分享:
分享到微信朋友圈
X
综述
基于心脏磁共振的左心房应变在心脏疾病中的应用进展
王灵丽 冯馨仪 张天悦 杨帆 李睿

Cite this article as: WANG L L, FENG X Y, ZHANG T Y, et al. The application of left atrial strain derived from cardiac magnetic resonance in cardiac diseases[J]. Chin J Magn Reson Imaging, 2023, 14(3): 179-183.本文引用格式:王灵丽, 冯馨仪, 张天悦, 等. 基于心脏磁共振的左心房应变在心脏疾病中的应用进展[J]. 磁共振成像, 2023, 14(3): 179-183. DOI:10.12015/issn.1674-8034.2023.03.033.


[摘要] 左心房(left atrium, LA)功能与多种心脏疾病的发生发展、预后密切相关。近年来,随着后处理软件的成熟,心脏磁共振特征追踪技术(cardiac magnetic resonance feature tracking, CMR-FT)可对多种心脏疾病的LA心肌应变进行无创综合分析,克服了单一LA体积测量的局限性,且LA心肌应变更能反映早期心功能障碍及预后情况。本文基于CMR-FT评估LA应变在各种心脏疾病的早期功能改变、危险分层、预后等方面的应用进展予以综述,旨在为进一步探索LA应变在心脏疾病的应用提供影像依据。
[Abstract] Left atrium (LA) function is closely related to the occurrence, development and prognosis of many cardiac diseases. In recent years, with the development of post-processing software, cardiac magnetic resonance feature tracking (CMR-FT) could non-invasive comprehensive analysis of LA myocardial strain in multiple cardiac diseases, which overcomes the limitation of sole LA volumetric measurement. The change of LA myocardial strain could reflect early cardiac dysfunction and prognosis. This article reviews the application of CMR-FT LA strain in evaluation early functional changes, risk stratification and prognosis of cardiac diseases, aiming to provide a medical imaging basis for further exploring application of LA strain in cardiac diseases.
[关键词] 心脏病;左心房;应变;心脏磁共振;磁共振成像;特征追踪技术
[Keywords] cardiac diseases;left atrium;strains;cardiac magnetic resonance;magnetic resonance imaging;feature tracking

王灵丽    冯馨仪    张天悦    杨帆    李睿 *  

川北医学院附属医院放射科,南充 637007

通信作者:李睿,E-mail:lirui_imag@nsmc.edu.cn

作者贡献声明:李睿设计本研究的方案,对稿件重要的智力内容进行了修改;王灵丽起草和撰写稿件,获取、分析或解释本研究的数据/文献;冯馨仪、张天悦、杨帆获取、分析或解释本研究的数据/文献,对稿件重要的智力内容进行了修改;李睿获得了国家自然科学基金,四川省科技厅科技计划项目基金的资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 国家自然科学基金 81801674 四川省科技厅科技计划项目 2021YJ0242
收稿日期:2022-10-27
接受日期:2023-03-01
中图分类号:R445.2  R542 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2023.03.033
本文引用格式:王灵丽, 冯馨仪, 张天悦, 等. 基于心脏磁共振的左心房应变在心脏疾病中的应用进展[J]. 磁共振成像, 2023, 14(3): 179-183. DOI:10.12015/issn.1674-8034.2023.03.033.

0 前言

       近年来,左心房(left atrium, LA)功能在心脏疾病发生发展中的作用逐渐受到重视。心脏磁共振(cardiac magnetic resonance, CMR)成像是评价LA容积和功能的金标准[1, 2],LA扩大被广泛认为是不良心血管事件的重要标志,反映了LA心肌结构重塑过程[3],但并不能反映各期相中LA的功能,而心肌应变分析可以克服单一LA体积测量的局限性,并能早期发现多种心脏疾病的LA功能改变[4]。基于心脏磁共振特征追踪技术(cardiac magnetic resonance feature tracking, CMR-FT)的LA心肌应变参数敏感度高,可在LA体积变化之前对LA整体及局部功能异常进行定量评估[4, 5, 6]。既往心肌应变分析研究集中于心室系统,但近年来LA应变被证实在早期发现心功能障碍、预后评估、危险分层方面等具有重要临床价值[4,7]。因此,本文对基于CMR-FT技术的LA心肌应变参数在心脏疾病早期诊断及预后评估方面的研究成果予以综述,目的在于描述LA应变作为新的参数在心脏疾病应用中的优势和不足,为进一步探索LA应变在心脏疾病研究中提供可靠影像学依据。

1 LA应变原理

       LA的调节过程可分为三个连续的阶段:(1)储存期,储存心室收缩期的肺静脉回流血;(2)导管期,心室舒张早期将心房储存的血液输送到心室;(3)收缩期,心室舒张晚期通过心房主动收缩将血液输送至心室[8]。心肌应变为心肌的形变,指心肌壁增厚或伸长的变化,以百分数表示[9, 10],由于LA心肌纤维的特殊性及心房壁较薄的特点,LA应变定量分析通常测量LA纵向应变及应变率[8,11],即总应变、被动应变、主动应变和第一个正向应变率峰值、第一个负向应变率峰值及第二个负向应变率峰值[12],分别反映了LA储存、导管及收缩功能。CMR-FT的基本原理是在连续序列的图像中对目标图像的特征或不规则图案进行追踪[13],随着后处理软件的日益成熟,CMR-FT应变技术的应用日益广泛,基于该技术的LA应变在各种心脏疾病的诊断及预后评估中发挥着越来越重要的作用[14]

2 LA应变在心脏疾病中的应用

2.1 缺血性心脏病

       近年来LA功能在缺血性心脏病的诊断和风险分层方面的重要性日益显现[7]。在急性心肌梗死的早期,LA可通过增加收缩功能来补偿由于心室衰竭造成的心功能不全,因此LA功能受损可能是患者预后不良的独立危险因素。LENG等[15]在一项纳入了321例心肌梗死患者的研究中证实患者发生LA总应变和被动应变损伤,并发现LA总应变<21.8%和被动应变<10.5%时患者发生心脏不良事件风险明显增加。此外,另有研究也证实LA总应变损伤与心肌梗死后不良心血管事件显著相关,LA总应变受损是急性心肌梗死后临床结局的独立预测因子(HR=0.95,P=0.02),这与BACKHAUS等[16]研究结论相似,在传统MRI预后指标中加入LA应变参数,预后价值高于左心室射血分数及左心室纵向应变[17]。此外,慢性心肌梗死再灌注患者的LA应变也可发生改变。一项回顾性研究[18]发现该类患者的LA储存、导管及收缩功能均受到影响,原因可能是心梗后左室重塑对舒张功能造成了损害,其中LA被动应变受损对预测再灌注后慢性心肌梗死准确性最高,曲线下面积(area under the curve, AUC)值为0.762。综上,LA功能与心脏疾病不良结局密切关联,究其原因是心房具有一种独特的自主代偿能力,因此LA应变分析在缺血性心肌病早期、慢性期功能改变及风险预测中具有重要的作用。此外,LA功能评估还对急性心肌梗死后治疗干预有一定价值,但还需更多研究结果加以验证。

2.2 心肌炎

       急性心肌炎是年轻人心源性猝死的主要原因[19],但其临床表现及演变过程并不一致[20],因此早期准确诊断具有重要意义。心肌炎患者早期左室射血分数在正常范围内,但与LA密切相关的左室舒张功能已发生障碍[21]。因此基于CMR的心房应变分析可帮助预测早期心肌炎。尹晨旺等[22]证实了急性心肌炎患者存在LA总应变及被动应变参数受损,尤其是被动应变<22.35%在急性心肌炎的诊断价值最高(AUC:0.81,敏感度:75%,特异度:73%)。DICK等[23]也证实了急性心肌炎患者同健康对照组相比,发生了不同程度的LA总应变和被动应变参数损伤,并提出LA第一个负向应变率峰值是急性心肌炎的最佳预测指标(AUC:0.80,敏感度:83%,特异度:80%)。DOERNER等[24]在研究CMR-FT心房应变作为Lake Louise标准的辅助工具诊断心肌炎的有效性上,也指出LA第一个负向应变率峰值作为单一参数是诊断心肌炎的良好指标(AUC:0.72)。此外,结合左房、左室应变参数和已建立的Lake Louis诊断心肌炎的标准不仅可以提高诊断性能,还可以确定LA功能改变对该疾病早期诊断效能比左室功能单一指标更为敏感[25]。在心肌炎患者预后方面,一项对急性心肌炎患者的随访研究表明,通过CMR-FT监测LA应变对发现持续性心肌功能障碍具有重要价值,可作为急性心肌炎后个体恢复情况的评估指标[26]。综上所述,LA应变分析在心肌炎的早期诊断、诊断效能及预后方面均有较高的临床价值,但心率变化对于心肌炎LA应变参数的影响还需更多研究进行评估。

2.3 心房颤动

       心房颤动(atrial fibrillation, AF)是最常见的心律失常,心房重构是AF发展的关键机制。LA的容积参数可以反映LA结构重塑的变化,而AF早期LA容积还未发生改变,心排血量已经发生下降,早期LA功能代偿可减缓心排血量的下降,因此LA应变参数能更好地反映AF患者LA早期功能的变化,为临床治疗提供更多信息[27]。HABIBI[28]等研究表明,与健康受试者相比,AF患者所有LA应变参数均受损。侯洁等[29]研究也发现风湿性二尖瓣狭窄合并AF患者的LA应变参数均显著减低,表现为患者的LA储存和导管功能明显下降,收缩功能显著减低或消失。另一项研究报道,在有卒中危险因素但还未发生AF的患者中,LA主动应变<17%的患者AF发生率是其他患者的2倍(50% vs. 25%,P<0.001)[30]。此外,LA应变还能预测消融后AF的复发。GASTL等[31]在一项针对52例进行了肺静脉隔离术的AF患者的回顾性研究中发现,AF复发患者LA主动应变参数明显低于未复发者(主动应变:3.57±2.46 vs. 7.61±5.56,P=0.015;第二个负向应变率峰值:0.28±0.22 vs. 0.55±0.42,P=0.036),提示LA主动应变受损是AF复发的预测因子之一(AUC:0.73,敏感度:67%,特异度:70%)。尽管目前LA应变在AF患者的诊断和预后评估中潜力巨大,但在其临床应用,尤其是预测AF复发方面,还需进一步结合CMR延迟强化成像[32]

2.4 射血分数保留心衰

       左心室整体纵向应变受损是射血分数保留心衰(heart failure with preserved ejection fraction, HFpEF)患者不良心脏事件的独立预测因素[33]。而在早期左室舒张功能和顺应性受损的情况下,LA代偿对维持心排血量起着至关重要的作用。因此HFpEF患者除了舒张早期的心室应变受损外,LA功能受损也是检测HFpEF中左室舒张功能障碍的重要因素[34],最近一项研究发现,HFpEF患者早期负荷状态下的LA衰竭是这类患者的一个关键特征,还发现LA总应变可能成为诊断负荷下HFpEF最关键的预测因子(AUC:0.93),甚至在未来可能成为无创性诊断的重要方法[35],但基于CMR-FT的LA应变分析在HFpEF预后意义研究较少,未来还需要更多的临床试验进一步评估。

2.5 原发性心肌病

       肥厚型心肌病(hypertrophic cardiomyopathy, HCM)是最常见的单基因遗传性心肌病,在后期可发生左心室收缩功能受损。LA被动应变可作为最敏感的LA应变参数在早期就发现HCM心肌损伤[36]。一项HCM的研究发现,早期正常LA大小的HCM患者LA储存和导管功能均已受到损害,而收缩功能增加[37],这是一种早期舒张功能障碍下心房代偿机制的表达[38]。此外,LA应变也可应用于HCM患者的风险预测。有研究发现HCM患者发生主要终点(HR=0.85,P=0.03)和次要终点(HR=0.88,P=0.003)的受试者LA总应变均<18%,提示LA总应变受损可能成为一种新的潜在预测不良心脏结局的指标[39]。ZHOU等[37]还发现LA主动应变也是评价HCM患者发生死亡、卒中、新发或恶化的心力衰竭、AF等终点事件的预测因子(HR=0.924,P=0.007)。此外,PU等[40]研究者对HCM并发症进行了调查,在对372位LA应变下降的HCM患者随访5年后发现,LA总应变可以作为HCM患者AF并发症的显著预测因子(HR=0.906,P<0.001)。

       在扩张型心肌病(dilated cardiomyopathy, DCM)中,史宇静等[41]发现LA应变及应变率均降低,与左室收缩和舒张功能改变导致的LA负荷改变有关。LA应变在DCM风险预测方面也有一定价值,LI等[42]发现LA总应变和被动应变是主要终点(总应变:HR=0.95,P=0.008;被动应变:HR=0.92,P=0.01)和次要终点(总应变:HR=0.95,P<0.001;被动应变:HR=0.93,P<0.001)的独立预测因子。BO等[43]对300例DCM患者随访后发现LA总应变是DCM患者发生心脏不良事件的可靠预测因子(HR=0.87,P<0.001),独立于常见的临床和CMR影像学指标。RAAFS等[44]发现LA被动应变在DCM预后中也是强有力的独立预测因子(HR=3.65,P<0.001),优于LA总应变及左室射血分数,作者认为将LA被动应变作为预测指标可能会改善DCM患者预后分层模型。此外,一项回顾性研究发现限制型心肌病(restrictive cardiomyopathy, RCM)不良事件的发生,如全因死亡率、RCM相关的心血管住院等与LA总应变受损显著相关,LA总应变<15%的患者不良事件发生率是LA总应变>34%的4倍(调整后HR=4.252,P=0.001)[45]

       HAN等[46]在研究95例左心室心肌致密化不全(left ventricular noncompaction cardiomyopathy, LVNC)患者LA应变中发现,无论LA是否扩大,LVNC患者LA应变参数均降低,在随访中还发现,LA应变降低的患者发生高危心衰事件的风险显著增高,其中LA总应变<12.7%是高危心衰事件的独立预测因子(HR=23.208,P=0.003),为预测LVNC的高危心衰事件提供了重要的预后信息。

       目前,LA应变参数不仅可以发现多种心肌病的早期心功能障碍,还可以在患者预后及危险分层方面提供重要信息,但不同软件供应商测量的应变值一致性较差,研究数据差异较大,未来还需进一步加以规范。

2.6 其他心肌病

       高血压可引起心肌微血管缺血、心肌内纤维化或胶原降解产物沉积等微观结构改变,进而导致心功能异常[47]。LI等[48]发现高血压患者的LA应变参数可以在LA体积未变化的情况下显著受损,尤其是LA被动应变诊断价值最高(AUC:0.82,敏感性:80.82%,特异性:72.41%),此外,在非左室肥厚高血压患者中,CMR-FT对LA功能的量化分析有助于疾病的分期,从而在高血压心肌重塑前及时治疗干预。SHAO等[49]还利用CMR-FT对2型糖尿病患者心房应变进行了分析,结果显示即使左室心肌应变正常的患者,LA应变已经受损,作者还发现利尿治疗后LA应变可以得到改善,提示这些药物在LA重塑中具有保护作用,为临床用药提供了一定的参考依据。BERNARDINI等[50]发现使用CMR-FT心房应变还有助于早期发现Anderson-Fabry病的心脏受累,由于鞘糖脂沉积在心房心肌引起心房顺应性降低,在还未发生左室肥厚和舒张功能障碍时,Anderson-Fabry患者心房应变已经受损,且与初始T1值相关,因此LA应变受损可以作为早期心脏受累的潜在新指标。

3 局限性及展望

       近年来CMR-FT对LA功能进行综合评估分析受到广泛关注,证实多种心脏疾病LA功能在心脏结构改变前就已经存在损伤,对心脏疾病的早期诊断及预后分层都有较大的应用价值。但CMR-FT目前仍存在一些不足,首先,CMR时间分辨率较低,目前压缩感知技术可以在保证基本图像质量的同时提高采集速度,一定程度上可以提高时间分辨率;其次,CMR-FT分析LA应变及应变率的正常值参考范围尚未统一,且各供应商测量值有所差异[6,51, 52];最后,研究显示CMR-FT测量不同心脏疾病LA应变和应变率的测试可重复性结果欠佳[11],因此在临床广泛应用该技术之前,应进一步改进图像采集和应变分析方法。

       综上所述,基于CMR-FT技术的LA应变分析可对多种心脏疾病早期功能改变进行检测,在为临床医生的决策提供相关依据,改善患者预后方面具有重要意义。

[1]
CAU R, CHERCHI V, MICHELETTI G, et al. Potential role of artificial intelligence in cardiac magnetic resonance imaging: can it help clinicians in making a diagnosis?[J]. J Thorac Imaging, 2021, 36(3): 142-148. DOI: 10.1097/RTI.0000000000000584.
[2]
CAU R, BASSAREO P, CHERCHI V, et al. Early diagnosis of chemotherapy-induced cardiotoxicity by cardiac MRI[J/OL]. Eur J Radiol, 2020, 130: 109158 [2022-10-02]. https://linkinghub.elsevier.com/retrieve/pii/S0720048X20303478. DOI: 10.1016/j.ejrad.2020.109158.
[3]
ABHAYARATNA W P, SEWARD J B, APPLETON C P, et al. Left atrial size: physiologic determinants and clinical applications[J]. J Am Coll Cardiol, 2006, 47(12): 2357-2363. DOI: 10.1016/j.jacc.2006.02.048.
[4]
CAU R, BASSAREO P, SURI J S, et al. The emerging role of atrial strain assessed by cardiac MRI in different cardiovascular settings: an up-to-date review[J/OL]. Eur Radiol, 2022, 32(7): 4384-4394. [2022-10-01]. https://link.springer.com/article/10.1007/s00330-022-08598-6. DOI: 10.1007/s00330-022-08598-6.
[5]
TELLES F, NANAYAKKARA S, EVANS S, et al. Impaired left atrial strain predicts abnormal exercise haemodynamics in heart failure with preserved ejection fraction[J]. Eur J Heart Fail, 2019, 21(4): 495-505. DOI: 10.1002/ejhf.1399.
[6]
PATHAN F, ZAINAL ABIDIN H A, VO Q H, et al. Left atrial strain: a multi-modality, multi-vendor comparison study[J]. Eur Heart J Cardiovasc Imaging, 2021, 22(1): 102-110. DOI: 10.1093/ehjci/jez303.
[7]
LANGE T, SCHUSTER A. Quantification of myocardial deformation applying CMR-feature-tracking-all about the left ventricle?[J]. Curr Heart Fail Rep, 2021, 18(4): 225-239. DOI: 10.1007/s11897-021-00515-0.
[8]
BUGGEY J, HOIT B D. Left atrial strain: measurement and clinical application[J]. Curr Opin Cardiol, 2018, 33(5): 479-485. DOI: 10.1097/HCO.0000000000000537.
[9]
GILMAN G, KHANDHERIA B K, HAGEN M E, et al. Strain rate and strain: a step-by-step approach to image and data acquisition[J]. J Am Soc Echocardiogr, 2004, 17(9): 1011-1020. DOI: 10.1016/j.echo.2004.04.039.
[10]
ISHIZU T, SEO Y, ATSUMI A, et al. Global and regional right ventricular function assessed by novel three-dimensional speckle-tracking echocardiography[J]. J Am Soc Echocardiogr, 2017, 30(12): 1203-1213. DOI: 10.1016/j.echo.2017.08.007.
[11]
ALFUHIED A, MARROW B A, ELFAWAL S, et al. Reproducibility of left atrial function using cardiac magnetic resonance imaging[J]. Eur Radiol, 2021, 31(5): 2788-2797. DOI: 10.1007/s00330-020-07399-z.
[12]
ESHOO S, BOYD A C, ROSS D L, et al. Strain rate evaluation of phasic atrial function in hypertension[J]. Heart, 2009, 95(14): 1184-1191. DOI: 10.1136/hrt.2008.156208.
[13]
SCHUSTER A, HOR K N, KOWALLICK J T, et al. Cardiovascular magnetic resonance myocardial feature tracking: concepts and clinical applications[J/OL]. Circ Cardiovasc Imaging, 2016, 9(4): e004077 [2022-10-03]. https://www.ahajournals.org/doi/10.1161/CIRCIMAGING.115.004077. DOI: 10.1161/CIRCIMAGING.115.004077.
[14]
PEDRIZZETTI G, CLAUS P, KILNER P J, et al. Principles of cardiovascular magnetic resonance feature tracking and echocardiographic speckle tracking for informed clinical use[J/OL]. J Cardiovasc Magn Reson, 2016, 18(1): 51 [2022-10-01]. http://jcmr-online.biomedcentral.com/articles/10.1186/s12968-016-0269-7. DOI: 10.1186/s12968-016-0269-7.
[15]
LENG S, GE H, HE J, et al. Long-term prognostic value of cardiac MRI left atrial strain in ST-segment elevation myocardial infarction[J]. Radiology, 2020, 296(2): 299-309. DOI: 10.1148/radiol.2020200176.
[16]
BACKHAUS S J, KOWALLICK J T, STIERMAIER T, et al. Cardiac magnetic resonance myocardial feature tracking for optimized risk assessment after acute myocardial infarction in patients with type 2 diabetes[J]. Diabetes, 2020, 69(7): 1540-1548. DOI: 10.2337/db20-0001.
[17]
SCHUSTER A, BACKHAUS S J, STIERMAIER T, et al. Left atrial function with MRI enables prediction of cardiovascular events after myocardial infarction: insights from the aida stemi and tatort nstemi trials[J]. Radiology, 2019, 293(2): 292-302. DOI: 10.1148/radiol.2019190559.
[18]
ZHANG H, LIU T. Differentiation value of left atrial dysfunction in reperfused chronic myocardial infarction[R/OL]. Res Sq, 2022 [2022-10-01]. https://www.researchsquare.com/article/rs-1770488/v1. DOI: 10.21203/rs.3.rs-1770488/v1.
[19]
FERREIRA V M, SCHULZ-MENGER J, HOLMVANG G, et al. Cardiovascular magnetic resonance in nonischemic myocardial inflammation: expert recommendations[J]. J Am Coll Cardiol, 2018, 72(24): 3158-3176. DOI: 10.1016/j.jacc.2018.09.072.
[20]
TRACHTENBERG B H, HARE J M. Inflammatory cardiomyopathic syndromes[J]. Circ Res, 2017, 121(7): 803-818. DOI: 10.1161/CIRCRESAHA.117.310221.
[21]
CAFORIO A L P, PANKUWEIT S, ARBUSTINI E, et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases[J]. Eur Heart J, 2013, 34(33): 2636-2648. DOI: 10.1093/eurheartj/eht210.
[22]
尹晨旺, 鲁琳, 史宇静, 等. MR特征追踪技术评价急性心肌炎患者左心房功能[J]. 中国医学影像技术, 2022, 38(2): 195-199. DOI: 10.13929/j.issn.1003-3289.2022.02.009.
YIN C W, LU L, SHI Y J, et al. Cardiac MR feature tracking for evaluating left atrial function of acute myocarditis patients[J]. Chin J Med Imaging Technol, 2022, 38(2): 195-199. DOI: 10.13929/j.issn.1003-3289.2022.02.009.
[23]
DICK A, SCHMIDT B, MICHELS G, et al. Left and right atrial feature tracking in acute myocarditis: a feasibility study[J]. Eur J Radiol, 2017, 89: 72-80. DOI: 10.1016/j.ejrad.2017.01.028.
[24]
DOERNER J, BUNCK A C, MICHELS G, et al. Incremental value of cardiovascular magnetic resonance feature tracking derived atrial and ventricular strain parameters in a comprehensive approach for the diagnosis of acute myocarditis[J]. Eur J Radiol, 2018, 104: 120-128. DOI: 10.1016/j.ejrad.2018.05.012.
[25]
BAEßLER B, TREUTLEIN M, SCHAARSCHMIDT F, et al. A novel multiparametric imaging approach to acute myocarditis using t2-mapping and CMR feature tracking[J/OL]. J Cardiovasc Magn Reson, 2017, 19(1): 71 [2022-10-06]. http://jcmr-online.biomedcentral.com/articles/10.1186/s12968-017-0387-x. DOI: 10.1186/s12968-017-0387-x.
[26]
SCHNEIDER J N, JAHNKE C, CAVUS E, et al. Feature tracking cardiovascular magnetic resonance reveals recovery of atrial function after acute myocarditis[J].Int J Cardiovasc Imaging, 2022, 38(9): 2003-2012. DOI: 10.1007/s10554-022-02576-1.
[27]
YAMADA A, HASHIMOTO N, FUJITO H, et al. Comprehensive assessment of left atrial and ventricular remodeling in paroxysmal atrial fibrillation by the cardiovascular magnetic resonance myocardial extracellular volume fraction and feature tracking strain[J/OL]. Sci Rep, 2021, 11(1): 10941 [2022-10-05]. https://www.nature.com/articles/s41598-021-90117-6. DOI: 10.1038/s41598-021-90117-6.
[28]
HABIBI M, LIMA J A C, KHURRAM I M, et al. Association of left atrial function and left atrial enhancement in patients with atrial fibrillation: cardiac magnetic resonance study[J/OL]. Circ Cardiovasc Imaging, 2015, 8(2): e002769 [2022-10-05]. https://www.ahajournals.org/doi/10.1161/CIRCIMAGING.114.002769. DOI: 10.1161/CIRCIMAGING.114.002769.
[29]
侯洁, 孙玉, 张立波, 等. 磁共振特征追踪技术评估风湿性二尖瓣狭窄合并房颤左心房心肌应变应用研究[J]. 磁共振成像, 2022, 13(4): 107-110. DOI: 10.12015/issn.1674-8034.2022.04.020.
HOU J, SUN Y, ZHANG L B, et al. Clinical application of cardiac magnetic resonance feature tracking technique in rheumatic mitral stenosis and concurrent atrial fibrillation[J]. Chin J Magn Reson Imaging, 2022, 13(4): 107-110. DOI: 10.12015/issn.1674-8034.2022.04.020.
[30]
BERTELSEN L, DIEDERICHSEN S Z, HAUGAN K J, et al. Left atrial volume and function assessed by cardiac magnetic resonance imaging are markers of subclinical atrial fibrillation as detected by continuous monitoring[J]. Europace, 2020, 22(5): 724-731. DOI: 10.1093/europace/euaa035.
[31]
GASTL M, BEJINARIU A, BEHM P, et al. Role of CMR-derived atrial deformation analysis in the prediction of atrial fibrillation recurrence rate after pulmonary vein isolation[J/OL]. Eur J Radiol, 2022, 155: 110452 [2022-10-06]. https://linkinghub.elsevier.com/retrieve/pii/S0720048X22003023. DOI: 10.1016/j.ejrad.2022.110452.
[32]
KHURRAM I M, HABIBI M, GUCUK IPEK E, et al. Left atrial LGE and arrhythmia recurrence following pulmonary vein isolation for paroxysmal and persistent AF[J]. JACC Cardiovasc Imaging, 2016, 9(2): 142-148. DOI: 10.1016/j.jcmg.2015.10.015.
[33]
KAMMERLANDER A A, KRAIGER J A, NITSCHE C, et al. Global longitudinal strain by CMR feature tracking is associated with outcome in HFPEF[J]. JACC Cardiovasc Imaging, 2019, 12(8Pt 1): 1585-1587. DOI: 10.1016/j.jcmg.2019.02.016.
[34]
ROSCA M, LANCELLOTTI P, POPESCU B A, et al. Left atrial function: pathophysiology, echocardiographic assessment, and clinical applications[J]. Heart, 2011, 97(23): 1982-1989. DOI: 10.1136/heartjnl-2011-300069.
[35]
BACKHAUS S J, LANGE T, GEORGE E F, et al. Exercise stress real-time cardiac magnetic resonance imaging for noninvasive characterization of heart failure with preserved ejection fraction: the HFpEF-stress trial[J]. Circulation, 2021, 143(15): 1484-1498. DOI: 10.1161/CIRCULATIONAHA.120.051542.
[36]
KOWALLICK J T, SILVA VIEIRA M, KUTTY S, et al. Left atrial performance in the course of hypertrophic cardiomyopathy: relation to left ventricular hypertrophy and fibrosis[J]. Invest Radiol, 2017, 52(3): 177-185. DOI: 10.1097/RLI.0000000000000326.
[37]
ZHOU D, YANG W J, YANG Y X, et al. Left atrial dysfunction may precede left atrial enlargement and abnormal left ventricular longitudinal function: a cardiac MR feature tracking study[J/OL]. BMC Cardiovasc Disord, 2022, 22(1): 99 [2022-10-02]. https://bmccardiovascdisord.biomedcentral.com/articles/10.1186/s12872-022-02532-w. DOI: 10.1186/s12872-022-02532-w.
[38]
BACKHAUS S J, STIERMAIER T, LANGE T, et al. Atrial mechanics and their prognostic impact in Takotsubo syndrome: a cardiovascular magnetic resonance imaging study[J]. Eur Heart J Cardiovasc Imaging, 2019, 20(9): 1059-1069. DOI: 10.1093/ehjci/jey219.
[39]
HINOJAR R, ZAMORANO J L, FERNÁNDEZ-MÉNDEZ M, et al. Prognostic value of left atrial function by cardiovascular magnetic resonance feature tracking in hypertrophic cardiomyopathy[J]. Int J Cardiovasc Imaging, 2019, 35(6): 1055-1065. DOI: 10.1007/s10554-019-01534-8.
[40]
PU L T, DIAO Y K, WANG J, et al. The predictive value of fast semi-automated left atrial long-axis strain analysis for atrial fibrillation in hypertrophic cardiomyopathy[J]. Eur Radiol, 2023, 33(1): 312-320. DOI: 10.1007/s00330-022-09020-x.
[41]
史宇静, 鲁琳, 尹晨旺, 等. 心脏MR特征追踪技术定量评估扩张型心肌病左心房心肌应变[J]. 中国医学影像技术, 2021, 37(11): 1661-1665. DOI: 10.13929/j.issn.1003-3289.2021.11.017.
SHI Y J, LU L, YIN C W, et al. Cardiac MR-feature tracking technique for quantitative analysis of left atrial myocardial strain in dilated cardiomyopathy[J]. Chin J Med Imaging Technol, 2021, 37(11): 1661-1665. DOI: 10.13929/j.issn.1003-3289.2021.11.017.
[42]
LI Y J, XU Y W, TANG S Q, et al. Left atrial function predicts outcome in dilated cardiomyopathy: fast long-axis strain analysis derived from MRI[J]. Radiology, 2022, 302(1): 72-81. DOI: 10.1148/radiol.2021210801.
[43]
BO K R, GAO Y F, ZHOU Z, et al. Incremental prognostic value of left atrial strain in patients with heart failure[J]. ESC Heart Fail, 2022, 9(6): 3942-3953. DOI: 10.1002/ehf2.14106.
[44]
RAAFS A G, VOS J L, HENKENS M T H M, et al. Left atrial strain has superior prognostic value to ventricular function and delayed-enhancement in dilated cardiomyopathy[J]. JACC Cardiovasc Imaging, 2022, 15(6): 1015-1026. DOI: 10.1016/j.jcmg.2022.01.016.
[45]
STOJANOVSKA J, TOPALOGLU N, FUJIKURA K, et al. Decreased left atrial reservoir strain is associated with adverse outcomes in restrictive cardiomyopathy[J/OL]. J Clin Med, 2022, 11(14): 4116 [2022-10-04]. https://www.mdpi.com/2077-0383/11/14/4116. DOI: 10.3390/jcm11144116.
[46]
HAN P L, SHEN M T, JIANG Y, et al. Prognostic value of left atrial reservoir strain in left ventricular myocardial noncompaction: a 3.0 T cardiac magnetic resonance feature tracking study[J]. J Magn Reson Imaging, 2023, 57(2): 559-575. DOI: 10.1002/jmri.28292.
[47]
SHEN C X, GE J B. Epidemic of cardiovascular disease in China: current perspective and prospects for the future[J]. Circulation, 2018, 138(4): 342-344. DOI: 10.1161/CIRCULATIONAHA.118.033484.
[48]
LI L, CHEN X Y, YIN G, et al. Early detection of left atrial dysfunction assessed by CMR feature tracking in hypertensive patients[J]. Eur Radiol, 2020, 30(2): 702-711. DOI: 10.1007/s00330-019-06397-0.
[49]
SHAO G Z, CAO Y K, CUI Y, et al. Early detection of left atrial and bi-ventricular myocardial strain abnormalities by MRI feature tracking in normotensive or hypertensive T2DM patients with preserved LV function[J/OL]. BMC Cardiovasc Disord, 2020, 20(1): 196[2022-10-03]. https://bmccardiovascdisord.biomedcentral.com/articles/10.1186/s12872-020-01469-2. DOI: 10.1186/s12872-020-01469-2.
[50]
BERNARDINI A, CAMPOREALE A, PIERONI M, et al. Atrial dysfunction assessed by cardiac magnetic resonance as an early marker of fabry cardiomyopathy[J]. JACC Cardiovasc Imaging, 2020, 13(10): 2262-2264. DOI: 10.1016/j.jcmg.2020.05.011.
[51]
BACKHAUS S J, METSCHIES G, BILLING M, et al. Cardiovascular magnetic resonance imaging feature tracking: impact of training on observer performance and reproducibility[J/OL]. PLoS One, 2019, 14(1): e0210127 [2022-10-02]. https://dx.plos.org/10.1371/journal.pone.0210127. DOI: 10.1371/journal.pone.0210127.
[52]
DOBROVIE M, BARREIRO-PÉREZ M, CURIONE D, et al. Inter-vendor reproducibility and accuracy of segmental left ventricular strain measurements using CMR feature tracking[J]. Eur Radiol, 2019, 29(12): 6846-6857. DOI: 10.1007/s00330-019-06315-4.

上一篇 基于纵向时间影像的深度学习在乳腺癌新辅助化疗疗效预测中的研究进展
下一篇 影像组学与深度学习在预测肝细胞癌微血管侵犯中的研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2