分享:
分享到微信朋友圈
X
临床研究
对比增强高分辨率血管壁成像评估不同钆基对比剂对颅内斑块强化效果的差异
李亚楠 石莹 吴海珊 张宏霞 刘鹏飞

Cite this article as: LI Y N, SHI Y, WU H S, et al. CE HRVW MRI to evaluate diagnostic difference of gadolinium-based contrast agents in intracranial plaque[J]. Chin J Magn Reson Imaging, 2023, 14(5): 79-84.本文引用格式:李亚楠, 石莹, 吴海珊, 等. 对比增强高分辨率血管壁成像评估不同钆基对比剂对颅内斑块强化效果的差异[J]. 磁共振成像, 2023, 14(5): 79-84. DOI:10.12015/issn.1674-8034.2023.05.015.


[摘要] 目的 定量评价对比增强高分辨率磁共振血管壁成像(contrast-enhanced high-resolution vessel wall MRI, CE HRVW MRI)联合不同钆基对比剂(gadolinium-based contrast agent, GBCA)对颅内动脉粥样硬化斑块的强化差异。材料与方法 回顾性分析105例因颅内动脉粥样硬化性疾病行CE HRVW MRI检查的患者病例,分为钆布醇组和钆喷酸葡胺组,并把检出的颅内斑块按照强化等级分为0级、1级和2级。在同一斑块强化等级下,比较两种GBCA成像的相关参数,包括信噪比(singal-to-noise ratio, SNR)、对比噪声比(contrast-to-noise ratio, CNR)、对比增强(contrast enhancement, CE)、对比脑比(contrast-to-brain ratio, CBR)、增强率(enhancement ratio, ER)。结果 共检出151个斑块,其中钆布醇组检出69个斑块,钆喷酸葡胺组检出82个斑块。在2级斑块强化等级下,钆布醇组的SNR [(168.02±26.89)vs.(155.76±18.71)]、CNR [(76.14±19.10)vs.(61.83±14.88)]、CE [(55.31±19.53)vs.(39.95±15.65)]、CBR [(0.85±0.23)vs.(0.68±0.20)]和ER [(117.54±0.34)vs.(101.18±0.18)]均高于钆喷酸葡胺(P<0.05),但上述参数在0级和1级的强化等级下差异无统计学意义(P>0.05)。结论 在2级斑块强化等级下,CE HRVW MRI评价钆布醇对颅内动脉粥样硬化斑块的强化效果优于钆喷酸葡胺。
[Abstract] Objective To evaluate the diagnostic efficacy of contrast-enhanced high-resolution vessel wall MRI (CE HRVW MRI) with different gadolinium-based contrast agents (GBCA) in intracranial atherosclerotic plaque quantitatively.Materials and Methods One hundred and five cases of patient with intracranial atherosclerotic disease (ICAD) who underwent CE HRVW MRI examination were analyzed retrospectively and divided into gadobutrol group and Gd-DTPA group. Each enhanced plaque was classified into grade 0, 1 or 2. An objective analysis for each grade had been conducted via comparing the parameters, including signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), contrast enhancement (CE), contrast-to-brain ratio (CBR), and enhancement index (ER) between the two groups.Results One hundred and fifty one plaques were analyzed, in which 69 plaques from 49 patients were detected in gadobutrol group and 82 plaques from 56 patients were detected in Gd-DTPA group. The image quality-related parameters of the three grades between the two groups were compared. The objective evaluation showed that in grade 2 SNR post-contrast [(168.02±26.89) vs. (155.76±18.71)], CNR [(76.14±19.10) vs. (61.83±14.88)], CE [(55.31±19.53) vs. (39.95±15.65)], CBR [(0.85±0.23) vs. (0.68±0.20)], and ER [(117.54±0.34) vs. (101.18±0.18)] were all higher when using gadobutrol compared with Gd-DTPA in CE HR-MRI (P<0.05). But above parameters of the grade 0 and 1 demonstrated no statistical difference (P>0.05).Conclusions The diagnostic efficacy of CE HRVW MRI with gadobutrol in intracranial atherosclerotic plaque was superior to that with Gd-DTPA in grade 2 of plaque enhancement.
[关键词] 动脉粥样硬化;磁共振成像;血管壁成像;钆基对比剂;颅内动脉;斑块
[Keywords] atherosclerotic;magnetic resonance imaging;vessel wall imaging;gadolinium-based contrast agent;intracranial artery;plaque

李亚楠    石莹    吴海珊    张宏霞    刘鹏飞 *  

哈尔滨医科大学附属第一医院磁共振室,哈尔滨 150001

通信作者:刘鹏飞,E-mail:liup.fei@163.com

作者贡献声明:刘鹏飞设计研究方案,修改论文中关键性理论,对其学术内容的重要方面进行修改,对最终要发表的论文版本进行了全面的审阅和把关,获得了黑龙江省卫生健康委员会科研课题和北京新兴卫生产业发展基金会立项项目的基金资助;李亚楠起草和撰写稿件,数据收集和统计分析,归纳并解释相关研究数据;石莹、吴海珊、张宏霞负责数据的获取、分析并解释统计结果,对稿件部分内容进行了补充和丰富;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 黑龙江省卫生健康委员会科研课题 2020-099 北京新兴卫生产业发展基金会立项项目
收稿日期:2022-11-25
接受日期:2023-05-06
中图分类号:R445.2  R543.5 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2023.05.015
本文引用格式:李亚楠, 石莹, 吴海珊, 等. 对比增强高分辨率血管壁成像评估不同钆基对比剂对颅内斑块强化效果的差异[J]. 磁共振成像, 2023, 14(5): 79-84. DOI:10.12015/issn.1674-8034.2023.05.015.

0 前言

       颅内动脉粥样硬化疾病(intracranial atherosclerotic disease, ICAD)是急性缺血性脑卒中(acute ischemic stroke, AIS)的一个重要原因,主要以亚洲人群发病为主[1],占卒中事件的30%~50%[2]。高分辨率磁共振血管壁成像(high-resolution vessel wall MRI, HRVW MRI)与传统的影像学检查方式相比,实现了颅内斑块形态位置和结构特征的无创可视化[3, 4]。对比增强(contrast enhancement, CE)HRVW MRI联合钆基对比剂(gadolinium based contrast agent, GBCA)成像的斑块增强被当作与同侧AIS密切相关的MRI生物标志物[5]。目前临床实践中最常用的GBCA按照化学结构分为大环状钆布醇与线性钆喷酸葡胺,其中钆布醇比钆喷酸葡胺具有更高的弛豫率、浓度和更好的稳定性,可用于中枢神经系统、血管造影和其他体部的增强成像[6, 7]。既往研究发现钆布醇比钆喷酸葡胺在脑转移瘤或腹部CE磁共振血管造影(magnetic resonance angiography, MRA)中具有更高的图像对比度和强化效果[8, 9],而FINK等[10, 11]并没有发现上述两种GBCA在肺和腹部CE MRA存在强化差异。同时,关于不同GBCA在颅内动脉粥样硬化斑块增强方面文献资料很少[12]。因此,鉴于不同GBCA的临床强化效果可能不同,以及缺乏不同GBCA在颅内动脉粥样硬化斑块增强方面的研究,我们利用CE HRVW MRI定量评价了标准剂量下钆布醇和钆喷酸葡胺对颅内动脉粥样硬化斑块的强化效果。

1 材料与方法

1.1 研究对象

       回顾性分析2019年7月至2021年10月在哈尔滨医科大学附属第一医院行CE HRVW MRI检查的105例AIS患者病例。纳入标准:(1)年龄≥18岁,经MRA联合HRVW MRI证实颅内动脉斑块形成伴或不伴管腔狭窄;(2)患者随机注射GBCA(钆布醇或钆喷酸葡胺任选其一)行CE HRVW MRI检查;(3)AIS症状出现后4周内行扩散加权成像(diffusion-weighted imaging, DWI)确定AIS的发病;(4)一个或多个动脉粥样硬化危险因素,包括高血压、糖尿病、高脂血症、肥胖、吸烟、饮酒[高血压定义为收缩压大于140 mmHg(1 mmHg=0.133 kPa),舒张压大于90 mmHg或当前正在服用抗高血压药物;使用抗糖尿病药物(胰岛素或口服降糖药)的患者被认为患有糖尿病;高脂血症定义为总胆固醇水平大于6.22 mmol/L,低密度脂蛋白胆固醇水平小于4.14 mmol/L或目前正在使用降血脂药物;肥胖定义为体质量指数大于30 kg/m2;过去或现在吸烟或饮酒的患者被认为有吸烟史和饮酒史]。排除标准:(1)非动脉粥样硬化性血管病变,如夹层、动脉瘤、血管炎、Moya-Moya病、先天性发育不良;(2)在本次检查开始前24 h内注射其他对比剂,或其他对比剂未代谢干净;(3)图像质量差。本研究遵守《赫尔辛基宣言》,经哈尔滨医科大学第一附属医院伦理委员会批准(批准文号:No. 2021153),免除受试者知情同意。

1.2 研究方法

       采用3.0 T Achieva MR系统(Philips Healthcare, Best, Netherlands)和16通道相控阵头颈线圈进行成像。首先,利用DWI定位急性期脑梗死病变;其次,获得三维时间飞跃法磁共振血管成像(3-dimensional time of flight magnetic resonance angiography, 3D-TOF MRA)以确定前循环动脉(单侧或者双侧的大脑中动脉)或后循环动脉(基底动脉)狭窄的位置;最后,使用3D-TOF MRA图像的最大强度投影,垂直于病变部分作为增强前后的三维质子密度加权体积各向同性自旋回波序列(T1-weighted 3D volumetric isotropic turbo spin echo acquisition, T1W-3D-VISTA)的定位图像。DWI序列扫描参数:TR/TE 1000 ms/47.48 ms,FOV 230 mm×230 mm,层厚4.0 mm,矩阵112×90;3D TOF-MRA序列扫描参数:TR/TE 25 ms/3.5 ms,FOV 194 mm×194 mm,层厚1.4 mm,矩阵304×172;T1W-3D-VISTA序列扫描参数:TR/TE 800 ms/18 ms,FOV 200 mm×181 mm,层厚0.6 mm,矩阵332×300,体素大小0.6 mm×0.6 mm×0.6 mm。根据注射GBCA的种类,将纳入患者分为注射钆布醇(Gd-BT-DO3A-butriol, Gadovist,德国拜耳先灵制药)组和注射钆喷酸葡胺(Gd-DTPA, Magnevist,德国拜耳先灵制药)组,其中两种GBCA的注射剂量均为0.1 mmol/kg,但是钆布醇的浓度(1.0 M)是钆喷酸葡胺浓度(0.5 M)的两倍,所以钆布醇使用剂量是钆喷酸葡胺的一半[13]。手动注射对比剂(2 mL/s)之后以相同注射速度注射20 mL生理盐水。增强后的T1W在打药后的5 min开始扫描,参数与增强前T1W-3D-VISTA保持一致。

1.3 图像分析

       所有MRI图像保存为DICOM文件,上传到Philips Intellispace Portal工作站分析。由2名MRI诊断医师(均具有5年以上颅内斑块分析的主任医师和副主任医师)在对患者临床信息以及GBCA的种类不知情的情况下评估图像质量,达成一致意见后再将最终纳入的图像后进行斑块强化程度分级。图像质量评分[14]:1分,图像无法显示管壁、管腔;2分,可见血管壁,管壁和管腔轮廓模糊;3分,管壁、管腔轮廓清楚显示,局部略模糊;4分,管壁及管腔轮廓皆清晰,仅将图像质量≥3分的纳入研究。分级方案如下[15]:0级表示强化低于或接近正常颅内动脉壁;1级表示强化大于0级,但低于垂体柄;2级表示强化与垂体柄相似或高于垂体柄,见图1

       在血管短轴层面将图像放大到400%,由一名具有10年以上工作经验的MRI诊断医师手动勾画增强前后T1W图像上的斑块(动脉粥样硬化斑块在HR VW MRI上的典型表现为管壁的偏心性增厚)本身的大小以及15 mm2的圆形区域相邻的灰质,记录增强前后斑块和灰质的信号强度(signal intensity, SI)。考虑部分容积效应和噪声分布不均匀,采用相邻白质代替背景噪声的标准差(standard deviation, SD)[16]。以上指标进行三次测量后取平均值进行信噪比(singal-to-noise ratio, SNR)、对比噪声比(contrast-to-noise ratio, CNR)、对比增强(contrast enhancement, CE)、对比脑比(contrast-to-brain ratio, CBR)、增强率(enhancement ratio, ER)的计算公式如下[8]

图1  斑块强化分级方案。从上至下分别是0级、1级和2级;从左至右分别为钆布醇和钆喷酸葡胺增强前后图像。黄箭所指的位置代表不同等级下斑块增强(红箭)的参照。
Fig. 1  Representative images. From top to bottom are levels 0,1 and 2. From left to right are pre- and post-contrast high-resolution T1 images of gadoburol and Gd-DTPA groups. The locations indicated by the yellow arrows represent references to different levels of plaque enhancement (red arrows).

1.4 统计学分析

       计量资料的正态性检验分布采用Shapiro-Wilk检验进行,符合正态分布的计量资料用均数±标准差(x¯±s)表示,组间比较采用t检验;不符合正态分布的计量资料则采用中位数(四分位数间距)表示,组间比较采用Mann-Whitney U检验比较。计数资料用例(%)表示,组间比较采用χ2检验。P<0.05认为差异具有统计学意义。加权Kappa分析验证评价者对斑块强化分级的一致性:Kappa值0.81~1.00为几乎完全一致;0.61~0.80为高度一致;0.40~0.60为中等一致;0.21~0.40为一般一致;0.00~0.20为一致性差[17]。上述统计学分析均采用SPSS 26.0软件包完成。

2 结果

2.1 临床特征

       共220例患者行CE HRVW MRI检查,其中115例因夹层(n=12)、动脉瘤(n=13)、血管炎(n=17)、Moya-Moya病(n=10)、先天性发育不良(n=9)、非急性缺血性卒中(n=49)、无动脉粥样硬化风险因素(n=3)、图像质量差(n=2)排除。最终纳入105例患者,其中男68例(64.76%)、女37例(35.23%),年龄为(57.5±10.5)岁。钆布醇组49例(46.67%),钆喷酸葡胺组56例(53.33%)。临床资料见表1

表1  钆布醇组和钆喷酸葡胺组临床特征比较
Tab. 1  Demographic and clinical characteristics of group gadobutrol and group Gd-DTPA.

2.2 斑块检出

       105例患者检出151个斑块,钆布醇组69个(45.7%),0级15个(21.7%),1级26个(37.7%),2级28个(40.6%);钆喷酸葡胺组82个(54.3%),0级13个(15.9%),1级35个(42.7%),2级34个(41.5%)。两个评分者评估斑块强化等级的Kappa值分别为0.83和0.82,具有很好的一致性(表2);卡方检验结果证实0级、1级和2级斑块强化在两组GBCA下的检出差异无统计学意义,P值分别为0.354,0.533和0.912。

表2  观察者对斑块强化分级一致性分析
Tab. 2  Overall analysis of the interobserver agreement of plaque grade.

2.3 两种GBCA下斑块增强参数的定量分析

       增强前,钆布醇组和钆喷酸葡胺组0级、1级和2级斑块的SNR差异无统计学意义(P=0.772、0.326、0.410)。增强后,钆布醇组在2级斑块强化等级下SNR、CNR、CE、CBR及ER均高于钆喷酸葡胺组(P=0.039、0.002、0.001、0.006、0.028);但上述参数在0级和1级斑块强化等级下差异无统计学意义(P>0.05)(表3)。图2、3分别为钆布醇组和钆喷酸葡胺组2级斑块强化等级的代表性图像。

图2  女,69岁,头晕和右上肢乏力10天,钆布醇组2级斑块强化。三维时间飞跃法磁共振血管成像(2A)显示基底动脉狭窄;扩散加权成像(2B)显示脑桥梗死;三维质子密度加权体积各向同性自旋回波序列增强前后冠位(2C~2D)和轴位(2E~2F)显示基底动脉斑块明显增强。
图3  男,39岁,左肢乏力15天,钆喷酸葡胺组2级斑块强化。三维时间飞跃法磁共振血管成像(3A)显示右侧大脑中动脉狭窄;扩散加权成像(3B)显示颞叶梗死;三维质子密度加权体积各向同性自旋回波序列增强前后轴位(3C~3D)和矢状位(3E~3F)显示右侧大脑中动脉斑块明显增强。
Fig. 2  A 69-year-old woman who presented dizziness and the weakness of right upper limb for 10 days, grade 2 plaque enhancement of gadobutrol. 3D time of flight magnetic resonance angiography (2A) demonstrats basilar artery (BA) stenoses; diffusion-weighted imaging (2B) reveals location of acute ischemic stroke lesion is at pons; coronal pre- (2C) or post-contrast (2D) and sagittal pre- (2E) or post-contrast (2F) T1-weighted 3D volumetric isotropic turbo spin echo acquisition show plaque formation and marked enhancement in BA.
Fig. 3  A 39-year-old man who presented the weakness of left limb for 15 days, grade 2 plaque enhancement of Gd-DTPA. 3D time of flight magnetic resonance angiography (3A) demonstrats right middle cerebral artery (MCA) stenosis; diffusion-weighted imaging (3B) reveals location of acute ischemic stroke lesion is at temporal lobe; coronal pre-(3C) or post-contrast (3D) and sagittal pre-(3E) or post-contrast (3F) T1-weighted 3D volumetric isotropic turbo spin echo acquisition show plaque formation and marked enhancement in the right MCA.
表3  客观评价钆布醇组和钆喷酸葡胺组斑块强化分级下的相关参数
Tab. 3  Objective evaluation of enhanced plaque imaging using gadobutrol and Gd-DTPA

3 讨论

       我们首次探究了钆布醇与钆喷酸葡胺对颅内动脉粥样硬化斑块增强效果的差异性,通过对斑块检出的一致性和两种GBCA下同一斑块强化等级的数目进行统计分析发现注射钆布醇后的斑块强化检出并没有高于钆喷酸葡胺,不论在0级、1级或2级斑块强化中差异均无统计学意义。但是定量分析斑块强化相关参数时发现钆布醇对颅内动脉粥样硬化斑块的增强效果在2级斑块强化水平下要优于钆喷酸葡胺,其结果不仅丰富了两种GBCA在颅内动脉粥样硬化斑块强化方面的对比研究,还提示钆布醇相比于钆喷酸葡胺更适用于CE HRVW MRI对斑块的表征,为临床疾病的诊疗提供更多的影像依据。

3.1 斑块强化

       HRVW MRI不仅可以显示管腔狭窄程度还能实现斑块检查的无创可视化,为临床提供额外的病理生理学信息。大量研究借助于HRVW MRI证实AIS的发生主要取决于斑块的不稳定性,其中斑块表现的钆增强已被认为是炎症、新生血管和斑块不稳定的标志。组织病理学证实斑块内微血管内皮功能障碍导致GBCA浸润血管壁[18, 19],从而将斑块增强作为一种特别有吸引力的MRI生物标志物,它具有检测的快捷性和简便性,且不需要烦琐的图像后处理即可间接预测近期缺血性卒中事件的发生[20, 21]。斑块增强的患者每年有30.3%的卒中风险,大约是斑块未增强患者的4倍[22]。我们在检出的斑块中发现1级和2级斑块增强占比达到81.46%(123/151),与QIAO等[15]发现的1级和2级斑块占AIS患者的82%具有较好的一致性,再次强调了斑块增强与近期缺血性事件发生的紧密相关性以及在评估不稳定斑块和预测不良事件中起到的关键作用[23]

3.2 两种GBCA的临床研究

       随着GBCA在临床的广泛应用,以往研究对比了钆布醇和钆喷酸葡胺在中枢神经系统、腹部MRA和心脏方面的强化效果[8, 9,11,24, 25]。结果证实钆布醇比钆喷酸葡胺可以检出更多的脑转移瘤[8];在腹部CE MRA中钆布醇可以提供更高的SNR和CNR[9,26];在心脏方面钆布醇评估心肌梗死或肥厚型心肌病患者的钆延迟强化要优于钆喷酸葡胺[11,25]。而我们首次探究了钆布醇和钆喷酸葡胺在颅内动脉粥样硬化斑块方面的强化效果,并在2级斑块强化等级下发现两种GBCA之间差异有统计学意义,这应该与钆布醇更高的螯合稳定性、更强的T1弛豫和更好的对比增强有关[27, 28]。由于本研究纳入的0级斑块均无强化,所以两种对比剂之间差异无统计学意义符合我们的预期,而1级强化斑块在两种GBCA之间差异无统计学意义,其原因可能是微血管内皮功能未完全受损,仅有少量的GBCA渗进斑块,因此未发现显著的差异。

       此外,LIU等[9]定量分析了健康志愿者的腹部大血管CE MRA,未发现钆布醇与钆喷酸葡胺之间存在差异。可能的原因是:(1)上述研究对象是健康志愿者,而我们纳入的是AIS患者;(2)腹腔大血管直径远大于颅内血管直径,GBCA容易到达此类血管,即使采用钆喷酸葡胺也能清晰显示感兴趣区,受GBCA的种类影响小[26]。当然研究之间的分歧也可能是由不同的成像参数、注射速率、注射后开始扫描时间和样品大小等因素造成,未来需要更多标准化程序的研究来验证结果和解决争议。

3.3 局限性

       本研究存在一些局限性。首先,受伦理审查的限制,无法实现在同一个患者身上分别进行两次GBCA的注射和扫描,可能导致研究结果存在偏差性。其次,本研究作为一项回顾性研究,样本选择方面可能存在不全面性。以往图像只对目标血管执行HRVW MRI检查,并没有实行全脑动脉成像,由于覆盖范围有限可能会遗漏部分斑块纳入研究。最后,由于颅内斑块的病理很难获得,忽略了斑块成分,只能严格按照斑块强化等级分组来降低对结果造成的误差。尽管HRVW MRI已实现对颈动脉斑块成分的定性、定量评价[29, 30],然而由于颅内动脉直径小而弯曲,周围被脑脊液包围,识别颅内斑块的成分仍然面临挑战[31]。未来需进一步优化扫描序列及其参数,以获得更优质的MRI图像为临床诊疗提供可靠信息,例如:减少切片厚度和减少平面内体素大小来提高空间分辨率;增加频率衰减反转恢复序列进行脂肪抑制,以便获得更为清晰的管壁轮廓;缩短回波时间,增加T1对比度,增强黑血效应等。

4 结论

       综上所述,在2级斑块强化等级下,钆布醇对颅内动脉粥样硬化斑块的增强效果要优于钆喷酸葡胺。考虑到钆布醇的稳定性、安全性和增强的有效性,它可能更适用于CE HRVW MRI对斑块的表征,为临床实践提供更多的诊疗信息。

[1]
WANG Y, ZHAO X, LIU L, et al. Prevalence and outcomes of symptomatic intracranial large artery stenoses and occlusions in China: the Chinese Intracranial Atherosclerosis (CICAS) Study[J]. Stroke, 2014, 45(3): 663-669. DOI: 10.1161/STROKEAHA.113.003508">10.1161/STROKEAHA.113.003508">10.1161/STROKEAHA.113.003508.
[2]
LENG X, WONG K S, LEUNG T W. The contemporary management of intracranial atherosclerotic disease[J]. Expert Rev Neurother, 2016, 16(6): 701-709. DOI: 10.1080/14737175.2016.1179111">10.1080/14737175.2016.1179111">10.1080/14737175.2016.1179111.
[3]
LI F, WANG Y, HU T, et al. Application and interpretation of vessel wall magnetic resonance imaging for intracranial atherosclerosis: a narrative review[J/OL]. Ann Transl Med, 2022, 10: 714 [2022-11-24]. https://pubmed.ncbi.nlm.nih.gov/35845481/. DOI: 10.21037/atm-22-2364">10.21037/atm-22-2364">10.21037/atm-22-2364.
[4]
KIM D K, VERDOORN J T, GUNDERSON T M, et al. Comparison of non-contrast vessel wall imaging and 3-D time-of-flight MRA for atherosclerotic stenosis and plaque characterization within intracranial arteries[J]. J Neuroradiol, 2020, 47(4): 266-271.
[5]
ZHAO J J, LU Y, CUI J Y, et al. Characteristics of symptomatic plaque on high-resolution magnetic resonance imaging and its relationship with the occurrence and recurrence of ischemic stroke[J]. Neurol Sci, 2021, 42(9): 3605-3613. DOI: 10.1007/s10072-021-05457-y">10.1007/s10072-021-05457-y">10.1007/s10072-021-05457-y.
[6]
KHAIRNAR S, MORE N, MOUNIKA C, et al. Advances in Contrast Agents for Contrast-Enhanced Magnetic Resonance Imaging[J]. J Med Imaging Radiat Sci, 2019, 50(4): 575-589. DOI: 10.1016/j.jmir.2019.09.006">10.1016/j.jmir.2019.09.006">10.1016/j.jmir.2019.09.006.
[7]
覃肖潇, 金春林, 王美凤, 等. 含钆对比剂的临床综合评价[J]. 临床药物治疗杂志, 2021, 19(9): 34-40. DOI: 10.3969/j.issn.1672-3384.2021.09.007">10.3969/j.issn.1672-3384.2021.09.007">10.3969/j.issn.1672-3384.2021.09.007.
QIN X X, JIN C L, WANG M F, et al. Clinical application evaluation of gadolinium-based contrast agent[J]. Clin Med J, 2021, 19(9): 34-40. DOI: 10.3969/j.issn.1672-3384.2021.09.007">10.3969/j.issn.1672-3384.2021.09.007">10.3969/j.issn.1672-3384.2021.09.007.
[8]
FAN B, LI M, WANG X, et al. Diagnostic value of gadobutrol versus gadopentetate dimeglumine in enhanced MRI of brain metastases[J]. J Magn Reson Imaging, 2017, 45(6): 1827-1834. DOI: 10.1002/jmri.25491">10.1002/jmri.25491">10.1002/jmri.25491.
[9]
LIU X, LI Z, ZHANG W, et al. Gadobutrol Precedes Gd-DTPA in Abdominal Contrast-Enhanced MRA and MRI: A Prospective, Multicenter, Intraindividual Study[J/OL]. Contrast Media Mol Imaging, 2019, 2019: 9738464 [2022-11-24]. https://pubmed.ncbi.nlm.nih.gov/31866800/. DOI: 10.1155/2019/9738464">10.1155/2019/9738464">10.1155/2019/9738464.
[10]
FINK C, BOCK M, KIESSLING F, et al. Time-resolved contrast-enhanced three-dimensional pulmonary MR-angiography: 1.0 M gadobutrol vs. 0.5 M gadopentetate dimeglumine[J]. J Magn Reson Imaging, 2004, 19(2): 202-208. DOI: 10.1002/jmri.10452">10.1002/jmri.10452">10.1002/jmri.10452.
[11]
FINK C, PUDERBACH M, LEY S, et al. Intraindividual comparison of 1.0 M gadobutrol and 0.5 M gadopentetate dimeglumine for time-resolved contrast-enhanced three-dimensional magnetic resonance angiography of the upper torso[J]. J Magn Reson Imaging, 2005, 22(2): 286-290. DOI: 10.1002/jmri.20381">10.1002/jmri.20381">10.1002/jmri.20381.
[12]
ENDRIKAT J, ANZALONE N. Gadobutrol in India-A Comprehensive Review of Safety and Efficacy[J/OL]. Magn Reson Insights, 2017, 10: 1178623X17730048 [2022-11-24]. https://pubmed.ncbi.nlm.nih.gov/28932122/. DOI: 10.1177/1178623X17730048">10.1177/1178623X17730048">10.1177/1178623X17730048.
[13]
THOMSEN H S. Generic gadolinium-based contrast agents: the future?[J]. Acta Radiol, 2017, 58(11): 1285-1287. DOI: 10.1177/0284185117719576">10.1177/0284185117719576">10.1177/0284185117719576.
[14]
周莹雪, 崔英哲, 南东, 等. 后循环脑缺血的基底动脉高分辨磁共振成像研究[J]. 磁共振成像, 2021, 12(2): 15-18, 23. DOI: 10.12015/issn.1674-8034.2021.02.004">10.12015/issn.1674-8034.2021.02.004">10.12015/issn.1674-8034.2021.02.004.
ZHOU Y X, CUI Y Z, NAN D, et al. The reasearch of basilar artery based on high-resolution magnetic resonance imaging in patients with posterior circulation ischemic attack[J]. Chin J Magn Reson Imaging, 2021, 12(2): 15-18, 23. DOI: 10.12015/issn.1674-8034.2021.02.004">10.12015/issn.1674-8034.2021.02.004">10.12015/issn.1674-8034.2021.02.004.
[15]
QIAO Y, ZEILER S R, MIRBAGHERI S, et al. Intracranial plaque enhancement in patients with cerebrovascular events on high-spatial-resolution MR images[J]. Radiology, 2014, 271(2): 534-542. DOI: 10.1148/radiol.13122812">10.1148/radiol.13122812">10.1148/radiol.13122812.
[16]
QIAO Y, STEINMAN D A, QIN Q, et al. Intracranial arterial wall imaging using three-dimensional high isotropic resolution black blood MRI at 3.0 Tesla[J]. J Magn Reson Imaging, 2011, 34: 22-30. DOI: 10.1002/jmri.22592">10.1002/jmri.22592">10.1002/jmri.22592.
[17]
SUN B, WANG L, LI X, et al. Intracranial Atherosclerotic Plaque Characteristics and Burden Associated with Recurrent Acute Stroke: A 3D Quantitative Vessel Wall MRI Study[J/OL]. Front Aging Neurosci, 2021, 13: 706544 [2022-11-24]. https://pubmed.ncbi.nlm.nih.gov/34393761/. DOI: 10.3389/fnagi.2021.706544">10.3389/fnagi.2021.706544">10.3389/fnagi.2021.706544.
[18]
AMELI R, EKER O, SIGOVAN M, et al. Multifocal arterial wall contrast-enhancement in ischemic stroke: A mirror of systemic inflammatory response in acute stroke[J]. Rev Neurol (Paris), 2020, 176(3): 194-199. DOI: 10.1016/j.neurol.2019.07.022">10.1016/j.neurol.2019.07.022">10.1016/j.neurol.2019.07.022.
[19]
ANDELOVIC K, WINTER P, JAKOB P M, et al. Evaluation of Plaque Characteristics and Inflammation Using Magnetic Resonance Imaging[J/OL]. Biomedicines, 2021, 9(2): 185 [2022-11-24]. https://pubmed.ncbi.nlm.nih.gov/33673124/. DOI: 10.3390/biomedicines9020185">10.3390/biomedicines9020185">10.3390/biomedicines9020185.
[20]
YANG H, JI C, WANG H, et al. Characterisation of symptomatic intracranial plaque without substantial stenosis using high-resolution vessel wall MRI[J/OL]. Clin Radiol, 2021, 76: 392.e21-392.e26 [2022-11-24]. https://pubmed.ncbi.nlm.nih.gov/33610287/. DOI: 10.1016/j.crad.2021.01.008.
[21]
LU Y, YE M F, ZHAO J J, et al. Gadolinium enhancement of atherosclerotic plaque in the intracranial artery[J]. Neurol Res, 2021, 43(12): 1040-1049. DOI: 10.1080/01616412.2021.1949682">10.1080/01616412.2021.1949682">10.1080/01616412.2021.1949682.
[22]
YANG W J, ABRIGO J, SOO Y O, et al. Regression of Plaque Enhancement Within Symptomatic Middle Cerebral Artery Atherosclerosis: A High-Resolution MRI Study[J/OL]. Front Neurol, 2020, 11: 755 [2022-11-24]. https://pubmed.ncbi.nlm.nih.gov/32849214/. DOI: 10.3389/fneur.2020.00755">10.3389/fneur.2020.00755">10.3389/fneur.2020.00755.
[23]
HUANG J, JIAO S, ZHAO X, et al. Characteristics of patients with enhancing intracranial atherosclerosis and association between plaque enhancement and recent cerebrovascular ischemic events: a high-resolution magnetic resonance imaging study[J]. Acta Radiol, 2019, 60(10): 1301-1307. DOI: 10.1177/0284185118822645">10.1177/0284185118822645">10.1177/0284185118822645.
[24]
RADHAKRISHNAN R, AHMED S, TILDEN J C, et al. Comparison of normal facial nerve enhancement at 3T MRI using gadobutrol and gadopentetate dimeglumine[J]. Neuroradiol, 2017, 30(6): 554-560. DOI: 10.1177/1971400917719714">10.1177/1971400917719714">10.1177/1971400917719714.
[25]
KAWASAKI K, OKUBO T, NAGATARI T, et al. Clinical significance of gadobutrol in magnetic resonance imaging for the detection of myocardial infarction: matched-pair cohort study to compare with gadopentetate dimeglumine at standard dose[J]. Radiol Phys Technol, 2020, 13(3): 306-311. DOI: 10.1007/s12194-020-00569-0">10.1007/s12194-020-00569-0">10.1007/s12194-020-00569-0.
[26]
陈国勇, 唐鹤菡, 孙家瑜, 等. 高浓度磁共振对比剂在腹部MRA中的应用研究[J]. 四川医学, 2018, 39(11): 1210-1214. DOI: 10.16252/j.cnki.issn1004-0501-2018.11.002">10.16252/j.cnki.issn1004-0501-2018.11.002">10.16252/j.cnki.issn1004-0501-2018.11.002.
CHEN G Y, TANG H H, SUN J Y, et al. Application of High Concentration Magnetic Resonance Contrast Agent in Abdominal MRA[J]. Sichuan Med J, 2018, 39(11): 1210-1214. DOI: 10.16252/j.cnki.issn1004-0501-2018.11.002">10.16252/j.cnki.issn1004-0501-2018.11.002">10.16252/j.cnki.issn1004-0501-2018.11.002.
[27]
PRINCE M R, LEE H G, LEE C H, et al. Safety of gadobutrol in over 23,000 patients: the GARDIAN study, a global multicentre, prospective, non-interventional study[J]. Eur Radiol, 2017, 27(1): 286-295. DOI: 10.1007/s00330-016-4268-8">10.1007/s00330-016-4268-8">10.1007/s00330-016-4268-8.
[28]
SCOTT L J. Gadobutrol: A Review in Contrast-Enhanced MRI and MRA[J]. Clin Drug Investig, 2018, 38(8): 773-784. DOI: 10.1007/s40261-018-0674-9">10.1007/s40261-018-0674-9">10.1007/s40261-018-0674-9.
[29]
XIA J, YIN A, LI Z, et al. Quantitative Analysis of Lipid-Rich Necrotic Core in Carotid Atherosclerotic Plaques by In Vivo Magnetic Resonance Imaging and Clinical Outcomes[J]. Med Sci Monit, 2017, 23: 2745-2750. DOI: 10.12659/msm.901864">10.12659/msm.901864">10.12659/msm.901864.
[30]
LIN R, CHEN S, LIU G, et al. Association Between Carotid Atherosclerotic Plaque Calcification and Intraplaque Hemorrhage: A Magnetic Resonance Imaging Study[J]. Arterioscler Thromb Vasc Biol, 2017, 37(6): 1228-1233. DOI: 10.1161/ATVBAHA.116.308360">10.1161/ATVBAHA.116.308360">10.1161/ATVBAHA.116.308360.
[31]
XU W. High-resolution MRI of intracranial large artery diseases: how to use it in clinical practice?[J]. Stroke Vasc Neurol, 2019, 4(2): 102-104. DOI: 10.1136/svn-2018-000210">10.1136/svn-2018-000210">10.1136/svn-2018-000210.

上一篇 高原藏族2型糖尿病患者静息态磁共振成像研究:基于低频振幅和比率低频振幅
下一篇 动态对比增强及平均表观传播子磁共振成像在预测高级别胶质瘤MGMT启动子甲基化状态中的应用价值
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2