分享:
分享到微信朋友圈
X
综述
基于MRI的纹理分析在高级别胶质瘤中的应用进展
张雨柔 华一凡 朱心雨 黄鹏 郭立

Cite this article as: ZHANG Y R, HUA Y F, ZHU X Y, et al. Research progress of MRI-based texture analysis in high-grade gliomas[J]. Chin J Magn Reson Imaging, 2023, 14(2): 174-178.本文引用格式:张雨柔, 华一凡, 朱心雨, 等. 基于MRI的纹理分析在高级别胶质瘤中的应用进展[J]. 磁共振成像, 2023, 14(2): 174-178. DOI:10.12015/issn.1674-8034.2023.02.031.


[摘要] 高级别胶质瘤是指WHO定义为Ⅲ级、Ⅳ级的胶质瘤,是成人最常见的原发性恶性肿瘤之一,与Ⅲ级胶质瘤相比,Ⅳ级胶质瘤较Ⅲ级胶质瘤恶性程度高、中位生存期短、药物治疗效果差。MRI在该病的发现、诊断、治疗和预后的评估中发挥着重要的作用,但常规MRI在鉴别、预后评价等方面受影像医生主观影响大。基于MRI的纹理分析可以通过获取图像中各像素的信号、分布等信息,来获取一些肉眼所无法识别的影像学特征,进而有助于病变的诊断、治疗和预后的评估。为此,本文对基于MRI的纹理分析在高级别胶质瘤诊断和鉴别诊断、指导治疗以及预后评估中的应用进行综述,以期为患者的精准治疗提供信息。
[Abstract] High-grade gliomas, defined by WHO as grade Ⅲ and Ⅳ gliomas, are among the most common primary malignancies in adults. Compared with grade Ⅲ gliomas, grade Ⅳ gliomas are more malignant than grade Ⅲ gliomas, have a shorter median survival, and are less effective with drug therapy. MRI plays an important role in disease detection, diagnosis, treatment, and prognostic evaluation, but conventional MRI is highly dependent on the subjectivity of the imaging physician for staging, identification, and prognostic evaluation and is therefore of limited value.MRI-based texture analysis can acquire some imaging features that cannot be identified by the naked eye by obtaining information on the signal and distribution of each pixel in the image, which in turn can help in the diagnosis, treatment, and prognosis assessment of the lesion. To this end, this paper reviews the application of MRI-based texture analysis in the diagnosis and differential diagnosis, guiding treatment, and prognostic assessment of high-grade gliomas to enable precise treatment of patients.
[关键词] 胶质瘤;高级别胶质瘤;纹理分析;磁共振成像
[Keywords] glioma;high-grade glioma;texture analysis;magnetic resonance imaging

张雨柔    华一凡    朱心雨    黄鹏    郭立 *  

昆明医科大学第二附属医院放射科,昆明 650101

*通信作者:郭立,E-mail:guolidoc@163.com

作者贡献声明::张雨柔、华一凡、朱心雨、黄鹏、郭立均参与了论文的研究构思和设计,以及资料收集、整理、分析和解释,参与了论文撰写和重要内容修改,并对最终发表的论文版本进行审阅;郭立获得了云南省卫生健康委员会医学学科带头人培养计划的资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 云南省卫生健康委员会医学学科带头人培养计划 D-2019024
收稿日期:2022-08-17
接受日期:2023-01-29
中图分类号:R445.2  R730.264 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2023.02.031
本文引用格式:张雨柔, 华一凡, 朱心雨, 等. 基于MRI的纹理分析在高级别胶质瘤中的应用进展[J]. 磁共振成像, 2023, 14(2): 174-178. DOI:10.12015/issn.1674-8034.2023.02.031.

0 前言

       胶质瘤是常见的脑肿瘤,WHO将其分为Ⅰ、Ⅱ、Ⅲ、Ⅳ级,其中Ⅰ、Ⅱ级为低级别胶质瘤(low-grade glioma, LGG),Ⅲ、Ⅳ级为高级别胶质瘤(high-grade glioma, HGG),HGG是成人最常见的原发性恶性肿瘤之一[1, 2]。Ⅳ级胶质瘤较Ⅲ级胶质瘤恶性程度高、中位生存期短,且对亚硝脲类、替莫唑胺等药物的治疗效果要明显差于Ⅲ级胶质瘤[3, 4]。因此在治疗前,对此类肿瘤的性质及恶性程度进行准确判别将有助于指导本病的治疗和预后判别。

       MRI在该病的发现、诊断、治疗和预后的评估中发挥着重要的作用。基于MRI的纹理分析(texture analysis, TA)是一种无创的影像定量分析方法,通过获取图像中各像素的信号、分布等信息,提高影像图像的信息利用率,其结果不受影像医师主观感受的影响,在肿瘤的诊断与鉴别诊断、指导治疗以及预后评估等方面有独到的优势。本文就基于MRI的TA在HGG的诊断、治疗及预后判别的研究进展进行综述,以期为患者的精准治疗提供信息和新思路。

1 TA

1.1 TA的定义

       纹理定义目前尚未完全统一,需要根据其具体应用而定;影像图片纹理通常表现为局部的不规则或整体上的规律排列,是反映影像图片像素空间分布的一种图像特征[5]。影像组学的影像定量分析方法主要有三种:灰度直方图、TA和参数反应图[6]。直方图分析主要提供平均值、标准差、方差、峰度和偏度等纹理定量参数,但遗漏了影像图片的像素空间分布特征。TA通过直方图或数学矩阵提取出纹理参数进行分析,可精准、定量地描述影像图片空间像素分布。参数反应图是一种对每个体素上治疗前后表观扩散系数(apparent diffusion coefficient, ADC)、容积转运常数(Ktrans)、局部脑血流量、局部血容量等影像和血流动力学参数的变化进行定量、可视化评价的方法,常用于评价病变的异质性[6]

1.2 TA的常用方法

       目前提取纹理参数主要有基于统计、模型、信号处理和结构的四种经典方法,基于图像、熵的方法,基于学习的方法(词汇学习、机器学习)以及综合方法[7, 8]。HGG的TA常采用基于统计的分析法和机器学习。统计分析法主要通过三阶的统计指标进行描述:一阶统计指标由直方图的参数信息组成,常用参数有方差、偏度、熵等;二阶统计指标由灰度共生矩阵(gray level co-occurrence matrix, GLCM)、灰度运行长度矩阵(grey-level run-length matrix, GLRLM)等组成,其中GLCM是目前胶质瘤的TA最普遍使用的统计指标,常用的参数有对比度、熵、相关性、能量、同质性等;三阶统计指标也称为高阶指标,由局部二值模式、相邻像素灰度差分矩阵等组成[7]。HGG机器学习常采用的分析方法有:K-邻近算法、支持向量机(support vector machine, SVM)、贝叶斯理论、决策树和人工神经网络[9, 10, 11]

1.3 纹理特征及分析结果的稳健性

       TA因感兴趣区(region of interest, ROI)分割方法、提取参数、扫描序列等的不同,分析结果会有一定差异[12]。ROI的分割主要分为手动分割、半自动分割和自动分割,半自动分割稳健性较手动分割更好,有研究发现基于深度学习的自动分割诊断效能可与手动分割效能相当[13, 14]。在提取参数的稳健性方面,有研究表明多参数模型稳健性优于单参数模型[15]。王沛沛等[16]研究结果显示,T1WI与T2液体衰减反转恢复(fluid attenuated inversion recovery, FLAIR)序列中提取的纹理特征优于T2WI和增强T1WI序列;HGG增强T1纹理特征稳健性要差于LGG;在HGG的分析中,高阶统计指标纹理特征稳健性优于低阶指标。不同机型和不同序列,其成像协议不同,对TA的结果也有一定的影响,因此需联合多中心、大样本的研究保证TA结果的稳健性。

       此外,ROI的体积也会对TA的结果产生影响。HAINC等[17]将肿瘤按不同体积构成比作为TA的ROI。结果显示,增强T1WI图像的ROI分数体积的增加导致熵、正像素平均值、偏度和峰度的相关性不断增加,其中峰度的增加最显著;对于FLAIR图像,偏度和峰度的相关性增加,其中偏度增加最多。熵随分数体积的增加而减小;与20%体积相比,80%体积的熵置信区间增加。这说明,分析时随着切片数量的增加(所勾画的ROI所占病变总体积的构成比增加),TA结果的稳健性也逐渐增高。

2 TA在HGG中的应用

2.1 TA在HGG诊断和鉴别诊断中所起的作用

2.1.1 量化肿瘤异质性

       HGG,尤其是胶质母细胞瘤(glioblastoma, GBM),存在着明显异质性,这会给本病的诊断和治疗的方法选择造成一定的干扰。基于MRI的TA可无创地量化空间组织学的异质性信息。HU等[18]对组织学诊断为肿瘤含量高(GBM肿瘤细胞核>80%)和肿瘤含量低(GBM肿瘤细胞核<80%)的区域进行纹理特征的提取和数据挖掘,发现其在区分肿瘤高、低含量上的准确率为81.8%。这项研究表明,使用TA能够无创地区分肿瘤组织学异质性,尤其是组织学异常但在增强图像上显示为非增强的肿瘤实质,有助于提高活检的取样准确性。

       此外,TA在区分肿瘤实体与坏死、出血等方面也取得了一定的进展。使用3D TA能很好地区分肿瘤的实性部分和肿瘤内的坏死,以及肿瘤的实性部分和瘤周的水肿[19]。CHIU等[20]研究证明肿瘤实体部分、瘤周、坏死和水肿的肿瘤亚区之间的分类分别与熵、长程强调、偏度、均匀度和局部二值模型的不同类型聚类相关联,水肿与同质性相关。以上研究表明,TA可量化肿瘤内的坏死、出血、瘤周水肿和肿瘤的空间异质性。HGG的异质性表现在血管生成、细胞增殖、肿瘤浸润等多个方面,在使用TA评估时,单纯对肿瘤异质性进行评估价值有限,结合生物标志物和功能成像联合分析,可在HGG的分级、手术治疗和预后评估等方面发挥更大用处。

2.1.2 HGG的进一步分级

       肿瘤级别是患者预后的独立因素,Ⅳ级胶质瘤较Ⅲ级胶质瘤恶性程度高,中位生存期短(Ⅲ级中位生存期仅为3年,Ⅳ级仅为10个月),故区分Ⅲ、Ⅳ级胶质瘤十分有必要[3, 21, 22]。目前,可通过提取平扫、增强序列和ADC等图像的纹理参数对HGG进行进一步分级。研究表明,ADC的熵、增强T1WI和T2WI的直方图和纹理特征可区分Ⅲ级与Ⅳ级胶质瘤,ADC直方图参数在其中表现出了良好的诊断性能[23, 24, 25]。无模型参数的增强序列图像的能量、熵、惯性、相关性和逆差分矩均能有效区分Ⅱ级、Ⅲ级和Ⅳ级胶质瘤[26]。此外,使用多个纹理属性输入SVM对Ⅱ级、Ⅲ级和Ⅳ级胶质瘤分类效果也较好[27, 28]。以上结果表明,使用TA可对HGG进行较为客观地分级。

       增强T1WI和ADC图的纹理参数在对HGG的进一步分级时发挥了重要的作用,但对ADC图进行重建时不可避免会有误差,对整个肿瘤区域进行分析可最大化地减少此类误差。此外,SVM分类器在多个研究中均显示了良好的分类性能,与多参数分析结合可更好的应用于HGG的分级。

2.1.3 TA在鉴别诊断中的作用

       原发性脑淋巴瘤(cerebral lymphoma, CL)和部分脑转移瘤(brain metastases, BM)与HGG的MRI表现相似,难以鉴别。研究表明,原始图像分析得出的标准偏差在对比剂流入、流出和再灌注期间均能够区分GBM和CL;不均匀性、峰度和熵等直方图参数在区分GBM和CL时的敏感度、特异度和准确度分别为85.7%、86.4%和86.0%[29, 30]。KUNIMATSU等[31]使用SVM分类器对GBM与CL患者进行区分,两个分类器的曲线下面积(area under the curve, AUC)分别为0.99和0.87。GBM在T1图上的运行百分比、运行熵和相关的信息量也明显高于BM;使用肿瘤实体部分的ROI计算基于ADC的纹理特征结果显示,GBM的同质性和反差矩高于单发BM,而T1和T2图中GBM的瘤周白质的反差归一化和同质性值低于单发BM,区分肿瘤的效果最好[32, 33]。徐向东等[34]研究结果显示90th Percentile诊断效能最高,提示HGG有较高的肿瘤异质性。在影像表现不足以鉴别HGG和其他肿瘤的情况下,TA提供了一种非侵入性的影像定量手段,其鉴别HGG、BM与CL效能较高。但以上研究均为小样本研究,其结果需要更大样本量的研究来证实。在鉴别HGG与GBM时,受样本量的限制,并未区分BM的组织学来源,这对研究结果的影响尚不清楚,还需更深入的研究来证实。

2.2 TA在指导治疗中所起的作用

       HGG的首选治疗方法是手术治疗。肿瘤被切除的范围是HGG生存率的独立预测因素之一,为此应在最大限度内安全地对肿瘤进行切除[35, 36]。研究显示,Ⅲ级胶质瘤伴瘤体全部切除者,其总生存期可从64.9个月提高到75.2个月;而Ⅳ级胶质瘤伴瘤体全部切除者,其生存期可从11.3个月提高到18.5个月[37]。由此可见,术前对肿瘤组织与周围组织的准确地划定,将有助于手术实施,也有助于治疗效果提升。此外,其还对放射治疗时的靶区划定起到重要的作用。为此,张益杰等[38]通过GLCM提取对比度、逆差矩、相关等纹理参数,来对HGG的肿瘤区域和瘤周组织进行区分,结果显示该方法的准确率可达88.45%~92.99%。目前TA在HGG边界鉴别应用还较少,且作为一种辅助手段,尚未广泛应用于临床。但TA作为一种无创的量化分析方法,为HGG的边界划定提供了一种新思路。

2.3 TA在预后评估中所起的作用

2.3.1 术前预测HGG的基因分型及其分子标志物

       2016年WHO中枢神经系统肿瘤分类首次将分子标志物引入胶质瘤分型[39]。部分分子标志物与肿瘤的放疗、化疗敏感性有关,确定引起HGG的分子标志物及基因分型可对患者的治疗效果进行预判。GBM-IDH野生型患者与GBM-IDH突变型患者相比,发病年龄更年轻、预后更好[40]。研究发现,异柠檬酸脱氢酶-1(isocitrate dehydrogenase-1, IDH1)野生型胶质瘤纹理特征值均大于突变型,容积转运常数的GLCM聚类趋势在鉴别其基因分型上的特异度和敏感度分别为88.2%和82.9%[41]。非增强肿瘤的比例和ADC的熵可用于预测IDH1的突变状态[42]。部分研究受技术条件限制,在进行IDH1研究时,未能进行基因测序以排除IDH2突变的影响,研究结果有待进一步验证。

       Ki-67增殖指数与细胞的增殖和肿瘤的分化、转移、浸润及预后密切相关,Ki-67表达水平是胶质瘤复发的独立预测因素[22]。研究表明,Ⅳ级胶质瘤Ki-67增殖指数明显高于Ⅲ级胶质瘤[43]。而Ki-67指数与方差、标准差、不均匀性呈显著正相关[44, 45]

       O6甲基鸟嘌呤-DNA-甲基转移酶(O6-methylguanine DNA methyltranferase, MGMT)出现甲基化,提示DNA损伤修复的酶失活,肿瘤细胞对化疗药物敏感,HGG预后较好。研究发现,TA预测GBM组MGMT甲基化的特异度和敏感度效能较好,但准确率不佳[46, 47]。以上研究表明,TA在预测HGG的基因分型方面取得了一定进展,但部分分子标志物的预测效能还需进一步实验证实,并且需要联合多中心,大样本的数据对研究的结果进行外部验证。

2.3.2 鉴别假性进展与真性进展

       假性进展是胶质瘤患者在接受放疗后影像学上出现病灶短暂性强化区增大,后可自行减小或消失,是预后良好的标志之一,其无须特殊处理[3, 48]。而真性进展患者则需根据其自身状况(是否接受过手术、放射治疗和化学治疗),更换其他的治疗方式。由于真性进展与假性进展在影像学上表现相似,有时难于区分。为此,人们采用TA的方法来区分两者,发现真性进展直方图参数均大于假性进展,均值在鉴别GBM真性进展和假性进展的AUC值达0.975(截止值为528.86时,敏感度为95.7%,特异度为87.0%)[49]。除此之外,GLCM特征在区分GBM真性进展和假性进展上的效能也较高[15, 50]。而基于Ktrans和局部脑血容量(regional cerebral blood volume, rCBV)图的TA在区分真性进展和假性进展上的准确率可达90.82%[51]。多参数MRI模型在区分假性进展和真性进展时,表现出了良好的诊断性能,并且在接受外部验证时依旧表现出了稳定的性能。以上研究证明,TA用于HGG假性进展与真性进展的鉴别效能较高,但是部分研究在确定假性进展时并没有经过病理活检来确认,这可能对研究结果产生一定的影响。

2.3.3 生存时间及复发模式预测

       HGG预后较差,GBM患者的5年生存率仅为6.8%,且绝大多数HGG初次治疗后都会复发[52]。目前,HGG复发模式可分为局部复发和非局部复发,局部复发又可分为治疗视野中心、视野内和视野边缘复发[53]。有报告显示,TA可预测Ⅳ级胶质瘤的患者远处复发和局部复发,GLCM和直方图预测HGG复发时间和复发位置效能较高[54, 55, 56]

       TA还可用于GBM患者术后生存时间预测,其中GLCM、GLRLM和GLSZM可预测GBM患者的生存时间,而熵值、最大概率值和灰度运行强调值则与GBM患者的长期生存相关[34, 57, 58]。贝伐珠单抗是治疗复发GBM的标准治疗方案,为此有人通过TA来预测接受贝伐珠单抗治疗的复发性GBM患者的无进展生存期和总生存期,结果显示TA在预测该药使用后患者的生存期上也具有一定作用[3, 59]。以上研究表明,TA能对HGG的复发时间和复发位置进行预测,部分纹理参数与HGG患者的长期生存有关,但还需要结合外部验证对研究结果加以证实,以保证结果的可外推性,促进TA进入临床应用。

3 总结和展望

       本文从诊断、治疗及预后等角度阐述了TA在HGG的应用进展,相关研究主要围绕肿瘤异质性量化、肿瘤分级、肿瘤鉴别诊断、边界界定、分子标志物和复发的预测等方面开展。TA作为一种定量分析方法,与影像图片相结合,可为患者预后提供参考信息。

       基于MRI的TA在HGG的研究中取得了一定的进展,多参数模型在多个研究中,均表现出了良好的性能,未来还需要大样本、多中心的研究推动TA进入临床应用。此外,TA还需要确定统一的操作方法以确保分析结果的稳定性。目前ROI的勾画多采用手动分割,其精度较高但效率较低;自动分割和半自动分割效率高、重复性好,未来需进一步改进分割算法和分割方法以提升其精度。随着MRI和后处理技术的发展,TA在肿瘤领域的应用还大有可为。

[1]
KOMORI T. The 2016 WHO Classification of Tumours of the Central Nervous System: The Major Points of Revision[J]. Neurol Med Chir (Tokyo), 2017, 57(7): 301-311. DOI: 10.2176/nmc.ra.2017-0010.
[2]
OSTROM Q T, GITTLEMAN H, TRUITT G, et al. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2011-2015[J]. Neuro Oncol, 2018, 20(suppl_4): iv1-iv86. DOI: 10.1093/neuonc/noy131.
[3]
《中国中枢神经系统胶质瘤诊断和治疗指南》编写组. 中国中枢神经系统胶质瘤诊断与治疗指南(2015)[J]. 中华医学杂志, 2016, 96(7): 485-509. DOI: 10.3760/cma.j.issn.0376-2491.2016.07.003.
Compilation group of "Chinese Guidelines for the Diagnosis and Treatment of Glioma of the Central Nervous System". Guidelines for the diagnosis and treatment of glioma of the central nervous system in China (2015)[J]. Natl Med J China, 2016, 96(7): 485-509. DOI: 10.3760/cma.j.issn.0376-2491.2016.07.003.
[4]
STUPP R, BRADA M, VAN DEN BENT M J, et al. High-grade glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up[J]. Ann Oncol, 2014, 25(Suppl 3): ii93-ii101. DOI: 10.1093/annonc/mdu050.
[5]
刘丽, 匡纲要. 图像纹理特征提取方法综述[J]. 中国图象图形学报, 2009, 14(4): 622-635. DOI: 10.11834/jig.20090409.
LIU L, KUANG G Y. A review of image texture feature extraction methods[J]. Journal of Image and Graphics, 2009, 14(4): 622-635. DOI: 10.11834/jig.20090409.
[6]
张思影, 陈峰. 肿瘤空间异质性影像学定量评价进展[J]. 中华放射肿瘤学杂志, 2017, 26(12): 1451-1456. DOI: 10.3760/cma.j.issn.1004-4221.2017.12.021.
ZHANG S Y, CHEN F. Advances in quantitative imaging evaluation of tumor spatial heterogeneity[J]. Chin J Radiat Oncol, 2017, 26(12): 1451-1456. DOI: 10.3760/cma.j.issn.1004-4221.2017.12.021.
[7]
GHALATI M K, NUNES A, FERREIRA H, et al. Texture Analysis and Its Applications in Biomedical Imaging: A Survey[J]. IEEE Reviews in Biomedical Engineering, 2022, 15: 222-246. DOI: 10.1109/RBME.2021.3115703.
[8]
刘丽, 赵凌君, 郭承玉, 等. 图像纹理分类方法研究进展和展望[J]. 自动化学报, 2018, 44(04): 584-607. DOI: 10.16383/j.aas.2018.c160452.
LIU L, ZHAO L J, GUO C Y, et al. Research progress and prospect of image texture classification methods[J]. Acta Automatica Sinica, 2018, 44(4): 584-607. DOI: 10.16383/j.aas.2018.c160452.
[9]
CHEN B, CHEN C, WANG J, et al. Differentiation of Low-Grade Astrocytoma From Anaplastic Astrocytoma Using Radiomics-Based Machine Learning Techniques[J/OL]. Front Oncol, 2021, 11: 521313 [2022-08-23], https://pubmed.ncbi.nlm.nih.gov/34141605/. DOI: 10.3389/fonc.2021.521313.
[10]
ORTIZ-RAMÓN R, RUIZ-ESPAÑA S, MOLLÁ -OLMOS E, et al. Glioblastomas and brain metastases differentiation following an MRI texture analysis-based radiomics approach[J]. Phys Med, 2020, 76: 44-54. DOI: 10.1016/j.ejmp.2020.06.016.
[11]
YU Y, WU X, CHEN J, et al. Characterizing Brain Tumor Regions Using Texture Analysis in Magnetic Resonance Imaging[J/OL]. Front Neurosci, 2021, 15: 634926 [2022-08-10]. https://pubmed.ncbi.nlm.nih.gov/34149343/. DOI: 10.3389/fnins.2021.634926.
[12]
LARUE R T H M, DEFRAENE G, DE RUYSSCHER D, et al. Quantitative radiomics studies for tissue characterization: a review of technology and methodological procedures[J/OL]. Br J Radiol, 2017, 90(1070): 20160665 [2022-08-12]. https://pubmed.ncbi.nlm.nih.gov/27936886/. DOI: 10.1259/bjr.20160665.
[13]
PARMAR C, RIOS VELAZQUEZ E, LEIJENAAR R, et al. Robust Radiomics feature quantification using semiautomatic volumetric segmentation[J/OL]. PLoS One, 2014, 9(7): e102107 [2022-08-12]. https://pubmed.ncbi.nlm.nih.gov/25025374/. DOI: 10.1371/journal.pone.0102107.
[14]
PARK J E, HAM S, KIM H S, et al. Diffusion and perfusion MRI radiomics obtained from deep learning segmentation provides reproducible and comparable diagnostic model to human in post-treatment glioblastoma[J]. Eur Radiol, 2021, 31(5): 3127-3137. DOI: 10.1007/s00330-020-07414-3.
[15]
KIM J Y, PARK J E, JO Y, et al. Incorporating diffusion- and perfusion-weighted MRI into a radiomics model improves diagnostic performance for pseudoprogression in glioblastoma patients[J]. Neuro Oncol, 2019, 21(3): 404-414. DOI: 10.1093/neuonc/noy133.
[16]
王沛沛, 宋曼莉, 张文华, 等. 脑胶质瘤MRI纹理特征的稳健性[J]. 中国医学影像学杂志, 2021, 29(5): 519-524. DOI: 10.3969/j.issn.1005-5185.2021.05.024.
WANG P P, SONG M L, ZHANG W H, et al. Robustness of MRI texture features in glioma[J]. Chin J Med Imaging, 2021, 29(5): 519-524. DOI: 10.3969/j.issn.1005-5185.2021.05.024.
[17]
HAINC N, STIPPICH C, STIELTJES B, et al. Experimental Texture Analysis in Glioblastoma: A Methodological Study[J]. Invest Radiol, 2017, 52(6): 367-373. DOI: 10.1097/RLI.0000000000000354.
[18]
HU L S, NING S, ESCHBACHER J M, et al. Multi-Parametric MRI and Texture Analysis to Visualize Spatial Histologic Heterogeneity and Tumor Extent in Glioblastoma[J/OL]. PLoS One, 2015, 10(11): e0141506 [2022-08-12]. https://pubmed.ncbi.nlm.nih.gov/26599106. DOI: 10.1371/journal.pone.0141506.
[19]
MAHMOUD-GHONEIM D, TOUSSAINT G, CONSTANS J M, et al. Three dimensional texture analysis in MRI: a preliminary evaluation in gliomas[J]. Magn Reson Imaging, 2003, 21(9): 983-987. DOI: 10.1016/s0730-725x(03)00201-7.
[20]
CHIU F Y, YEN Y. Efficient Radiomics-Based Classification of Multi-Parametric MR Images to Identify Volumetric Habitats and Signatures in Glioblastoma: A Machine Learning Approach[J/OL]. Cancers (Basel), 2022, 14(6) [2022-11-25]. https://pubmed.ncbi.nlm.nih.gov/35326626. DOI: 10.3390/cancers14061475.
[21]
GARCIA C R, SLONE S A, DOLECEK T A, et al. Primary central nervous system tumor treatment and survival in the United States, 2004-2015[J]. J Neurooncol, 2019, 144(1): 179-191. DOI: 10.1007/s11060-019-03218-8.
[22]
LI J, NIU X, GAN Y, et al. Clinical and Pathologic Features and Prognostic Factors for Recurrent Gliomas[J/OL]. World Neurosurg, 2019, 128: e21-e30 [2022-08-12]. https://pubmed.ncbi.nlm.nih.gov/30880199. DOI: 10.1016/j.wneu.2019.02.210.
[23]
NAKAMOTO T, TAKAHASHI W, HAGA A, et al. Prediction of malignant glioma grades using contrast-enhanced T1-weighted and T2-weighted magnetic resonance images based on a radiomic analysis[J/OL]. Sci Rep, 2019, 9(1): 19411 [2022-11-25]. https://pubmed.ncbi.nlm.nih.gov/31857632/. DOI: 10.1038/s41598-019-55922-0.
[24]
RYU Y J, CHOI S H, PARK S J, et al. Glioma: application of whole-tumor texture analysis of diffusion-weighted imaging for the evaluation of tumor heterogeneity[J/OL]. PLoS One, 2014, 9(9): e108335 [2022-11-25]. https://pubmed.ncbi.nlm.nih.gov/25268588. DOI: 10.1371/journal.pone.0108335.
[25]
刘杨颖秋, 尚劲, 田诗云, 等. 利用肿瘤全域表观扩散系数信号强度直方图鉴别Ⅱ级与Ⅲ级胶质瘤[J]. 磁共振成像, 2017, 8(04): 276-282 DOI: 10.12015/issn.1674-8034.2017.04.008.
LIU Y Y Q, SHANG J, TIAN S Y, et al. Identification of grade Ⅱ and grade Ⅲ gliomas using histograms of tumor global apparent diffusion coefficient signal intensities[J]. Chin J Magn Reson Imaging, 2017, 8(4): 276-282. DOI: 10.12015/issn.1674-8034.2017.04.008.
[26]
XIE T, CHEN X, FANG J, et al. Textural features of dynamic contrast-enhanced MRI derived model-free and model-based parameter maps in glioma grading[J]. J Magn Reson Imaging, 2018, 47(4): 1099-1111. DOI: 10.1002/jmri.25835.
[27]
TIAN Q, YAN L F, ZHANG X, et al. Radiomics strategy for glioma grading using texture features from multiparametric MRI[J]. J Magn Reson Imaging, 2018, 48(6): 1518-1528. DOI: 10.1002/jmri.26010.
[28]
YANG Y, YAN L F, ZHANG X, et al. Optimizing Texture Retrieving Model for Multimodal MR Image-Based Support Vector Machine for Classifying Glioma[J]. J Magn Reson Imaging, 2019, 49(5): 1263-1274. DOI: 10.1002/jmri.26524.
[29]
SHA Z, SONG Y, WU Y, et al. The value of texture analysis in peritumoral edema of differentiating diagnosis between glioblastoma and primary brain lymphoma[J]. Br J Neurosurg, 2020: 1-4. DOI: 10.1080/02688697.2020.1856783.
[30]
VERMA R K, WIEST R, LOCHER C, et al. Differentiating enhancing multiple sclerosis lesions, glioblastoma, and lymphoma with dynamic texture parameters analysis (DTPA): A feasibility study[J]. Med Phys, 2017, 44(8): 4000-4008. DOI: 10.1002/mp.12356.
[31]
KUNIMATSU A, KUNIMATSU N, YASAKA K, et al. Machine Learning-based Texture Analysis of Contrast-enhanced MR Imaging to Differentiate between Glioblastoma and Primary Central Nervous System Lymphoma[J]. Magn Reson Med Sci, 2019, 18(1): 44-52. DOI: 10.2463/mrms.mp.2017-0178.
[32]
ZHANG G, CHEN X, ZHANG S, et al. Discrimination Between Solitary Brain Metastasis and Glioblastoma Multiforme by Using ADC-Based Texture Analysis: A Comparison of Two Different ROI Placements[J]. Acad Radiol, 2019, 26(11): 1466-1472. DOI: 10.1016/j.acra.2019.01.010.
[33]
DASTMALCHIAN S, KILINC O, ONYEWADUME L, et al. Radiomic analysis of magnetic resonance fingerprinting in adult brain tumors[J]. Eur J Nucl Med Mol Imaging, 2021, 48(3): 683-693. DOI: 10.1007/s00259-020-05037-w.
[34]
徐向东, 梁芳蓉, 韦瑞丽, 等. 基于多参数MRI影像组学特征融合模型鉴别高级别胶质瘤与单发性脑转移瘤[J]. 磁共振成像, 2022, 13(11): 53-59. DOI: 10.12015/issn.1674-8034.2022.11.010.
XU X D, LIANG F R, WEI R L, et al. Identification of high-grade glioma and solitary brain metastases based on a fusion model of multi-parametric MRI imaging histological features[J]. Chin J Magn Reson Imaging, 2022, 13(11): 53-59. DOI: 10.12015/issn.1674-8034.2022.11.010.
[35]
WYKES V, ZISAKIS A, IRIMIA M, et al. Importance and Evidence of Extent of Resection in Glioblastoma[J]. J Neurol Surg A Cent Eur Neurosurg, 2021, 82(1): 75-86. DOI: 10.1055/s-0040-1701635.
[36]
XIA Y, LIAO W, HUANG S, et al. Nomograms for Predicting the Overall and Cancer-Specific Survival of Patients with High-Grade Glioma: A Surveillance, Epidemiology, and End Results Study[J]. Turk Neurosurg, 2020, 30(1): 48-59. DOI: 10.5137/1019-5149.JTN.26131-19.2.
[37]
HERVEY-JUMPER S L, BERGER M S. Role of surgical resection in low- and high-grade gliomas[J/OL]. Curr Treat Options Neurol, 2014, 16(4): 284 [2022-08-12]. https://pubmed.ncbi.nlm.nih.gov/24595756. DOI: 10.1007/s11940-014-0284-7.
[38]
张益杰, 程敬亮, 李娅. 磁共振图像的纹理分析在界定高级别脑胶质瘤边界中的应用[J]. 临床放射学杂志, 2017, 36(3): 315-318. DOI: 10.13437/j.cnki.jcr.2017.03.005.
ZHANG Y J, CHENG J L, LI Y. Application of texture analysis of magnetic resonance images in defining the borders of high-grade glioma[J]. J Clin Radiol, 2017, 36(3): 315-318. DOI: 10.13437/j.cnki.jcr.2017.03.005.
[39]
LOUIS D N, PERRY A, REIFENBERGER G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary[J]. Acta Neuropathol, 2016, 131(6): 803-820. DOI: 10.1007/s00401-016-1545-1.
[40]
OHGAKI H, KLEIHUES P. The definition of primary and secondary glioblastoma[J]. Clin Cancer Res, 2013, 19(4): 764-772. DOI: 10.1158/1078-0432.CCR-12-3002.
[41]
汪洁, 包善磊, 贾中正, 等. 动态对比增强磁共振成像纹理分析评估胶质瘤IDH1突变与瘤细胞增殖[J]. 中国医学影像学杂志, 2021, 29(7): 659-664. DOI: 10.3969/j.issn.1005-5185.2021.07.003.
WANG J, BAO S L, JIA C Z, et al. Dynamic contrast-enhanced magnetic resonance imaging texture analysis to assess IDH1 mutations and tumor cell proliferation in glioma[J]. Chin J Med Imaging, 2021, 29(7): 659-664. DOI: 10.3969/j.issn.1005-5185.2021.07.003.
[42]
SU C Q, LU S S, ZHOU M D, et al. Combined texture analysis of diffusion-weighted imaging with conventional MRI for non-invasive assessment of IDH1 mutation in anaplastic gliomas[J]. Clin Radiol, 2019, 74(2): 154-160. DOI: 10.1016/j.crad.2018.10.002.
[43]
GIHR G, HORVATH-RIZEA D, HEKELER E, et al. Diffusion weighted imaging in high-grade gliomas: A histogram-based analysis of apparent diffusion coefficient profile[J/OL]. PLoS One, 2021, 16(4): e0249878 [2023-01-16]. https://pubmed.ncbi.nlm.nih.gov/33857203. DOI: 10.1371/journal.pone.0249878.
[44]
WANG S, MENG M, ZHANG X, et al. Texture analysis of diffusion weighted imaging for the evaluation of glioma heterogeneity based on different regions of interest[J]. Oncol Lett, 2018, 15(5): 7297-7304. DOI: 10.3892/ol.2018.8232.
[45]
RUI W, PANG H, XIE Q, et al. Association Between Histopathology and Magnetic Resonance Imaging Texture in Grading Gliomas Based on Intraoperative Magnetic Resonance Navigated Stereotactic Biopsy[J]. J Comput Assist Tomogr, 2021, 45(5): 728-735. DOI: 10.1097/RCT.0000000000001201.
[46]
HUANG W Y, WEN L H, WU G, et al. Radiological model based on the standard magnetic resonance sequences for detecting methylguanine methyltransferase methylation in glioma using texture analysis[J]. Cancer Sci, 2021, 112(7): 2835-2844. DOI: 10.1111/cas.14918.
[47]
SASAKI T, KINOSHITA M, FUJITA K, et al. Radiomics and MGMT promoter methylation for prognostication of newly diagnosed glioblastoma[J/OL]. Sci Rep, 2019, 9(1): 14435 [2022-08-12]. https://pubmed.ncbi.nlm.nih.gov/31594994. DOI: 10.1038/s41598-019-50849-y.
[48]
MÜLLER BARK J, KULASINGHE A, CHUA B, et al. Circulating biomarkers in patients with glioblastoma[J]. Br J Cancer, 2020, 122(3): 295-305. DOI: 10.1038/s41416-019-0603-6.
[49]
YILDIRIM M, BAYKARA M. Differentiation of progressive disease from pseudoprogression using MRI histogram analysis in patients with treated glioblastoma[J]. Acta Neurol Belg, 2022, 122(2): 363-368. DOI: 10.1007/s13760-021-01607-3.
[50]
CHEN X, WEI X, ZHANG Z, et al. Differentiation of true-progression from pseudoprogression in glioblastoma treated with radiation therapy and concomitant temozolomide by GLCM texture analysis of conventional MRI[J]. Clin Imaging, 2015, 39(5): 775-780. DOI: 10.1016/j.clinimag.2015.04.003.
[51]
ELSHAFEEY N, KOTROTSOU A, HASSAN A, et al. Multicenter study demonstrates radiomic features derived from magnetic resonance perfusion images identify pseudoprogression in glioblastoma[J/OL]. Nat Commun, 2019, 10(1): 3170 [2022-08-12]. https://pubmed.ncbi.nlm.nih.gov/31320621. DOI: 10.1038/s41467-019-11007-0.
[52]
GHIASEDDIN A P, SHIN D, MELNICK K, et al. Tumor Treating Fields in the Management of Patients with Malignant Gliomas[J/OL]. Curr Treat Options Oncol, 2020, 21(9): 76 [2022-06-08]. https://pubmed.ncbi.nlm.nih.gov/32734509. DOI: 10.1007/s11864-020-00773-5.
[53]
刘毛毛, 贺业新. MRI预测高级别胶质瘤术后复发模式的研究进展[J]. 磁共振成像, 2021, 12(12): 99-101. DOI: 10.12015/issn.1674-8034.2021.12.023.
LIU M M, HE Y X. Research progress of MRI in predicting recurrence patterns of high-grade glioma after surgery[J]. Chin J Magn Reson Imaging, 2021, 12(12): 99-101. DOI: 10.12015/issn.1674-8034.2021.12.023.
[54]
CHOUGULE T, GUPTA R K, SAINI J, et al. Radiomics signature for temporal evolution and recurrence patterns of glioblastoma using multimodal magnetic resonance imaging[J/OL]. NMR Biomed, 2022, 35(3): e4647 [2022-08-12]. https://pubmed.ncbi.nlm.nih.gov/34766380. DOI: 10.1002/nbm.4647.
[55]
FATHI KAZEROONI A, AKBARI H, SHUKLA G, et al. Cancer Imaging Phenomics via CaPTk: Multi-Institutional Prediction of Progression-Free Survival and Pattern of Recurrence in Glioblastoma[J]. JCO Clin Cancer Inform, 2020, 4: 234-244. DOI: 10.1200/CCI.19.00121.
[56]
SHIM K Y, CHUNG S W, JEONG J H, et al. Radiomics-based neural network predicts recurrence patterns in glioblastoma using dynamic susceptibility contrast-enhanced MRI[J/OL]. Sci Rep, 2021, 11(1): 9974 [2022-08-12]. https://pubmed.ncbi.nlm.nih.gov/33976264. DOI: 10.1038/s41598-021-89218-z.
[57]
CHOI Y, AHN K J, NAM Y, et al. Analysis of heterogeneity of peritumoral T2 hyperintensity in patients with pretreatment glioblastoma: Prognostic value of MRI-based radiomics[J/OL]. Eur J Radiol, 2019, 120: 108642 [2022-08-12]. https://pubmed.ncbi.nlm.nih.gov/31546124. DOI: 10.1016/j.ejrad.2019.108642.
[58]
CHADDAD A, DANIEL P, DESROSIERS C, et al. Novel Radiomic Features Based on Joint Intensity Matrices for Predicting Glioblastoma Patient Survival Time[J]. IEEE J Biomed Health Inform, 2019, 23(2): 795-804. DOI: 10.1109/JBHI.2018.2825027.
[59]
BAHRAMI N, PICCIONI D, KARUNAMUNI R, et al. Edge Contrast of the FLAIR Hyperintense Region Predicts Survival in Patients with High-Grade Gliomas following Treatment with Bevacizumab[J]. AJNR Am J Neuroradiol, 2018, 39(6): 1017-1024. DOI: 10.3174/ajnr.A5620.

上一篇 功能磁共振成像预测较低级别脑胶质瘤分子分型的研究进展
下一篇 磁共振参数定量技术在心肌受累疾患中的应用及研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2