其他分子分型的研究近年来也逐渐增多。李俊杰[26]发现1p/19q共缺失组患者的D*值显著高于1p/19q非共缺失组,AUC为0.877,敏感度为100%,特异度为76.90%。综上所述,IVIM成像各项参数在对LGGs IDH状态以及1p/19q的鉴别中具有一定的价值,但仍有待进一步研究。

2.1.4 MAP-MRI在评估分子分型的研究

       MAP-MRI是一种较新的扩散成像技术,是一项在q空间概念基础上开发的数据模型,在复杂白质结构中能够反映出微结构特征,该技术的指标有均方位移(mean square displacement, MSD)、q空间逆方差(q-space inverse variance, QIV)、回归原点概率(return to the origin probability, RTOP)、回归轴概率(return to the axis probability, RTAP)、回归平面概率(return to the plane probability, RTPP)[27, 28]

       SUN等[27]研究40名脑胶质瘤患者发现,在病理证实为2级和3级的胶质瘤患者中,相比于IDH野生型组,IDH突变组的MSD、QIV、MD显著增高(P=0.025、0.006、0.007),IDH突变组的RTAP、RTOP、RTPP、FA显著降低(P=0.015、0.010、0.007、0.012),表明MAP-MRI在LGGs IDH状态的预测中有一定的价值,但MAP-MRI目前在其他分子分型中还鲜有研究。

2.2 磁共振灌注成像在评估分子分型的研究

       磁共振灌注成像(perfusion-weighted imaging, PWI)可以准确评价肿瘤内血管增生情况,对脑胶质瘤的恶性程度及病理分级作出一定的判断。根据成像原理,PWI可以分为内源性和外源性灌注成像。

2.2.1 ASL

       ASL是一种无创灌注MRI技术,可以在不使用外源性对比剂的情况下,获得脑血流量(cerebral blood flow, CBF)图[29],包括连续ASL、脉冲式ASL、伪连续ASL,ASL所衍生的脑血流量图可以为预测分子特征提供线索。WANG等[30]研究52例接受ASL成像的幕上胶质瘤患者发现,无论等级和1p/19q状态如何,IDH突变组的相对平均CBF值均低于IDH野生组(P=0.047),而其他参数在两者间差异没有统计学意义;BRENDLE等[31]研究40例胶质瘤患者发现,ASL的CBF值在区分IDH突变型和IDH野生型胶质瘤中最佳截止值为9.2,敏感度为75%,特异度为88%。以上研究结果大致相同,均认为通过ASL获得的CBF值对IDH状态具有很高的预测价值。

       ASL在预测LGGs其他分子分型中也有研究。LU等[32]研究13例脑胶质瘤患者发现,相比于1p/19q完整的患者,1p/19q共缺失的患者的相对CBF值较高;BRENDLE等[31]也发现,ASL的CBF值在区分星形细胞瘤和少突胶质瘤中差异具有统计学意义,最佳截止值为9.2,敏感度为75%,特异度为89%;REN等[33]在一项研究中发现,在CBF图上,ATRX缺失的LGGs的逆差分矩值更高。综上所述,ASL在区分LGGs IDH基因状态及ATRX缺失状态预测中有一定的价值。

2.2.2 DSC-MRI与DCE-MRI

       DSC-MRI与DCE-MRI是两种基于静脉注射对比剂的灌注成像方法,可以获取脑肿瘤的血流灌注量,从而对肿瘤的分级及分型有一定的帮助[34]。DSC-MRI的常用参数有脑血容量(cerebral blood volume, CBV)、CBF,DCE-MRI的常用参数有体积转移常数(volume transfer constant, Ktrans)、部分细胞外血管外间隙容积(extravascular extracellular volume fraction, Ve)、血浆体积分数(plasma volume fraction, Vp)。

       XING等[35]研究42例2级和3级星型细胞瘤患者发现,IDH突变型肿瘤的最大局部脑血容量(regional cerebral blood volume, rCBV)比IDH野生型肿瘤更低,DSC-PWI结合常规MRI以及DWI诊断IDH突变的敏感度为92.31%,特异度为91.30%,PPV为96.10%,NPV为83.60%;PAECH等[36]研究31名胶质瘤患者也发现,IDH野生型胶质瘤的rCBV值显著高于IDH突变型胶质瘤,AUC为0.79;AHN等[37]研究132例LGGs患者发现,IDH野生型胶质瘤的标准CBV值显著高于IDH突变型胶质瘤,标准CBV值预测IDH突变状态的临界值为1.33;SUH等[38]在研究中发现,IDH突变型胶质瘤的相对CBV值较IDH野生型胶质瘤更低,差异具有统计学意义。以上研究结果基本一致,这表明DSC-PWI可以用来预测2级和3级星型细胞瘤的突变状态,并且可能为星型细胞瘤的分级提供重要的、非侵入性的替代标志物。ZHANG等[39]研究43例接受DCE-MRI检查的胶质瘤患者发现,IDH野生型脑胶质瘤患者的10% Ktrans和10% AUC显著高于IDH突变型脑胶质瘤患者;HU等[40]研究56例胶质瘤的DCE-MRI图像发现,相比于IDH野生型胶质瘤,IDH突变型肿瘤的Ktrans和Ve图上病变信号强度较低,AUC分别为0.899、0.800;LI等[41]研究44例胶质瘤患者发现,IDH突变型脑胶质瘤患者的Ktrans显著低于IDH野生型脑胶质瘤患者,AUC为0.73。以上研究均认为通过DCE-MRI获取的Ktrans在预测IDH状态中有一定的价值,但GUPTA等[42]的研究结果与其不完全一致,他们认为Ktrans和Ve在IDH突变型和IDH野生型中的差异无统计学意义,造成结果不一致的原因可能是不同研究之间DCE-MRI是基于不同的常规序列。

       YANG等[43]研究142例LGGs患者发现,1p/19q共缺失胶质瘤患者的rCBV值显著高于1p/19q完整的患者;LATYSHEVA等[44]研究71例2级和3级脑胶质瘤患者发现,1p/19q共缺失脑胶质瘤患者相对平均CBV值高于1p/19q完整脑胶质瘤患者,AUC为0.77。以上研究均表明在1p/19q缺失的预测中,由DSC-MRI获取的相对CBV值的差异有统计学意义。ZHANG等[39]研究发现,DSC-PWI生成的相对平均CBV值在MGMT甲基化与非甲基化之间以及TERT启动子突变与野生之间的差异无统计学意义;HEMPEL等[45]研究发现,ATRX缺失胶质瘤患者的相对CBV显著低于ATRX完整的患者,诊断准确度为86.4%;Gupta等[42]在研究中发现,DCE-PWI中的Ktrans和Ve在较低级别星形细胞瘤和少突胶质瘤之间的差异无统计学意义,这与SANTWIJK等[46]的研究结果一致;ZHANG等[39]发现,除中位数、75%和平均Kep外,DCE-MRI参数在MGMT甲基化和未甲基化的胶质瘤之间的差异具有统计学意义;PARK等[47]研究49例LGGS患者发现,TERTp启动子突变型患者的平均Vp显著高于TERT启动子野生型,准确度、敏感度、特异度和AUC分别为 76.5%、81.3%、77.2% 和0.85。

       综上所述,DSC-PWI在预测LGGs IDH状态、1p/19q缺失以及ATRX缺失方面有良好的效能,但对MGMT以及TERT状态的预测意义不大;DCE-MRI在预测LGGs IDH、MGMT、TERT状态有一定的价值,但在预测1p/19q缺失方面意义不大。

2.3 APT成像在评估分子分型的研究

       APT成像是一项新的成像技术,APT成像基于化学交换饱和转移技术,信号强度主要取决于胞质中游离蛋白质和多肽中的酰胺质子[48]

       JIANG等[49]研究了27例经病理证实为低级别胶质瘤患者发现,在2级胶质瘤中,IDH野生型胶质瘤中基于多感兴趣区的最大和最小APT值、基于直方图的平均值、50% APT值显著高于IDH突变型胶质瘤,对应的AUC分别为0.89、0.76、0.75、0.75;张浩等[50]研究59例胶质瘤患者发现,IDH突变型组的APT信号低于IDH野生型组;XU等[18]研究51名脑胶质瘤患者发现,相比于IDH野生型胶质瘤,IDH突变型胶质瘤有着更低的APT信号;GUO等[51]研究62例脑胶质瘤患者发现,IDH野生型胶质瘤的APT平均值高于IDH突变型胶质瘤,AUC为0.87。以上研究结果大致相同,表明APT成像是预测LGGs IDH状态的一项有前途的技术,但APT成像对LGGs其他分子分型的研究目前还很少,有待进一步的探索。

3 局限性及展望

       fMRI作为一种近年来不断完善的技术,对LGGs IDH的预测展现出良好效能,但是对1p/19q、MGMT甲基化、TERT启动子状态、ATRX等基因的研究相对较少;fMRI对某些基因的诊断效能方面存在一定的分歧;另外,在一些需要勾画感兴趣区的研究中,感兴趣区的勾画存在主观性差异,且感兴趣区的参数难以准确的反映整个肿瘤的参数,这可能会导致结果的准确性降低。基于fMRI的影像组学可以降低感兴趣区主观性差异,这可以作为未来脑胶质瘤的研究方向。

       同时,fMRI对于2021 WHO CNS提出的用于升级诊断的基因(EGFR基因扩增、+7/-10染色体改变、CDKN2A/B)研究较少,因此,fMRI对这些基因的研究有待进一步探索。如今,越来越多的研究已不仅仅针对一项fMRI技术,多模态MRI的联合应用及影像组学分析可以提高对LGGs分子分型预测的准确性,使用MRI进行脑胶质瘤基因预测将成为发展趋势。

4 总结

       fMRI通过联合多种功能参数,能够有效地提高LGGs分子分型的诊断效能,以便于对患者实施精准、有效的治疗。fMRI在最新的基因预测方面的研究较为稀缺,这为以后的研究方向提供了新的思路。

[1]
SHEN Y, CHI H, XU K, et al. A Novel Classification Model for Lower-Grade Glioma Patients Based on Pyroptosis-Related Genes[J/OL]. Brain Sci, 2022, 12(6): 700 [2022-09-24]. https://doi.org/10.3390/brainsci12060700. DOI: 10.3390/brainsci12060700.
[2]
MOTOMURA K. Lower-grade Gliomas[J]. No Shinkei Geka, 2021, 49(3): 632-639. DOI: 10.11477/mf.1436204437.
[3]
LOUIS D N, PERRY A, REIFENBERGER G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary[J]. Acta Neuropathol, 2016, 131(6): 803-820. DOI: 10.1007/s00401-016-1545-1.
[4]
LOUIS D N, PERRY A, WESSELING P, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary[J]. Neuro Oncol, 2021, 23(8): 1231-1251. DOI: 10.1093/neuonc/noab106.
[5]
ŚLEDZINSKA P, BEBYN M G, FURTAK J, et al. Prognostic and Predictive Biomarkers in Gliomas[J/OL]. Int J Mol Sci, 2021, 22(19): 10373 [2022-09-24]. https://doi.org/10.3390/ijms221910373. DOI: 10.3390/ijms221910373.
[6]
ÇELIK S, ÖVEN B B, DEMIR M K, et al. Magnetic resonance imaging criteria for prediction of isocitrate dehydrogenase (IDH) mutation status in patients with grade Ⅱ-Ⅲ astrocytoma and oligodendroglioma[J/OL]. Clin Neurol Neurosurg, 2021, 207: 106745 [2022-09-24]. https://doi.org/10.1016/j.clineuro.2021.106745. DOI: 10.1016/j.clineuro.2021.106745.
[7]
WU F, LI G Z, LIU H J, et al. Molecular subtyping reveals immune alterations in IDH wild-type lower-grade diffuse glioma[J]. J Pathol, 2020, 251(3): 272-283. DOI: 10.1002/path.5468.
[8]
LV L, ZHANG Y, ZHAO Y, et al. Effects of 1p/19q Codeletion on Immune Phenotype in Low Grade Glioma[J/OL]. Front Cell Neurosci, 2021, 15: 704344 [2022-09-24]. https://doi.org/10.3389/fncel.2021.704344. DOI: 10.3389/fncel.2021.704344.
[9]
KHA Q H, LE V H, HUNG T N K, et al. Development and Validation of an Efficient MRI Radiomics Signature for Improving the Predictive Performance of 1p/19q Co-Deletion in Lower-Grade Gliomas[J/OL]. Cancers, 2021, 13(21): 5398 [2022-09-24]. https://doi.org/10.3390/cancers13215398. DOI: 10.3390/cancers13215398.
[10]
MILLER J J, CAHILL D P. MGMT promoter methylation and hypermutant recurrence in IDH mutant lower-grade glioma[J]. Neuro Oncol, 2020, 22(11): 1553-1554. DOI: 10.1093/neuonc/noaa212.
[11]
PEKMEZCI M, RICE T, MOLINARO A M, et al. Adult infiltrating gliomas with WHO 2016 integrated diagnosis: additional prognostic roles of ATRX and TERT[J]. Acta Neuropathol, 2017, 133(6): 1001-1016. DOI: 10.1007/s00401-017-1690-1.
[12]
GALBRAITH K, SNUDERL M. Molecular Pathology of Gliomas[J]. Surg Pathol Clin, 2021, 14(3): 379-386. DOI: 10.1016/j.path.2021.05.003.
[13]
YANG Z, LING F, RUAN S, et al. Clinical and Prognostic Implications of 1p/19q, IDH, BRAF, MGMT Promoter, and TERT Promoter Alterations, and Expression of Ki-67 and p53 in Human Gliomas[J]. Cancer Manag Res, 2021, 13: 8755-8765. DOI: 10.2147/cmar.S336213.
[14]
LI Y, ZHANG W. Quantitative evaluation of diffusion tensor imaging for clinical management of glioma[J]. Neurosurg Rev, 2020, 43(3): 881-891. DOI: 10.1007/s10143-018-1050-1.
[15]
XIONG J, TAN W, WEN J, et al. Combination of diffusion tensor imaging and conventional MRI correlates with isocitrate dehydrogenase 1/2 mutations but not 1p/19q genotyping in oligodendroglial tumours[J]. Eur Radiol, 2016, 26(6): 1705-1715. DOI: 10.1007/s00330-015-4025-4.
[16]
FIGINI M, RIVA M, GRAHAM M, et al. Prediction of Isocitrate Dehydrogenase Genotype in Brain Gliomas with MRI: Single-Shell versus Multishell Diffusion Models[J]. Radiology, 2018, 289(3): 788-796. DOI: 10.1148/radiol.2018180054.
[17]
HUANG Z, LU C, LI G, et al. Prediction of Lower Grade Insular Glioma Molecular Pathology Using Diffusion Tensor Imaging Metric-Based Histogram Parameters[J]. Front Oncol, 2021, 11: 627202 [2022-09-24]. https://doi.org/10.3389/fonc.2021.627202. DOI: 10.3389/fonc.2021.627202.
[18]
XU Z, KE C, LIU J, et al. Diagnostic performance between MR amide proton transfer (APT) and diffusion kurtosis imaging (DKI) in glioma grading and IDH mutation status prediction at 3 T[J/OL]. Eur J Radiol, 2021, 134: 109466 [2022-09-24]. https://doi.org/10.1016/j.ejrad.2020.109466. DOI: 10.1016/j.ejrad.2020.109466.
[19]
WANG X, LI F, WANG D, et al. Diffusion kurtosis imaging combined with molecular markers as a comprehensive approach to predict overall survival in patients with gliomas[J/OL]. Eur J Radiol, 2020, 128: 108985 [2022-09-24]. https://doi.org/10.1016/j.ejrad.2020.108985. DOI: 10.1016/j.ejrad.2020.108985.
[20]
TAN Y, ZHANG H, WANG X, et al. Comparing the value of DKI and DTI in detecting isocitrate dehydrogenase genotype of astrocytomas[J]. Clin Radiol, 2019, 74(4): 314-320. DOI: 10.1016/j.crad.2018.12.004.
[21]
ZHAO J, WANG Y L, LI X B, et al. Comparative analysis of the diffusion kurtosis imaging and diffusion tensor imaging in grading gliomas, predicting tumour cell proliferation and IDH-1 gene mutation status[J]. J Neurooncol, 2019, 141(1): 195-203. DOI: 10.1007/s11060-018-03025-7.
[22]
WANG C, DONG H. Intravoxel incoherent motion magnetic resonance imaging in predicting IDH1 gene mutations in high-grade gliomas[J]. Acta Radiol, 2021, 62(10): 1412-1417. DOI: 10.1177/02841851211011914.
[23]
GU T, YANG T, HUANG J, et al. Evaluation of gliomas peritumoral diffusion and prediction of IDH1 mutation by IVIM-DWI[J]. Aging, 2021, 13(7): 9948-9959. DOI: 10.18632/aging.202751.
[24]
WANG X, CHEN X Z, SHI L, et al. Glioma grading and IDH1 mutational status: assessment by intravoxel incoherent motion MRI[J/OL]. Clin Radiol, 2019, 74(8): 651.e7-651.e14 [2022-09-24]. https://doi.org/10.1016/j.crad.2019.03.020. DOI: 10.1016/j.crad.2019.03.020.
[25]
冯盼盼, 王超超, 董海波, 等. 体素内不相干运动扩散加权成像预测脑胶质瘤IDH1基因突变的价值[J]. 浙江医学, 2021, 43(2): 143-147, 234. DOI: 10.12056/j.issn.1006-2785.2021.43.2.2020-2380.
FENG P P, WANG C C, DONG H B, et al. The value of intravoxel incoherent motion diffusion-weighted imaging in predicting IDH1 gene mutation of gliomas[J]. Zhejiang Med J, 2021, 43(2): 143-147, 234. DOI: 10.12056/j.issn.1006-2785.2021.43.2.2020-2380.
[26]
李俊杰. IVIM预测脑胶质瘤IDH和1p/19q分子分型的价值[D]. 太原: 山西医科大学, 2021. DOI: 10.27288/d.cnki.gsxyu.2021.000499.
LI J J. Application Value of IVIM in Predicting IDH and 1p/19q Status in Gliomas[D]. Taiyuan: Shanxi Med Univ, 2021. DOI: 10.27288/d.cnki.gsxyu.2021.000499.
[27]
SUN Y, SU C, DENG K, et al. Mean apparent propagator-MRI in evaluation of glioma grade, cellular proliferation, and IDH-1 gene mutation status[J]. Eur Radiol, 2022, 32(6): 3744-3754. DOI: 10.1007/s00330-021-08522-4.
[28]
WANG P, WENG L, XIE S, et al. Primary application of mean apparent propagator-MRI diffusion model in the grading of diffuse glioma[J/OL]. Eur J Radiol, 2021, 138: 109622 [2022-09-24]. https://doi.org/10.1016/j.ejrad.2021.109622. DOI: 10.1016/j.ejrad.2021.109622.
[29]
LUAN J, WU M, WANG X, et al. The diagnostic value of quantitative analysis of ASL, DSC-MRI and DKI in the grading of cerebral gliomas: a meta-analysis[J/OL]. Radiat Oncol, 2020, 15(1): 204 [2022-09-24]. https://doi.org/10.1186/s13014-020-01643-y. DOI: 10.1186/s13014-020-01643-y.
[30]
WANG N, XIE S Y, LIU H M, et al. Arterial Spin Labeling for Glioma Grade Discrimination: Correlations with IDH1 Genotype and 1p/19q Status[J]. Transl Oncol, 2019, 12(5): 749-756. DOI: 10.1016/j.tranon.2019.02.013.
[31]
BRENDLE C, HEMPEL J M, SCHITTENHELM J, et al. Glioma Grading and Determination of IDH Mutation Status and ATRX loss by DCE and ASL Perfusion[J]. Clin Neuroradiol, 2018, 28(3): 421-428. DOI: 10.1007/s00062-017-0590-z.
[32]
LU D, LI Y, LU H, et al. Histogram-based analysis of cerebral blood flow using arterial spin labeling MRI in de novo brain gliomas: relationship to histopathologic grade and molecular markers[J]. Neuroradiology, 2021, 63(5): 751-760. DOI: 10.1007/s00234-020-02625-3.
[33]
REN Y, ZHANG X, RUI W, et al. Noninvasive Prediction of IDH1 Mutation and ATRX Expression Loss in Low-Grade Gliomas Using Multiparametric MR Radiomic Features[J]. J Magn Reson Imaging, 2019, 49(3): 808-817. DOI: 10.1002/jmri.26240.
[34]
FALK A, FAHLSTROM M, ROSTRUP E, et al. Discrimination between glioma grades II and III in suspected low-grade gliomas using dynamic contrast-enhanced and dynamic susceptibility contrast perfusion MR imaging: a histogram analysis approach[J]. Neuroradiology, 2014, 56(12): 1031-1038. DOI: 10.1007/s00234-014-1426-z.
[35]
XING Z, YANG X, SHE D, et al. Noninvasive Assessment of IDH Mutational Status in World Health Organization Grade Ⅱ and Ⅲ Astrocytomas Using DWI and DSC-PWI Combined with Conventional MR Imaging[J]. AJNR Am J Neuroradiol, 2017, 38(6): 1138-1144. DOI: 10.3174/ajnr.A5171.
[36]
PAECH D, WINDSCHUH J, OBERHOLLENZER J, et al. Assessing the predictability of IDH mutation and MGMT methylation status in glioma patients using relaxation-compensated multipool CEST MRI at 7.0 T[J]. Neuro Oncol, 2018, 20(12): 1661-1671. DOI: 10.1093/neuonc/noy073.
[37]
AHN S H, AHN S S, PARK Y W, et al. Association of dynamic susceptibility contrast- and dynamic contrast-enhanced magnetic resonance imaging parameters with molecular marker status in lower-grade gliomas: A retrospective study[J/OL]. Neuroradiol J, 2022, 19714009221098369 [2022-09-24]. https://doi.org/10.1177/19714009221098369. DOI: 10.1177/19714009221098369.
[38]
SUH C H, KIM H S, JUNG S C, et al. Imaging prediction of isocitrate dehydrogenase (IDH) mutation in patients with glioma: a systemic review and meta-analysis[J]. Eur Radiol, 2019, 29(2): 745-758. DOI: 10.1007/s00330-018-5608-7.
[39]
ZHANG H W, LYU G W, HE W J, et al. DSC and DCE Histogram Analyses of Glioma Biomarkers, Including IDH, MGMT, and TERT, on Differentiation and Survival[J/OL]. Acad Radiol, 2020, 27(12): e263-e271 [2022-09-24]. https://doi.org/10.1016/j.acra.2019.12.010. DOI: 10.1016/j.acra.2019.12.010.
[40]
HU Y, CHEN Y, WANG J, et al. Non-Invasive Estimation of Glioma IDH1 Mutation and VEGF Expression by Histogram Analysis of Dynamic Contrast-Enhanced MRI[J/OL]. Front Oncol, 2020, 10: 593102 [2022-09-24]. https://doi.org/10.3389/fonc.2020.593102. DOI: 10.3389/fonc.2020.593102.
[41]
LI S H, SHEN N X, WU D, et al. A Comparative Study Between Tumor Blood Vessels and Dynamic Contrast-enhanced MRI for Identifying Isocitrate Dehydrogenase Gene 1 (IDH1) Mutation Status in Glioma[J]. Curr Med Sci, 2022, 42(3): 650-657. DOI: 10.1007/s11596-022-2563-y.
[42]
GUPTA M, GUPTA A, YADAV V, et al. Comparative evaluation of intracranial oligodendroglioma and astrocytoma of similar grades using conventional and T1-weighted DCE-MRI[J]. Neuroradiology, 2021, 63(8): 1227-1239. DOI: 10.1007/s00234-021-02636-8.
[43]
YANG X, LIN Y, XING Z, et al. Predicting 1p/19q codeletion status using diffusion-, susceptibility-, perfusion-weighted, and conventional MRI in IDH-mutant lower-grade gliomas[J]. Acta Radiol, 2021, 62(12): 1657-1665. DOI: 10.1177/0284185120973624.
[44]
LATYSHEVA A, EMBLEM K E, BRANDAL P, et al. Dynamic susceptibility contrast and diffusion MR imaging identify oligodendroglioma as defined by the 2016 WHO classification for brain tumors: histogram analysis approach[J]. Neuroradiology, 2019, 61(5): 545-555. DOI: 10.1007/s00234-019-02173-5.
[45]
HEMPEL J M, SCHITTENHELM J, KLOSE U, et al. In Vivo Molecular Profiling of Human Glioma: Cross-Sectional Observational Study Using Dynamic Susceptibility Contrast Magnetic Resonance Perfusion Imaging[J]. Clin Neuroradiol, 2019, 29(3): 479-491. DOI: 10.1007/s00062-018-0676-2.
[46]
VAN SANTWIJK L, KOUWENBERG V, MEIJER F, et al. A systematic review and meta-analysis on the differentiation of glioma grade and mutational status by use of perfusion-based magnetic resonance imaging[J/OL]. Insights Imaging, 2022, 13(1): 102 [2022-09-24]. https://doi.org/10.1186/s13244-022-01230-7. DOI: 10.1186/s13244-022-01230-7.
[47]
PARK Y W, AHN S S, PARK C J, et al. Diffusion and perfusion MRI may predict EGFR amplification and the TERT promoter mutation status of IDH-wildtype lower-grade gliomas[J]. Eur Radiol, 2020, 30(12): 6475-6484. DOI: 10.1007/s00330-020-07090-3.
[48]
SOTIRIOS B, DEMETRIOU E, TOPRICERNU C C, et al. The role of APT imaging in gliomas grading: A systematic review and meta-analysis[J/OL]. Eur J Radiol, 2020, 133: 109353 [2022-09-24]. https://doi.org/10.1016/j.ejrad.2020.109353. DOI: 10.1016/j.ejrad.2020.109353.
[49]
JIANG S, ZOU T, EBERHART C G, et al. Predicting IDH mutation status in grade Ⅱ gliomas using amide proton transfer-weighted (APTw) MRI[J]. Magn Reson Med, 2017, 78(3): 1100-1109. DOI: 10.1002/mrm.26820.
[50]
张浩, 崔园园, 冯杰, 等. 氨基质子转移成像对脑胶质瘤分级及异柠檬酸脱氢酶、Ki-67、p53表达的诊断及预测价值[J]. 中国医学影像学杂志, 2020, 28(5): 327-332. DOI: 10.3969/j.issn.1005-5185.2020.05.002.
ZHANG H, CUI Y Y, FENG J, et al. Diagnostic and Predictive Efficacy of Amide Proton Transfer MRI in Tumor Grading, Isocitrate Dehydrogenase Status and the Expression Level of Ki-67 and p53 in Gliomas[J]. Chin J Med Imaging, 2020, 28(5): 327-332. DOI: 10.3969/j.issn.1005-5185.2020.05.002.
[51]
GUO H, LIU J, HU J, et al. Diagnostic performance of gliomas grading and IDH status decoding A comparison between 3D amide proton transfer APT and four diffusion-weighted MRI models[J]. J Magn Reson Imaging, 2022, 56(6): 1834-1844. DOI: 10.1002/jmri.28211.

上一篇 多模态磁共振成像评估未破脑动脉瘤不稳定状态风险的研究进展
下一篇 基于MRI的纹理分析在高级别胶质瘤中的应用进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2